numam-spdk/lib/idxd/idxd_user.c
Ziye Yang 4e0ca20a8a idxd: Do not present pci device info in accel_engine_idxd.c module
Purpose: We will also support the kernel idxd driver, so we do not
need export this feature in the module file.

Change-Id: I965e031497920f527962ba187bccd81de6977b8f
Signed-off-by: Ziye Yang <ziye.yang@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/7336
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2021-05-10 11:12:40 +00:00

571 lines
16 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/util.h"
#include "spdk/memory.h"
#include "spdk/likely.h"
#include "spdk/log.h"
#include "spdk_internal/idxd.h"
#include "idxd.h"
struct spdk_user_idxd_device {
struct spdk_idxd_device idxd;
struct spdk_pci_device *device;
int sock_id;
struct idxd_registers registers;
void *reg_base;
uint32_t wqcfg_offset;
uint32_t grpcfg_offset;
uint32_t ims_offset;
uint32_t msix_perm_offset;
uint32_t perfmon_offset;
};
typedef bool (*spdk_idxd_probe_cb)(void *cb_ctx, struct spdk_pci_device *pci_dev);
#define __user_idxd(idxd) (struct spdk_user_idxd_device *)idxd
pthread_mutex_t g_driver_lock = PTHREAD_MUTEX_INITIALIZER;
static struct device_config g_user_dev_cfg = {};
static struct spdk_idxd_device *idxd_attach(struct spdk_pci_device *device);
static uint32_t
_idxd_read_4(struct spdk_idxd_device *idxd, uint32_t offset)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
return spdk_mmio_read_4((uint32_t *)(user_idxd->reg_base + offset));
}
static void
_idxd_write_4(struct spdk_idxd_device *idxd, uint32_t offset, uint32_t value)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
spdk_mmio_write_4((uint32_t *)(user_idxd->reg_base + offset), value);
}
static uint64_t
_idxd_read_8(struct spdk_idxd_device *idxd, uint32_t offset)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
return spdk_mmio_read_8((uint64_t *)(user_idxd->reg_base + offset));
}
static uint64_t
idxd_read_8(struct spdk_idxd_device *idxd, void *portal, uint32_t offset)
{
return _idxd_read_8(idxd, offset);
}
static void
_idxd_write_8(struct spdk_idxd_device *idxd, uint32_t offset, uint64_t value)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
spdk_mmio_write_8((uint64_t *)(user_idxd->reg_base + offset), value);
}
static void
user_idxd_set_config(struct device_config *dev_cfg, uint32_t config_num)
{
g_user_dev_cfg = *dev_cfg;
}
/* Used for control commands, not for descriptor submission. */
static int
idxd_wait_cmd(struct spdk_idxd_device *idxd, int _timeout)
{
uint32_t timeout = _timeout;
union idxd_cmdsts_reg cmd_status = {};
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
while (cmd_status.active && --timeout) {
usleep(1);
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
}
/* Check for timeout */
if (timeout == 0 && cmd_status.active) {
SPDK_ERRLOG("Command timeout, waited %u\n", _timeout);
return -EBUSY;
}
/* Check for error */
if (cmd_status.err) {
SPDK_ERRLOG("Command status reg reports error 0x%x\n", cmd_status.err);
return -EINVAL;
}
return 0;
}
static int
idxd_unmap_pci_bar(struct spdk_idxd_device *idxd, int bar)
{
int rc = 0;
void *addr = NULL;
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
if (bar == IDXD_MMIO_BAR) {
addr = (void *)user_idxd->reg_base;
} else if (bar == IDXD_WQ_BAR) {
addr = (void *)idxd->portals;
}
if (addr) {
rc = spdk_pci_device_unmap_bar(user_idxd->device, 0, addr);
}
return rc;
}
static int
idxd_map_pci_bars(struct spdk_idxd_device *idxd)
{
int rc;
void *addr;
uint64_t phys_addr, size;
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
rc = spdk_pci_device_map_bar(user_idxd->device, IDXD_MMIO_BAR, &addr, &phys_addr, &size);
if (rc != 0 || addr == NULL) {
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
return -1;
}
user_idxd->reg_base = addr;
rc = spdk_pci_device_map_bar(user_idxd->device, IDXD_WQ_BAR, &addr, &phys_addr, &size);
if (rc != 0 || addr == NULL) {
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
rc = idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
if (rc) {
SPDK_ERRLOG("unable to unmap MMIO bar\n");
}
return -EINVAL;
}
idxd->portals = addr;
return 0;
}
static int
idxd_reset_dev(struct spdk_idxd_device *idxd)
{
int rc;
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_RESET_DEVICE << IDXD_CMD_SHIFT);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
if (rc < 0) {
SPDK_ERRLOG("Error resetting device %u\n", rc);
}
return rc;
}
/*
* Build group config based on getting info from the device combined
* with the defined configuration. Once built, it is written to the
* device.
