numam-spdk/module/bdev/crypto/vbdev_crypto.c
paul luse bcd3ed39e7 modules/crypto: remove dependency on rte_cryptodev_pmd.h
Call rte_cryptodev_close() to free qpair memory instead of using
an internal function.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: I1bd7f0dd86de83f278f6be3263cdf3fbd8e1c77f
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/9720
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2021-10-07 09:23:55 +00:00

1966 lines
64 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "vbdev_crypto.h"
#include "spdk/env.h"
#include "spdk/endian.h"
#include "spdk/thread.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#include <rte_config.h>
#include <rte_bus_vdev.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_mbuf_dyn.h>
/* Used to store IO context in mbuf */
static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
.name = "context_bdev_io",
.size = sizeof(uint64_t),
.align = __alignof__(uint64_t),
.flags = 0,
};
static int g_mbuf_offset;
/* To add support for new device types, follow the examples of the following...
* Note that the string names are defined by the DPDK PMD in question so be
* sure to use the exact names.
*/
#define MAX_NUM_DRV_TYPES 2
/* The VF spread is the number of queue pairs between virtual functions, we use this to
* load balance the QAT device.
*/
#define QAT_VF_SPREAD 32
static uint8_t g_qat_total_qp = 0;
static uint8_t g_next_qat_index;
const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT };
/* Global list of available crypto devices. */
struct vbdev_dev {
struct rte_cryptodev_info cdev_info; /* includes device friendly name */
uint8_t cdev_id; /* identifier for the device */
TAILQ_ENTRY(vbdev_dev) link;
};
static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
/* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
* so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
* pattern for assigning queue pairs where with AESNI there is not.
*/
struct device_qp {
struct vbdev_dev *device; /* ptr to crypto device */
uint8_t qp; /* queue pair for this node */
bool in_use; /* whether this node is in use or not */
uint8_t index; /* used by QAT to load balance placement of qpairs */
TAILQ_ENTRY(device_qp) link;
};
static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
/* In order to limit the number of resources we need to do one crypto
* operation per LBA (we use LBA as IV), we tell the bdev layer that
* our max IO size is something reasonable. Units here are in bytes.
*/
#define CRYPTO_MAX_IO (64 * 1024)
/* This controls how many ops will be dequeued from the crypto driver in one run
* of the poller. It is mainly a performance knob as it effectively determines how
* much work the poller has to do. However even that can vary between crypto drivers
* as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
* QAT driver just dequeues what has been completed already.
*/
#define MAX_DEQUEUE_BURST_SIZE 64
/* When enqueueing, we need to supply the crypto driver with an array of pointers to
* operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
* value in conjunction with the other defines to make sure we're not using crazy amounts
* of memory. All of these numbers can and probably should be adjusted based on the
* workload. By default we'll use the worst case (smallest) block size for the
* minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
* blocks would give us an enqueue array size of 128.
*/
#define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
/* The number of MBUFS we need must be a power of two and to support other small IOs
* in addition to the limits mentioned above, we go to the next power of two. It is
* big number because it is one mempool for source and destination mbufs. It may
* need to be bigger to support multiple crypto drivers at once.
*/
#define NUM_MBUFS 32768
#define POOL_CACHE_SIZE 256
#define MAX_CRYPTO_VOLUMES 128
#define NUM_SESSIONS (2 * MAX_CRYPTO_VOLUMES)
#define SESS_MEMPOOL_CACHE_SIZE 0
uint8_t g_number_of_claimed_volumes = 0;
/* This is the max number of IOs we can supply to any crypto device QP at one time.
* It can vary between drivers.
*/
#define CRYPTO_QP_DESCRIPTORS 2048
/* Specific to AES_CBC. */
#define AES_CBC_IV_LENGTH 16
#define AES_CBC_KEY_LENGTH 16
#define AES_XTS_KEY_LENGTH 16 /* XTS uses 2 keys, each of this size. */
#define AESNI_MB_NUM_QP 64
/* Common for suported devices. */
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#define QUEUED_OP_OFFSET (IV_OFFSET + AES_CBC_IV_LENGTH)
static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void vbdev_crypto_examine(struct spdk_bdev *bdev);
static int vbdev_crypto_claim(const char *bdev_name);
static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
/* List of crypto_bdev names and their base bdevs via configuration file. */
struct bdev_names {
char *vbdev_name; /* name of the vbdev to create */
char *bdev_name; /* base bdev name */
/* Note, for dev/test we allow use of key in the config file, for production
* use, you must use an RPC to specify the key for security reasons.
*/
uint8_t *key; /* key per bdev */
char *drv_name; /* name of the crypto device driver */
char *cipher; /* AES_CBC or AES_XTS */
uint8_t *key2; /* key #2 for AES_XTS, per bdev */
TAILQ_ENTRY(bdev_names) link;
};
static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
/* List of virtual bdevs and associated info for each. We keep the device friendly name here even
* though its also in the device struct because we use it early on.
*/
struct vbdev_crypto {
struct spdk_bdev *base_bdev; /* the thing we're attaching to */
struct spdk_bdev_desc *base_desc; /* its descriptor we get from open */
struct spdk_bdev crypto_bdev; /* the crypto virtual bdev */
uint8_t *key; /* key per bdev */
uint8_t *key2; /* for XTS */
uint8_t *xts_key; /* key + key 2 */
char *drv_name; /* name of the crypto device driver */
char *cipher; /* cipher used */
struct rte_cryptodev_sym_session *session_encrypt; /* encryption session for this bdev */
struct rte_cryptodev_sym_session *session_decrypt; /* decryption session for this bdev */
struct rte_crypto_sym_xform cipher_xform; /* crypto control struct for this bdev */
TAILQ_ENTRY(vbdev_crypto) link;
struct spdk_thread *thread; /* thread where base device is opened */
};
static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
/* Shared mempools between all devices on this system */
static struct rte_mempool *g_session_mp = NULL;
static struct rte_mempool *g_session_mp_priv = NULL;
static struct spdk_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */
/* For queueing up crypto operations that we can't submit for some reason */
struct vbdev_crypto_op {
uint8_t cdev_id;
uint8_t qp;
struct rte_crypto_op *crypto_op;
struct spdk_bdev_io *bdev_io;
TAILQ_ENTRY(vbdev_crypto_op) link;
};
#define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
/* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
* We store things in here that are needed on per thread basis like the base_channel for this thread,
* and the poller for this thread.