*/
static int
idxd_group_config(struct spdk_idxd_device *idxd)
{
int i;
uint64_t base_offset;
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
assert(g_user_dev_cfg.num_groups <= user_idxd->registers.groupcap.num_groups);
idxd->groups = calloc(user_idxd->registers.groupcap.num_groups, sizeof(struct idxd_group));
if (idxd->groups == NULL) {
SPDK_ERRLOG("Failed to allocate group memory\n");
return -ENOMEM;
}
assert(g_user_dev_cfg.total_engines <= user_idxd->registers.enginecap.num_engines);
for (i = 0; i < g_user_dev_cfg.total_engines; i++) {
idxd->groups[i % g_user_dev_cfg.num_groups].grpcfg.engines |= (1 << i);
}
assert(g_user_dev_cfg.total_wqs <= user_idxd->registers.wqcap.num_wqs);
for (i = 0; i < g_user_dev_cfg.total_wqs; i++) {
idxd->groups[i % g_user_dev_cfg.num_groups].grpcfg.wqs[0] |= (1 << i);
}
for (i = 0; i < g_user_dev_cfg.num_groups; i++) {
idxd->groups[i].idxd = idxd;
idxd->groups[i].id = i;
/* Divide BW tokens evenly */
idxd->groups[i].grpcfg.flags.tokens_allowed =
user_idxd->registers.groupcap.total_tokens / g_user_dev_cfg.num_groups;
}
/*
* Now write the group config to the device for all groups. We write
* to the max number of groups in order to 0 out the ones we didn't
* configure.
*/
for (i = 0 ; i < user_idxd->registers.groupcap.num_groups; i++) {
base_offset = user_idxd->grpcfg_offset + i * 64;
/* GRPWQCFG, work queues config */
_idxd_write_8(idxd, base_offset, idxd->groups[i].grpcfg.wqs[0]);
/* GRPENGCFG, engine config */
_idxd_write_8(idxd, base_offset + CFG_ENGINE_OFFSET, idxd->groups[i].grpcfg.engines);
/* GRPFLAGS, flags config */
_idxd_write_8(idxd, base_offset + CFG_FLAG_OFFSET, idxd->groups[i].grpcfg.flags.raw);
}
return 0;
}
/*
* Build work queue (WQ) config based on getting info from the device combined
* with the defined configuration. Once built, it is written to the device.
*/
static int
idxd_wq_config(struct spdk_user_idxd_device *user_idxd)
{
int i, j;
struct idxd_wq *queue;
struct spdk_idxd_device *idxd = &user_idxd->idxd;
u_int32_t wq_size = user_idxd->registers.wqcap.total_wq_size / g_user_dev_cfg.total_wqs;
SPDK_NOTICELOG("Total ring slots available space 0x%x, so per work queue is 0x%x\n",
user_idxd->registers.wqcap.total_wq_size, wq_size);
assert(g_user_dev_cfg.total_wqs <= IDXD_MAX_QUEUES);
assert(g_user_dev_cfg.total_wqs <= user_idxd->registers.wqcap.num_wqs);
assert(LOG2_WQ_MAX_BATCH <= user_idxd->registers.gencap.max_batch_shift);
assert(LOG2_WQ_MAX_XFER <= user_idxd->registers.gencap.max_xfer_shift);
idxd->queues = calloc(1, user_idxd->registers.wqcap.num_wqs * sizeof(struct idxd_wq));
if (idxd->queues == NULL) {
SPDK_ERRLOG("Failed to allocate queue memory\n");
return -ENOMEM;
}
for (i = 0; i < g_user_dev_cfg.total_wqs; i++) {
queue = &user_idxd->idxd.queues[i];
queue->wqcfg.wq_size = wq_size;
queue->wqcfg.mode = WQ_MODE_DEDICATED;
queue->wqcfg.max_batch_shift = LOG2_WQ_MAX_BATCH;
queue->wqcfg.max_xfer_shift = LOG2_WQ_MAX_XFER;
queue->wqcfg.wq_state = WQ_ENABLED;
queue->wqcfg.priority = WQ_PRIORITY_1;
/* Not part of the config struct */
queue->idxd = &user_idxd->idxd;
queue->group = &idxd->groups[i % g_user_dev_cfg.num_groups];
}
/*
* Now write the work queue config to the device for all wq space