*/
struct crypto_io_channel {
struct spdk_io_channel *base_ch; /* IO channel of base device */
struct spdk_poller *poller; /* completion poller */
struct device_qp *device_qp; /* unique device/qp combination for this channel */
TAILQ_HEAD(, spdk_bdev_io) pending_cry_ios; /* outstanding operations to the crypto device */
struct spdk_io_channel_iter *iter; /* used with for_each_channel in reset */
TAILQ_HEAD(, vbdev_crypto_op) queued_cry_ops; /* queued for re-submission to CryptoDev */
};
/* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
* each IO for us.
*/
struct crypto_bdev_io {
int cryop_cnt_remaining; /* counter used when completing crypto ops */
struct crypto_io_channel *crypto_ch; /* need to store for crypto completion handling */
struct vbdev_crypto *crypto_bdev; /* the crypto node struct associated with this IO */
struct spdk_bdev_io *orig_io; /* the original IO */
struct spdk_bdev_io *read_io; /* the read IO we issued */
int8_t bdev_io_status; /* the status we'll report back on the bdev IO */
bool on_pending_list;
/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
uint64_t aux_num_blocks; /* num of blocks for the contiguous buffer */
uint64_t aux_offset_blocks; /* block offset on media */
void *aux_buf_raw; /* raw buffer that the bdev layer gave us for write buffer */
struct iovec aux_buf_iov; /* iov representing aligned contig write buffer */
/* for bdev_io_wait */
struct spdk_bdev_io_wait_entry bdev_io_wait;
struct spdk_io_channel *ch;
};
/* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
static int
create_vbdev_dev(uint8_t index, uint16_t num_lcores)
{
struct vbdev_dev *device;
uint8_t j, cdev_id, cdrv_id;
struct device_qp *dev_qp;
struct device_qp *tmp_qp;
int rc;
TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
device = calloc(1, sizeof(struct vbdev_dev));
if (!device) {
return -ENOMEM;
}
/* Get details about this device. */
rte_cryptodev_info_get(index, &device->cdev_info);
cdrv_id = device->cdev_info.driver_id;
cdev_id = device->cdev_id = index;
/* Before going any further, make sure we have enough resources for this
* device type to function. We need a unique queue pair per core accross each
* device type to remain lockless....
*/
if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
device->cdev_info.max_nb_queue_pairs) < num_lcores) {
SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
device->cdev_info.driver_name);
SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
rc = -EINVAL;
goto err;
}
/* Setup queue pairs. */
struct rte_cryptodev_config conf = {
.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
.socket_id = SPDK_ENV_SOCKET_ID_ANY
};
rc = rte_cryptodev_configure(cdev_id, &conf);
if (rc < 0) {
SPDK_ERRLOG("Failed to configure cryptodev %u\n", cdev_id);
rc = -EINVAL;
goto err;
}
struct rte_cryptodev_qp_conf qp_conf = {
.nb_descriptors = CRYPTO_QP_DESCRIPTORS,
.mp_session = g_session_mp,
.mp_session_private = g_session_mp_priv,
};
/* Pre-setup all potential qpairs now and assign them in the channel
* callback. If we were to create them there, we'd have to stop the
* entire device affecting all other threads that might be using it
* even on other queue pairs.
*/
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
if (rc < 0) {
SPDK_ERRLOG("Failed to setup queue pair %u on "
"cryptodev %u\n", j, cdev_id);
rc = -EINVAL;
goto err;
}
}
rc = rte_cryptodev_start(cdev_id);
if (rc < 0) {
SPDK_ERRLOG("Failed to start device %u: error %d\n",
cdev_id, rc);
rc = -EINVAL;
goto err;
}
/* Select the right device/qp list based on driver name
* or error if it does not exist.
*/
if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
dev_qp_head = (struct device_qps *)&g_device_qp_qat;
} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
} else {
rc = -EINVAL;
goto err;
}
/* Build up lists of device/qp combinations per PMD */
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
dev_qp = calloc(1, sizeof(struct device_qp));
if (!dev_qp) {
rc = -ENOMEM;
goto err_qp_alloc;
}
dev_qp->device = device;
dev_qp->qp = j;
dev_qp->in_use = false;
if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
g_qat_total_qp++;
}
TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
}
/* Add to our list of available crypto devices. */
TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
return 0;
err_qp_alloc:
TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
TAILQ_REMOVE(dev_qp_head, dev_qp, link);
free(dev_qp);
}
err:
free(device);
return rc;
}
/* This is called from the module's init function. We setup all crypto devices early on as we are unable
* to easily dynamically configure queue pairs after the drivers are up and running. So, here, we
* configure the max capabilities of each device and assign threads to queue pairs as channels are
* requested.
*/
static int
vbdev_crypto_init_crypto_drivers(void)
{
uint8_t cdev_count;
uint8_t cdev_id;
int i, rc = 0;
struct vbdev_dev *device;
struct vbdev_dev *tmp_dev;
struct device_qp *dev_qp;
unsigned int max_sess_size = 0, sess_size;
uint16_t num_lcores = rte_lcore_count();
char aesni_args[32];
/* Only the first call, via RPC or module init should init the crypto drivers. */
if (g_session_mp != NULL) {
return 0;
}
/* We always init AESNI_MB */
snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
rc = rte_vdev_init(AESNI_MB, aesni_args);
if (rc) {
SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB);
return -EINVAL;
}
/* If we have no crypto devices, there's no reason to continue. */
cdev_count = rte_cryptodev_count();
if (cdev_count == 0) {
return 0;
}
g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
if (g_mbuf_offset < 0) {
SPDK_ERRLOG("error registering dynamic field with DPDK\n");
return -EINVAL;
}
/*
* Create global mempools, shared by all devices regardless of type.
*/
/* First determine max session size, most pools are shared by all the devices,
* so we need to find the global max sessions size.
*/
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
if (sess_size > max_sess_size) {
max_sess_size = sess_size;
}
}
g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
NULL, SOCKET_ID_ANY, 0);
if (g_session_mp_priv == NULL) {
SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
return -ENOMEM;
}
g_session_mp = rte_cryptodev_sym_session_pool_create(
"session_mp",
NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
SOCKET_ID_ANY);
if (g_session_mp == NULL) {
SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
goto error_create_session_mp;
return -ENOMEM;
}
g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (g_mbuf_mp == NULL) {
SPDK_ERRLOG("Cannot create mbuf pool\n");
rc = -ENOMEM;
goto error_create_mbuf;
}
/* We use per op private data to store the IV and our own struct
* for queueing ops.
*/
g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
NUM_MBUFS,
POOL_CACHE_SIZE,
AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH,
rte_socket_id());
if (g_crypto_op_mp == NULL) {
SPDK_ERRLOG("Cannot create op pool\n");
rc = -ENOMEM;
goto error_create_op;
}
/* Init all devices */
for (i = 0; i < cdev_count; i++) {
rc = create_vbdev_dev(i, num_lcores);
if (rc) {
goto err;
}
}
/* Assign index values to the QAT device qp nodes so that we can
* assign them for optimal performance.
*/
i = 0;
TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
dev_qp->index = i++;
}
return 0;
/* Error cleanup paths. */
err:
TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
TAILQ_REMOVE(&g_vbdev_devs, device, link);
free(device);
}
rte_mempool_free(g_crypto_op_mp);
g_crypto_op_mp = NULL;
error_create_op:
spdk_mempool_free(g_mbuf_mp);
g_mbuf_mp = NULL;
error_create_mbuf:
rte_mempool_free(g_session_mp);
g_session_mp = NULL;
error_create_session_mp:
if (g_session_mp_priv != NULL) {
rte_mempool_free(g_session_mp_priv);
g_session_mp_priv = NULL;
}
return rc;
}
/* Following an encrypt or decrypt we need to then either write the encrypted data or finish
* the read on decrypted data. Do that here.
*/
static void
_crypto_operation_complete(struct spdk_bdev_io *bdev_io)
{
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
crypto_bdev);
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
struct spdk_bdev_io *free_me = io_ctx->read_io;
int rc = 0;
TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
/* Complete the original IO and then free the one that we created
* as a result of issuing an IO via submit_request.
*/
if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
rc = -EINVAL;
}
spdk_bdev_free_io(free_me);
} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
/* Write the encrypted data. */
rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
&io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
io_ctx->aux_num_blocks, _complete_internal_write,
bdev_io);
} else {
SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
rc = -EINVAL;
}
} else {
SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
bdev_io->type);
rc = -EINVAL;
}
if (rc) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int _crypto_operation(struct spdk_bdev_io *bdev_io,
enum rte_crypto_cipher_operation crypto_op,
void *aux_buf);
/* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
* the device. Then we need to decide if what we've got so far (including previous poller
* runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
* accordingly. This means either completing a read or issuing a new write.
*/
static int
crypto_dev_poller(void *args)
{
struct crypto_io_channel *crypto_ch = args;
uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
int i, num_dequeued_ops, num_enqueued_ops;
struct spdk_bdev_io *bdev_io = NULL;
struct crypto_bdev_io *io_ctx = NULL;
struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
int num_mbufs = 0;
struct vbdev_crypto_op *op_to_resubmit;
/* Each run of the poller will get just what the device has available
* at the moment we call it, we don't check again after draining the
* first batch.
*/
num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
/* Check if operation was processed successfully */
for (i = 0; i < num_dequeued_ops; i++) {
/* We don't know the order or association of the crypto ops wrt any
* partiular bdev_io so need to look at each and determine if it's
* the last one for it's bdev_io or not.
*/
bdev_io = (struct spdk_bdev_io *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset,
uint64_t *);
assert(bdev_io != NULL);
io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
SPDK_ERRLOG("error with op %d status %u\n", i,
dequeued_ops[i]->status);
/* Update the bdev status to error, we'll still process the
* rest of the crypto ops for this bdev_io though so they
* aren't left hanging.
*/
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
}
assert(io_ctx->cryop_cnt_remaining > 0);
/* Return the associated src and dst mbufs by collecting them into
* an array that we can use the bulk API to free after the loop.
*/
*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
if (dequeued_ops[i]->sym->m_dst) {
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
}
/* done encrypting, complete the bdev_io */
if (--io_ctx->cryop_cnt_remaining == 0) {
/* If we're completing this with an outstanding reset we need
* to fail it.
*/
if (crypto_ch->iter) {
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
}
/* Complete the IO */
_crypto_operation_complete(bdev_io);
}
}
/* Now bulk free both mbufs and crypto operations. */
if (num_dequeued_ops > 0) {
rte_mempool_put_bulk(g_crypto_op_mp,
(void **)dequeued_ops,
num_dequeued_ops);
assert(num_mbufs > 0);
spdk_mempool_put_bulk(g_mbuf_mp,
(void **)mbufs_to_free,
num_mbufs);
}
/* Check if there are any pending crypto ops to process */
while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
io_ctx = (struct crypto_bdev_io *)op_to_resubmit->bdev_io->driver_ctx;
num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
op_to_resubmit->qp,
&op_to_resubmit->crypto_op,
1);
if (num_enqueued_ops == 1) {
/* Make sure we don't put this on twice as one bdev_io is made up
* of many crypto ops.
*/
if (io_ctx->on_pending_list == false) {
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, op_to_resubmit->bdev_io, module_link);
io_ctx->on_pending_list = true;
}
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
} else {
/* if we couldn't get one, just break and try again later. */
break;
}
}
/* If the channel iter is not NULL, we need to continue to poll
* until the pending list is empty, then we can move on to the
* next channel.
*/
if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
spdk_for_each_channel_continue(crypto_ch->iter, 0);
crypto_ch->iter = NULL;
}
return num_dequeued_ops;
}
/* We're either encrypting on the way down or decrypting on the way back. */
static int
_crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
void *aux_buf)
{
uint16_t num_enqueued_ops = 0;
uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
int rc;
uint32_t iov_index = 0;
uint32_t allocated = 0;
uint8_t *current_iov = NULL;
uint64_t total_remaining = 0;
uint64_t updated_length, current_iov_remaining = 0;
uint32_t crypto_index = 0;
uint32_t en_offset = 0;
struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
int burst;
struct vbdev_crypto_op *op_to_queue;
uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
/* Get the number of source mbufs that we need. These will always be 1:1 because we
* don't support chaining. The reason we don't is because of our decision to use
* LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
* op would be > 1 LBA.