*/
for (i = 0 ; i < user_idxd->registers.wqcap.num_wqs; i++) {
queue = &idxd->queues[i];
for (j = 0 ; j < WQCFG_NUM_DWORDS; j++) {
_idxd_write_4(idxd, user_idxd->wqcfg_offset + i * 32 + j * 4,
queue->wqcfg.raw[j]);
}
}
return 0;
}
static int
idxd_device_configure(struct spdk_user_idxd_device *user_idxd)
{
int i, rc = 0;
union idxd_offsets_register offsets_reg;
union idxd_genstatus_register genstatus_reg;
struct spdk_idxd_device *idxd = &user_idxd->idxd;
/*
* Map BAR0 and BAR2
*/
rc = idxd_map_pci_bars(idxd);
if (rc) {
return rc;
}
/*
* Reset the device
*/
rc = idxd_reset_dev(idxd);
if (rc) {
goto err_reset;
}
/*
* Read in config registers
*/
user_idxd->registers.version = _idxd_read_4(idxd, IDXD_VERSION_OFFSET);
user_idxd->registers.gencap.raw = _idxd_read_8(idxd, IDXD_GENCAP_OFFSET);
user_idxd->registers.wqcap.raw = _idxd_read_8(idxd, IDXD_WQCAP_OFFSET);
user_idxd->registers.groupcap.raw = _idxd_read_8(idxd, IDXD_GRPCAP_OFFSET);
user_idxd->registers.enginecap.raw = _idxd_read_8(idxd, IDXD_ENGCAP_OFFSET);
for (i = 0; i < IDXD_OPCAP_WORDS; i++) {
user_idxd->registers.opcap.raw[i] =
_idxd_read_8(idxd, i * sizeof(uint64_t) + IDXD_OPCAP_OFFSET);
}
offsets_reg.raw[0] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET);
offsets_reg.raw[1] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET + sizeof(uint64_t));
user_idxd->grpcfg_offset = offsets_reg.grpcfg * IDXD_TABLE_OFFSET_MULT;
user_idxd->wqcfg_offset = offsets_reg.wqcfg * IDXD_TABLE_OFFSET_MULT;
user_idxd->ims_offset = offsets_reg.ims * IDXD_TABLE_OFFSET_MULT;
user_idxd->msix_perm_offset = offsets_reg.msix_perm * IDXD_TABLE_OFFSET_MULT;
user_idxd->perfmon_offset = offsets_reg.perfmon * IDXD_TABLE_OFFSET_MULT;
/*
* Configure groups and work queues.
*/
rc = idxd_group_config(idxd);
if (rc) {
goto err_group_cfg;
}
rc = idxd_wq_config(user_idxd);
if (rc) {
goto err_wq_cfg;
}
/*
* Enable the device
*/
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
assert(genstatus_reg.state == IDXD_DEVICE_STATE_DISABLED);
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_ENABLE_DEV << IDXD_CMD_SHIFT);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
if ((rc < 0) || (genstatus_reg.state != IDXD_DEVICE_STATE_ENABLED)) {
rc = -EINVAL;
SPDK_ERRLOG("Error enabling device %u\n", rc);
goto err_device_enable;
}
genstatus_reg.raw = spdk_mmio_read_4((uint32_t *)(user_idxd->reg_base + IDXD_GENSTATUS_OFFSET));
assert(genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED);
/*
* Enable the work queues that we've configured
*/
for (i = 0; i < g_user_dev_cfg.total_wqs; i++) {
_idxd_write_4(idxd, IDXD_CMD_OFFSET,
(IDXD_ENABLE_WQ << IDXD_CMD_SHIFT) | i);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
if (rc < 0) {
SPDK_ERRLOG("Error enabling work queues 0x%x\n", rc);
goto err_wq_enable;
}
}
if ((rc == 0) && (genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED)) {
SPDK_NOTICELOG("Device enabled, version 0x%x gencap: 0x%lx\n",
user_idxd->registers.version,
user_idxd->registers.gencap.raw);
}
return rc;
err_wq_enable:
err_device_enable:
free(idxd->queues);
err_wq_cfg:
free(idxd->groups);
err_group_cfg:
err_reset:
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
return rc;
}
static void
user_idxd_device_destruct(struct spdk_idxd_device *idxd)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
idxd_unmap_pci_bar(idxd, IDXD_WQ_BAR);
free(idxd->groups);
free(idxd->queues);
spdk_pci_device_detach(user_idxd->device);
free(user_idxd);
}
struct idxd_enum_ctx {
spdk_idxd_probe_cb probe_cb;
spdk_idxd_attach_cb attach_cb;
void *cb_ctx;
};
/* This function must only be called while holding g_driver_lock */
static int
idxd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct idxd_enum_ctx *enum_ctx = ctx;
struct spdk_idxd_device *idxd;
if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev)) {
idxd = idxd_attach(pci_dev);
if (idxd == NULL) {
SPDK_ERRLOG("idxd_attach() failed\n");
return -EINVAL;
}
enum_ctx->attach_cb(enum_ctx->cb_ctx, idxd);
}
return 0;
}
static bool
probe_cb(void *cb_ctx, struct spdk_pci_device *pci_dev)
{
struct spdk_pci_addr pci_addr = spdk_pci_device_get_addr(pci_dev);
SPDK_NOTICELOG(
" Found matching device at %04x:%02x:%02x.%x vendor:0x%04x device:0x%04x\n",
pci_addr.domain,
pci_addr.bus,
pci_addr.dev,
pci_addr.func,
spdk_pci_device_get_vendor_id(pci_dev),
spdk_pci_device_get_device_id(pci_dev));
/* Claim the device in case conflict with other process */
if (spdk_pci_device_claim(pci_dev) < 0) {
return false;
}
return true;
}
static int
user_idxd_probe(void *cb_ctx, spdk_idxd_attach_cb attach_cb)
{
int rc;
struct idxd_enum_ctx enum_ctx;
enum_ctx.probe_cb = probe_cb;
enum_ctx.attach_cb = attach_cb;
enum_ctx.cb_ctx = cb_ctx;
pthread_mutex_lock(&g_driver_lock);
rc = spdk_pci_enumerate(spdk_pci_idxd_get_driver(), idxd_enum_cb, &enum_ctx);
pthread_mutex_unlock(&g_driver_lock);
return rc;
}
static char *
user_idxd_portal_get_addr(struct spdk_idxd_device *idxd)
{
return (char *)idxd->portals + idxd->wq_id * PORTAL_SIZE;
}
static bool
user_idxd_nop_check(struct spdk_idxd_device *idxd)
{
struct spdk_user_idxd_device *user_idxd = __user_idxd(idxd);
/* TODO: temp workaround for simulator. Remove this function when fixed or w/silicon. */
if (user_idxd->registers.gencap.raw == 0x1833f011f) {
return true;
}
return false;
}
static struct spdk_idxd_impl g_user_idxd_impl = {
.name = "user",
.set_config = user_idxd_set_config,
.probe = user_idxd_probe,
.destruct = user_idxd_device_destruct,
.read_8 = idxd_read_8,
.portal_get_addr = user_idxd_portal_get_addr,
.nop_check = user_idxd_nop_check,
};
/* Caller must hold g_driver_lock */
static struct spdk_idxd_device *
idxd_attach(struct spdk_pci_device *device)
{
struct spdk_user_idxd_device *user_idxd;
struct spdk_idxd_device *idxd;
uint32_t cmd_reg;
int rc;
user_idxd = calloc(1, sizeof(struct spdk_user_idxd_device));
if (user_idxd == NULL) {
SPDK_ERRLOG("Failed to allocate memory for user_idxd device.\n");
return NULL;
}
idxd = &user_idxd->idxd;
user_idxd->device = device;
idxd->impl = &g_user_idxd_impl;
pthread_mutex_init(&idxd->num_channels_lock, NULL);
/* Enable PCI busmaster. */
spdk_pci_device_cfg_read32(device, &cmd_reg, 4);
cmd_reg |= 0x4;
spdk_pci_device_cfg_write32(device, cmd_reg, 4);
rc = idxd_device_configure(user_idxd);
if (rc) {
goto err;
}
return idxd;
err:
user_idxd_device_destruct(idxd);
return NULL;
}
SPDK_IDXD_IMPL_REGISTER(user, &g_user_idxd_impl);