*/
rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt);
if (rc) {
SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
return -ENOMEM;
}
/* Get the same amount but these buffers to describe the encrypted data location (dst). */
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt);
if (rc) {
SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
rc = -ENOMEM;
goto error_get_dst;
}
}
#ifdef __clang_analyzer__
/* silence scan-build false positive */
SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
#endif
/* Allocate crypto operations. */
allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
crypto_ops, cryop_cnt);
if (allocated < cryop_cnt) {
SPDK_ERRLOG("ERROR trying to get crypto ops!\n");
rc = -ENOMEM;
goto error_get_ops;
}
/* For encryption, we need to prepare a single contiguous buffer as the encryption
* destination, we'll then pass that along for the write after encryption is done.
* This is done to avoiding encrypting the provided write buffer which may be
* undesirable in some use cases.
*/
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
io_ctx->aux_buf_iov.iov_len = total_length;
io_ctx->aux_buf_raw = aux_buf;
io_ctx->aux_buf_iov.iov_base = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
}
/* This value is used in the completion callback to determine when the bdev_io is
* complete.
*/
io_ctx->cryop_cnt_remaining = cryop_cnt;
/* As we don't support chaining because of a decision to use LBA as IV, construction
* of crypto operations is straightforward. We build both the op, the mbuf and the
* dst_mbuf in our local arrays by looping through the length of the bdev IO and
* picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
* LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
* mbuf per crypto operation.
*/
total_remaining = total_length;
current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
do {
uint8_t *iv_ptr;
uint64_t op_block_offset;
/* Set the mbuf elements address and length. Null out the next pointer. */
src_mbufs[crypto_index]->buf_addr = current_iov;
src_mbufs[crypto_index]->data_len = updated_length = crypto_len;
/* TODO: Make this assignment conditional on QAT usage and add an assert. */
src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov, &updated_length);
src_mbufs[crypto_index]->next = NULL;
/* Store context in every mbuf as we don't know anything about completion order */
*RTE_MBUF_DYNFIELD(src_mbufs[crypto_index], g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
/* Set the IV - we use the LBA of the crypto_op */
iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
IV_OFFSET);
memset(iv_ptr, 0, AES_CBC_IV_LENGTH);
op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
/* Set the data to encrypt/decrypt length */
crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
/* link the mbuf to the crypto op. */
crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index];
} else {
crypto_ops[crypto_index]->sym->m_dst = NULL;
}
/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
* that will be used to process the write on completion to the same buffer. Setting
* up the en_buffer is a little simpler as we know the destination buffer is single IOV.
*/
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
/* Set the relevant destination en_mbuf elements. */
dst_mbufs[crypto_index]->buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
dst_mbufs[crypto_index]->data_len = updated_length = crypto_len;
/* TODO: Make this assignment conditional on QAT usage and add an assert. */
dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr,
&updated_length);
crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
en_offset += crypto_len;
dst_mbufs[crypto_index]->next = NULL;
/* Attach the crypto session to the operation */
rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
io_ctx->crypto_bdev->session_encrypt);
if (rc) {
rc = -EINVAL;
goto error_attach_session;
}
} else {
/* Attach the crypto session to the operation */
rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
io_ctx->crypto_bdev->session_decrypt);
if (rc) {
rc = -EINVAL;
goto error_attach_session;
}
}
/* Subtract our running totals for the op in progress and the overall bdev io */
total_remaining -= crypto_len;
current_iov_remaining -= crypto_len;
/* move our current IOV pointer accordingly. */
current_iov += crypto_len;
/* move on to the next crypto operation */
crypto_index++;
/* If we're done with this IOV, move to the next one. */
if (current_iov_remaining == 0 && total_remaining > 0) {
iov_index++;
current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
}
} while (total_remaining > 0);
/* Enqueue everything we've got but limit by the max number of descriptors we
* configured the crypto device for.
*/
burst = spdk_min(cryop_cnt, CRYPTO_QP_DESCRIPTORS);
num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
&crypto_ops[0],
burst);
/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
if (num_enqueued_ops > 0) {
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
io_ctx->on_pending_list = true;
}
/* We were unable to enqueue everything but did get some, so need to decide what
* to do based on the status of the last op.
*/
if (num_enqueued_ops < cryop_cnt) {
switch (crypto_ops[num_enqueued_ops]->status) {
case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
/* Queue them up on a linked list to be resubmitted via the poller. */
for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
uint8_t *, QUEUED_OP_OFFSET);
op_to_queue->cdev_id = cdev_id;
op_to_queue->qp = crypto_ch->device_qp->qp;
op_to_queue->crypto_op = crypto_ops[crypto_index];
op_to_queue->bdev_io = bdev_io;
TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
op_to_queue,
link);
}
break;
default:
/* For all other statuses, set the io_ctx bdev_io status so that
* the poller will pick the failure up for the overall bdev status.
*/
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
if (num_enqueued_ops == 0) {
/* If nothing was enqueued, but the last one wasn't because of
* busy, fail it now as the poller won't know anything about it.
*/
_crypto_operation_complete(bdev_io);
rc = -EINVAL;
goto error_attach_session;
}
break;
}
}
return rc;
/* Error cleanup paths. */
error_attach_session:
error_get_ops:
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0],
cryop_cnt);
}
if (allocated > 0) {
rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
allocated);
}
error_get_dst:
spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0],
cryop_cnt);
return rc;
}
/* This function is called after all channels have been quiesced following
* a bdev reset.
*/
static void
_ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
{
struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
assert(io_ctx->orig_io != NULL);
spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
}
/* This function is called per channel to quiesce IOs before completing a
* bdev reset that we received.
*/
static void
_ch_quiesce(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
crypto_ch->iter = i;
/* When the poller runs, it will see the non-NULL iter and handle
* the quiesce.
*/
}
/* Completion callback for IO that were issued from this bdev other than read/write.
* They have their own for readability.
*/
static void
_complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *orig_io = cb_arg;
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
assert(orig_io == orig_ctx->orig_io);
spdk_bdev_free_io(bdev_io);
spdk_for_each_channel(orig_ctx->crypto_bdev,
_ch_quiesce,
orig_ctx,
_ch_quiesce_done);
return;
}
spdk_bdev_io_complete(orig_io, status);
spdk_bdev_free_io(bdev_io);
}
/* Completion callback for writes that were issued from this bdev. */
static void
_complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *orig_io = cb_arg;
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
spdk_bdev_io_complete(orig_io, status);
spdk_bdev_free_io(bdev_io);
}
/* Completion callback for reads that were issued from this bdev. */
static void
_complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *orig_io = cb_arg;
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
if (success) {
/* Save off this bdev_io so it can be freed after decryption. */
orig_ctx->read_io = bdev_io;
if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
return;
} else {
SPDK_ERRLOG("ERROR decrypting\n");
}
} else {
SPDK_ERRLOG("ERROR on read prior to decrypting\n");
}
spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
spdk_bdev_free_io(bdev_io);
}
static void
vbdev_crypto_resubmit_io(void *arg)
{
struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
}
static void
vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
{
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
int rc;
io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
io_ctx->bdev_io_wait.cb_arg = bdev_io;
rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
if (rc != 0) {
SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
/* Callback for getting a buf from the bdev pool in the event that the caller passed
* in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
* beneath us before we're done with it.
*/
static void
crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
crypto_bdev);
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
int rc;
if (!success) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks, _complete_internal_read,
bdev_io);
if (rc != 0) {
if (rc == -ENOMEM) {
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
io_ctx->ch = ch;
vbdev_crypto_queue_io(bdev_io);
} else {
SPDK_ERRLOG("ERROR on bdev_io submission!\n");
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
/* For encryption we don't want to encrypt the data in place as the host isn't
* expecting us to mangle its data buffers so we need to encrypt into the bdev
* aux buffer, then we can use that as the source for the disk data transfer.
*/
static void
crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
void *aux_buf)
{
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
int rc = 0;
rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
if (rc != 0) {
spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
if (rc == -ENOMEM) {
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
io_ctx->ch = ch;
vbdev_crypto_queue_io(bdev_io);
} else {
SPDK_ERRLOG("ERROR on bdev_io submission!\n");
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
/* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
* we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
* and call our cpl callback provided below along with the original bdev_io so that we can
* complete it once this IO completes. For crypto operations, we'll either encrypt it first
* (writes) then call back into bdev to submit it or we'll submit a read and then catch it
* on the way back for decryption.
*/
static void
vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
crypto_bdev);
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
int rc = 0;
memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
io_ctx->crypto_bdev = crypto_bdev;
io_ctx->crypto_ch = crypto_ch;
io_ctx->orig_io = bdev_io;
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
/* Tell the bdev layer that we need an aux buf in addition to the data
* buf already associated with the bdev.
*/
spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks,
_complete_internal_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_FLUSH:
rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks,
_complete_internal_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_RESET:
rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
_complete_internal_io, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
default:
SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
if (rc != 0) {
if (rc == -ENOMEM) {
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
io_ctx->ch = ch;
vbdev_crypto_queue_io(bdev_io);
} else {
SPDK_ERRLOG("ERROR on bdev_io submission!\n");
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
/* We'll just call the base bdev and let it answer except for WZ command which
* we always say we don't support so that the bdev layer will actually send us
* real writes that we can encrypt.
*/
static bool
vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
switch (io_type) {
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_UNMAP:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_FLUSH:
return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
/* Force the bdev layer to issue actual writes of zeroes so we can
* encrypt them as regular writes.
*/
default:
return false;
}
}
/* Callback for unregistering the IO device. */
static void
_device_unregister_cb(void *io_device)
{
struct vbdev_crypto *crypto_bdev = io_device;
/* Done with this crypto_bdev. */
rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
free(crypto_bdev->drv_name);
if (crypto_bdev->key) {
memset(crypto_bdev->key, 0, strnlen(crypto_bdev->key, (AES_CBC_KEY_LENGTH + 1)));
free(crypto_bdev->key);
}
if (crypto_bdev->key2) {
memset(crypto_bdev->key2, 0, strnlen(crypto_bdev->key2, (AES_XTS_KEY_LENGTH + 1)));
free(crypto_bdev->key2);
}
if (crypto_bdev->xts_key) {
memset(crypto_bdev->xts_key, 0, strnlen(crypto_bdev->xts_key, (AES_XTS_KEY_LENGTH * 2) + 1));
free(crypto_bdev->xts_key);
}
free(crypto_bdev->crypto_bdev.name);
free(crypto_bdev);
}
/* Wrapper for the bdev close operation. */
static void
_vbdev_crypto_destruct(void *ctx)
{
struct spdk_bdev_desc *desc = ctx;
spdk_bdev_close(desc);
}
/* Called after we've unregistered following a hot remove callback.
* Our finish entry point will be called next.
*/
static int
vbdev_crypto_destruct(void *ctx)
{
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
/* Remove this device from the internal list */
TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
/* Unclaim the underlying bdev. */
spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
/* Close the underlying bdev on its same opened thread. */
if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
} else {
spdk_bdev_close(crypto_bdev->base_desc);
}
/* Unregister the io_device. */
spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
g_number_of_claimed_volumes--;
return 0;
}
/* We supplied this as an entry point for upper layers who want to communicate to this
* bdev. This is how they get a channel. We are passed the same context we provided when
* we created our crypto vbdev in examine() which, for this bdev, is the address of one of
* our context nodes. From here we'll ask the SPDK channel code to fill out our channel
* struct and we'll keep it in our crypto node.
*/
static struct spdk_io_channel *
vbdev_crypto_get_io_channel(void *ctx)
{
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
/* The IO channel code will allocate a channel for us which consists of
* the SPDK channel structure plus the size of our crypto_io_channel struct
* that we passed in when we registered our IO device. It will then call
* our channel create callback to populate any elements that we need to
* update.
*/
return spdk_get_io_channel(crypto_bdev);
}
/* This is the output for bdev_get_bdevs() for this vbdev */
static int
vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
spdk_json_write_name(w, "crypto");
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
spdk_json_write_named_string(w, "key", crypto_bdev->key);
if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
spdk_json_write_named_string(w, "key2", crypto_bdev->key);
}
spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
spdk_json_write_object_end(w);
return 0;
}
static int
vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
{
struct vbdev_crypto *crypto_bdev;
TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_crypto_create");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
spdk_json_write_named_string(w, "key", crypto_bdev->key);
if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
spdk_json_write_named_string(w, "key2", crypto_bdev->key);
}
spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
return 0;
}
/* Helper function for the channel creation callback. */
static void
_assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
struct crypto_io_channel *crypto_ch)
{
pthread_mutex_lock(&g_device_qp_lock);
if (strcmp(crypto_bdev->drv_name, QAT) == 0) {
/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
* workload out over the multiple virtual functions in the device. For the devices
* where this isn't the case, it doesn't hurt.
*/
TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
if (device_qp->index != g_next_qat_index) {
continue;
}
if (device_qp->in_use == false) {
crypto_ch->device_qp = device_qp;
device_qp->in_use = true;
g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
break;
} else {
/* if the preferred index is used, skip to the next one in this set. */
g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
}
}
} else if (strcmp(crypto_bdev->drv_name, AESNI_MB) == 0) {
TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
if (device_qp->in_use == false) {
crypto_ch->device_qp = device_qp;
device_qp->in_use = true;
break;
}
}
}
pthread_mutex_unlock(&g_device_qp_lock);
}
/* We provide this callback for the SPDK channel code to create a channel using
* the channel struct we provided in our module get_io_channel() entry point. Here
* we get and save off an underlying base channel of the device below us so that
* we can communicate with the base bdev on a per channel basis. We also register the
* poller used to complete crypto operations from the device.
*/
static int
crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
{
struct crypto_io_channel *crypto_ch = ctx_buf;
struct vbdev_crypto *crypto_bdev = io_device;
struct device_qp *device_qp = NULL;
crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
crypto_ch->device_qp = NULL;
/* Assign a device/qp combination that is unique per channel per PMD. */
_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
assert(crypto_ch->device_qp);
/* We use this queue to track outstanding IO in our layer. */
TAILQ_INIT(&crypto_ch->pending_cry_ios);
/* We use this to queue up crypto ops when the device is busy. */
TAILQ_INIT(&crypto_ch->queued_cry_ops);
return 0;
}
/* We provide this callback for the SPDK channel code to destroy a channel
* created with our create callback. We just need to undo anything we did
* when we created.
*/
static void
crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
{
struct crypto_io_channel *crypto_ch = ctx_buf;
pthread_mutex_lock(&g_device_qp_lock);
crypto_ch->device_qp->in_use = false;
pthread_mutex_unlock(&g_device_qp_lock);
spdk_poller_unregister(&crypto_ch->poller);
spdk_put_io_channel(crypto_ch->base_ch);
}
/* Create the association from the bdev and vbdev name and insert
* on the global list. */
static int
vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name,
const char *crypto_pmd, const char *key,
const char *cipher, const char *key2)
{
struct bdev_names *name;
int rc, j;
bool found = false;
TAILQ_FOREACH(name, &g_bdev_names, link) {
if (strcmp(vbdev_name, name->vbdev_name) == 0) {
SPDK_ERRLOG("crypto bdev %s already exists\n", vbdev_name);
return -EEXIST;
}
}
name = calloc(1, sizeof(struct bdev_names));
if (!name) {
SPDK_ERRLOG("could not allocate bdev_names\n");
return -ENOMEM;
}
name->bdev_name = strdup(bdev_name);
if (!name->bdev_name) {
SPDK_ERRLOG("could not allocate name->bdev_name\n");
rc = -ENOMEM;
goto error_alloc_bname;
}
name->vbdev_name = strdup(vbdev_name);
if (!name->vbdev_name) {
SPDK_ERRLOG("could not allocate name->vbdev_name\n");
rc = -ENOMEM;
goto error_alloc_vname;
}
name->drv_name = strdup(crypto_pmd);
if (!name->drv_name) {
SPDK_ERRLOG("could not allocate name->drv_name\n");
rc = -ENOMEM;
goto error_alloc_dname;
}
for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
if (strcmp(crypto_pmd, g_driver_names[j]) == 0) {
found = true;
break;
}
}
if (!found) {
SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd);
rc = -EINVAL;
goto error_invalid_pmd;
}
name->key = strdup(key);
if (!name->key) {
SPDK_ERRLOG("could not allocate name->key\n");
rc = -ENOMEM;
goto error_alloc_key;
}
if (strnlen(name->key, (AES_CBC_KEY_LENGTH + 1)) != AES_CBC_KEY_LENGTH) {
SPDK_ERRLOG("invalid AES_CBC key length\n");
rc = -EINVAL;
goto error_invalid_key;
}
if (strncmp(cipher, AES_XTS, sizeof(AES_XTS)) == 0) {
/* To please scan-build, input validation makes sure we can't
* have this cipher without providing a key2.
*/
name->cipher = AES_XTS;
assert(key2);
if (strnlen(key2, (AES_XTS_KEY_LENGTH + 1)) != AES_XTS_KEY_LENGTH) {
SPDK_ERRLOG("invalid AES_XTS key length\n");
rc = -EINVAL;
goto error_invalid_key2;
}
name->key2 = strdup(key2);
if (!name->key2) {
SPDK_ERRLOG("could not allocate name->key2\n");
rc = -ENOMEM;
goto error_alloc_key2;
}
} else if (strncmp(cipher, AES_CBC, sizeof(AES_CBC)) == 0) {
name->cipher = AES_CBC;
} else {
SPDK_ERRLOG("Invalid cipher: %s\n", cipher);
rc = -EINVAL;
goto error_cipher;
}
TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
return 0;
/* Error cleanup paths. */
error_cipher:
free(name->key2);
error_alloc_key2:
error_invalid_key2:
error_invalid_key:
free(name->key);
error_alloc_key:
error_invalid_pmd:
free(name->drv_name);
error_alloc_dname:
free(name->vbdev_name);
error_alloc_vname:
free(name->bdev_name);
error_alloc_bname:
free(name);
return rc;
}
/* RPC entry point for crypto creation. */
int
create_crypto_disk(const char *bdev_name, const char *vbdev_name,
const char *crypto_pmd, const char *key,
const char *cipher, const char *key2)
{
int rc;
rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key, cipher, key2);
if (rc) {
return rc;
}
rc = vbdev_crypto_claim(bdev_name);
if (rc == -ENODEV) {
SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
rc = 0;
}
return rc;
}
/* Called at driver init time, parses config file to prepare for examine calls,
* also fully initializes the crypto drivers.
*/
static int
vbdev_crypto_init(void)
{
int rc = 0;
/* Fully configure both SW and HW drivers. */
rc = vbdev_crypto_init_crypto_drivers();
if (rc) {
SPDK_ERRLOG("Error setting up crypto devices\n");
}
return rc;
}
/* Called when the entire module is being torn down. */
static void
vbdev_crypto_finish(void)
{
struct bdev_names *name;
struct vbdev_dev *device;
struct device_qp *dev_qp;
int rc;
while ((name = TAILQ_FIRST(&g_bdev_names))) {
TAILQ_REMOVE(&g_bdev_names, name, link);
free(name->drv_name);
free(name->key);
free(name->bdev_name);
free(name->vbdev_name);
free(name->key2);
free(name);
}
while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
TAILQ_REMOVE(&g_vbdev_devs, device, link);
rte_cryptodev_stop(device->cdev_id);
rc = rte_cryptodev_close(device->cdev_id);
assert(rc == 0);
free(device);
}
rc = rte_vdev_uninit(AESNI_MB);
if (rc) {
SPDK_ERRLOG("%d from rte_vdev_uninit\n", rc);
}
while ((dev_qp = TAILQ_FIRST(&g_device_qp_qat))) {
TAILQ_REMOVE(&g_device_qp_qat, dev_qp, link);
free(dev_qp);
}
while ((dev_qp = TAILQ_FIRST(&g_device_qp_aesni_mb))) {
TAILQ_REMOVE(&g_device_qp_aesni_mb, dev_qp, link);
free(dev_qp);
}
rte_mempool_free(g_crypto_op_mp);
spdk_mempool_free(g_mbuf_mp);
rte_mempool_free(g_session_mp);
if (g_session_mp_priv != NULL) {
rte_mempool_free(g_session_mp_priv);
}
}
/* During init we'll be asked how much memory we'd like passed to us
* in bev_io structures as context. Here's where we specify how
* much context we want per IO.
*/
static int
vbdev_crypto_get_ctx_size(void)
{
return sizeof(struct crypto_bdev_io);
}
static void
vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
{
struct vbdev_crypto *crypto_bdev, *tmp;
TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
if (bdev_find == crypto_bdev->base_bdev) {
spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
}
}
}
/* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
static void
vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
void *event_ctx)
{
switch (type) {
case SPDK_BDEV_EVENT_REMOVE:
vbdev_crypto_base_bdev_hotremove_cb(bdev);
break;
default:
SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
break;
}
}
static void
vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
/* When we register our bdev this is how we specify our entry points. */
static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
.destruct = vbdev_crypto_destruct,
.submit_request = vbdev_crypto_submit_request,
.io_type_supported = vbdev_crypto_io_type_supported,
.get_io_channel = vbdev_crypto_get_io_channel,
.dump_info_json = vbdev_crypto_dump_info_json,
.write_config_json = vbdev_crypto_write_config_json
};
static struct spdk_bdev_module crypto_if = {
.name = "crypto",
.module_init = vbdev_crypto_init,
.get_ctx_size = vbdev_crypto_get_ctx_size,
.examine_config = vbdev_crypto_examine,
.module_fini = vbdev_crypto_finish,
.config_json = vbdev_crypto_config_json
};
SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
static int
vbdev_crypto_claim(const char *bdev_name)
{
struct bdev_names *name;
struct vbdev_crypto *vbdev;
struct vbdev_dev *device;
struct spdk_bdev *bdev;
bool found = false;
int rc = 0;
if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
rc = -EINVAL;
goto error_vbdev_alloc;
}
g_number_of_claimed_volumes++;
/* Check our list of names from config versus this bdev and if
* there's a match, create the crypto_bdev & bdev accordingly.
*/
TAILQ_FOREACH(name, &g_bdev_names, link) {
if (strcmp(name->bdev_name, bdev_name) != 0) {
continue;
}
SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
vbdev = calloc(1, sizeof(struct vbdev_crypto));
if (!vbdev) {
SPDK_ERRLOG("could not allocate crypto_bdev\n");
rc = -ENOMEM;
goto error_vbdev_alloc;
}
vbdev->crypto_bdev.name = strdup(name->vbdev_name);
if (!vbdev->crypto_bdev.name) {
SPDK_ERRLOG("could not allocate crypto_bdev name\n");
rc = -ENOMEM;
goto error_bdev_name;
}
vbdev->key = strdup(name->key);
if (!vbdev->key) {
SPDK_ERRLOG("could not allocate crypto_bdev key\n");
rc = -ENOMEM;
goto error_alloc_key;
}
if (name->key2) {
vbdev->key2 = strdup(name->key2);
if (!vbdev->key2) {
SPDK_ERRLOG("could not allocate crypto_bdev key2\n");
rc = -ENOMEM;
goto error_alloc_key2;
}
}
vbdev->drv_name = strdup(name->drv_name);
if (!vbdev->drv_name) {
SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n");
rc = -ENOMEM;
goto error_drv_name;
}
vbdev->crypto_bdev.product_name = "crypto";
rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
NULL, &vbdev->base_desc);
if (rc) {
if (rc != -ENODEV) {
SPDK_ERRLOG("could not open bdev %s\n", bdev_name);
}
goto error_open;
}
bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
vbdev->base_bdev = bdev;
vbdev->crypto_bdev.write_cache = bdev->write_cache;
vbdev->cipher = AES_CBC;
if (strcmp(vbdev->drv_name, QAT) == 0) {
vbdev->crypto_bdev.required_alignment =
spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
vbdev->crypto_bdev.required_alignment);
if (strcmp(name->cipher, AES_CBC) == 0) {
SPDK_NOTICELOG("QAT using cipher: AES_CBC\n");
} else {
SPDK_NOTICELOG("QAT using cipher: AES_XTS\n");
vbdev->cipher = AES_XTS;
/* DPDK expects they keys to be concatenated together. */
vbdev->xts_key = calloc(1, (AES_XTS_KEY_LENGTH * 2) + 1);
if (vbdev->xts_key == NULL) {
SPDK_ERRLOG("could not allocate memory for XTS key\n");
rc = -ENOMEM;
goto error_xts_key;
}
memcpy(vbdev->xts_key, vbdev->key, AES_XTS_KEY_LENGTH);
assert(name->key2);
memcpy(vbdev->xts_key + AES_XTS_KEY_LENGTH, name->key2, AES_XTS_KEY_LENGTH + 1);
}
} else {
vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
}
/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
* in units of blocks.
*/
if (bdev->optimal_io_boundary > 0) {
vbdev->crypto_bdev.optimal_io_boundary =
spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
} else {
vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
}
vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
vbdev->crypto_bdev.blocklen = bdev->blocklen;
vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
/* This is the context that is passed to us when the bdev
* layer calls in so we'll save our crypto_bdev node here.
*/
vbdev->crypto_bdev.ctxt = vbdev;
vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
vbdev->crypto_bdev.module = &crypto_if;
TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
/* Save the thread where the base device is opened */
vbdev->thread = spdk_get_thread();
rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
if (rc) {
SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev));
goto error_claim;
}
/* To init the session we have to get the cryptoDev device ID for this vbdev */
TAILQ_FOREACH(device, &g_vbdev_devs, link) {
if (strcmp(device->cdev_info.driver_name, vbdev->drv_name) == 0) {
found = true;
break;
}
}
if (found == false) {
SPDK_ERRLOG("ERROR can't match crypto device driver to crypto vbdev!\n");
rc = -EINVAL;
goto error_cant_find_devid;
}
/* Get sessions. */
vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
if (NULL == vbdev->session_encrypt) {
SPDK_ERRLOG("ERROR trying to create crypto session!\n");
rc = -EINVAL;
goto error_session_en_create;
}
vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
if (NULL == vbdev->session_decrypt) {
SPDK_ERRLOG("ERROR trying to create crypto session!\n");
rc = -EINVAL;
goto error_session_de_create;
}
/* Init our per vbdev xform with the desired cipher options. */
vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
if (strcmp(name->cipher, AES_CBC) == 0) {
vbdev->cipher_xform.cipher.key.data = vbdev->key;
vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
vbdev->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH;
} else {
vbdev->cipher_xform.cipher.key.data = vbdev->xts_key;
vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
vbdev->cipher_xform.cipher.key.length = AES_XTS_KEY_LENGTH * 2;
}
vbdev->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH;
vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
&vbdev->cipher_xform,
g_session_mp_priv ? g_session_mp_priv : g_session_mp);
if (rc < 0) {
SPDK_ERRLOG("ERROR trying to init encrypt session!\n");
rc = -EINVAL;
goto error_session_init;
}
vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
&vbdev->cipher_xform,
g_session_mp_priv ? g_session_mp_priv : g_session_mp);
if (rc < 0) {
SPDK_ERRLOG("ERROR trying to init decrypt session!\n");
rc = -EINVAL;
goto error_session_init;
}
rc = spdk_bdev_register(&vbdev->crypto_bdev);
if (rc < 0) {
SPDK_ERRLOG("ERROR trying to register bdev\n");
rc = -EINVAL;
goto error_bdev_register;
}
SPDK_DEBUGLOG(vbdev_crypto, "registered io_device and virtual bdev for: %s\n",
name->vbdev_name);
break;
}
return rc;
/* Error cleanup paths. */
error_bdev_register:
error_session_init:
rte_cryptodev_sym_session_free(vbdev->session_decrypt);
error_session_de_create:
rte_cryptodev_sym_session_free(vbdev->session_encrypt);
error_session_en_create:
error_cant_find_devid:
error_claim:
spdk_bdev_close(vbdev->base_desc);
TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
spdk_io_device_unregister(vbdev, NULL);
free(vbdev->xts_key);
error_xts_key:
error_open:
free(vbdev->drv_name);
error_drv_name:
free(vbdev->key2);
error_alloc_key2:
free(vbdev->key);
error_alloc_key:
free(vbdev->crypto_bdev.name);
error_bdev_name:
free(vbdev);
error_vbdev_alloc:
g_number_of_claimed_volumes--;
return rc;
}
/* RPC entry for deleting a crypto vbdev. */
void
delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn,
void *cb_arg)
{
struct bdev_names *name;
if (!bdev || bdev->module != &crypto_if) {
cb_fn(cb_arg, -ENODEV);
return;
}
/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
* vbdev does not get re-created if the same bdev is constructed at some other time,
* unless the underlying bdev was hot-removed.
*/
TAILQ_FOREACH(name, &g_bdev_names, link) {
if (strcmp(name->vbdev_name, bdev->name) == 0) {
TAILQ_REMOVE(&g_bdev_names, name, link);
free(name->bdev_name);
free(name->vbdev_name);
free(name->drv_name);
free(name->key);
free(name->key2);
free(name);
break;
}
}
/* Additional cleanup happens in the destruct callback. */
spdk_bdev_unregister(bdev, cb_fn, cb_arg);
}
/* Because we specified this function in our crypto bdev function table when we
* registered our crypto bdev, we'll get this call anytime a new bdev shows up.
* Here we need to decide if we care about it and if so what to do. We
* parsed the config file at init so we check the new bdev against the list
* we built up at that time and if the user configured us to attach to this
* bdev, here's where we do it.
*/
static void
vbdev_crypto_examine(struct spdk_bdev *bdev)
{
vbdev_crypto_claim(spdk_bdev_get_name(bdev));
spdk_bdev_module_examine_done(&crypto_if);
}
SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)