numam-spdk/lib/nvmf/conn.c
Ben Walker d7fbeda710 nvmf: Move process_*_cmd functions to request.h/c
Change-Id: I16481463a8735f71387c69dd9ca4e187d743d8fc
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
2016-06-24 11:30:59 -07:00

1096 lines
30 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <inttypes.h>
#include <unistd.h>
#include <rte_config.h>
#include <rte_debug.h>
#include <rte_mempool.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include "nvmf.h"
#include "spdk/nvmf_spec.h"
#include "conn.h"
#include "rdma.h"
#include "request.h"
#include "session.h"
#include "spdk/queue.h"
#include "spdk/log.h"
#include "spdk/trace.h"
/** \file
*/
static rte_atomic32_t g_num_connections[RTE_MAX_LCORE];
static int g_max_conns;
static struct spdk_nvmf_conn *g_conns_array;
static char g_shm_name[64];
static int g_conns_array_fd;
static pthread_mutex_t g_conns_mutex;
static struct rte_timer g_shutdown_timer;
static int nvmf_allocate_reactor(uint64_t cpumask);
static void spdk_nvmf_conn_do_work(void *arg);
static void
nvmf_active_tx_desc(struct nvme_qp_tx_desc *tx_desc)
{
struct spdk_nvmf_conn *conn;
RTE_VERIFY(tx_desc != NULL);
conn = tx_desc->conn;
RTE_VERIFY(conn != NULL);
STAILQ_REMOVE(&conn->qp_tx_desc, tx_desc, nvme_qp_tx_desc, link);
STAILQ_INSERT_TAIL(&conn->qp_tx_active_desc, tx_desc, link);
}
void
nvmf_deactive_tx_desc(struct nvme_qp_tx_desc *tx_desc)
{
struct spdk_nvmf_conn *conn;
RTE_VERIFY(tx_desc != NULL);
conn = tx_desc->conn;
RTE_VERIFY(tx_desc->conn != NULL);
STAILQ_REMOVE(&conn->qp_tx_active_desc, tx_desc, nvme_qp_tx_desc, link);
STAILQ_INSERT_TAIL(&conn->qp_tx_desc, tx_desc, link);
}
static struct spdk_nvmf_conn *
allocate_conn(void)
{
struct spdk_nvmf_conn *conn;
int i;
pthread_mutex_lock(&g_conns_mutex);
for (i = 0; i < g_max_conns; i++) {
conn = &g_conns_array[i];
if (!conn->is_valid) {
memset(conn, 0, sizeof(*conn));
conn->is_valid = 1;
pthread_mutex_unlock(&g_conns_mutex);
return conn;
}
}
pthread_mutex_unlock(&g_conns_mutex);
return NULL;
}
static void
free_conn(struct spdk_nvmf_conn *conn)
{
conn->sess = NULL;
conn->cm_id = 0;
conn->is_valid = 0;
}
static struct spdk_nvmf_conn *
spdk_find_nvmf_conn_by_cntlid(int cntlid)
{
int i;
for (i = 0; i < g_max_conns; i++) {
if ((g_conns_array[i].is_valid == 1) &&
(g_conns_array[i].cntlid == cntlid) &&
(g_conns_array[i].qid == 0)) {
return &g_conns_array[i];
}
}
return NULL;
}
int spdk_initialize_nvmf_conns(int max_connections)
{
size_t conns_size;
int i, rc;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Enter\n");
rc = pthread_mutex_init(&g_conns_mutex, NULL);
if (rc != 0) {
SPDK_ERRLOG("mutex_init() failed\n");
return -1;
}
sprintf(g_shm_name, "nvmf_conns.%d", spdk_app_get_instance_id());
g_conns_array_fd = shm_open(g_shm_name, O_RDWR | O_CREAT, 0600);
if (g_conns_array_fd < 0) {
SPDK_ERRLOG("could not shm_open %s\n", g_shm_name);
return -1;
}
g_max_conns = max_connections;
conns_size = sizeof(struct spdk_nvmf_conn) * g_max_conns;
if (ftruncate(g_conns_array_fd, conns_size) != 0) {
SPDK_ERRLOG("could not ftruncate\n");
shm_unlink(g_shm_name);
close(g_conns_array_fd);
return -1;
}
g_conns_array = mmap(0, conns_size, PROT_READ | PROT_WRITE, MAP_SHARED,
g_conns_array_fd, 0);
memset(g_conns_array, 0, conns_size);
for (i = 0; i < RTE_MAX_LCORE; i++) {
rte_atomic32_set(&g_num_connections[i], 0);
}
return 0;
}
struct spdk_nvmf_conn *
spdk_nvmf_allocate_conn(void)
{
struct spdk_nvmf_conn *conn;
conn = allocate_conn();
if (conn == NULL) {
SPDK_ERRLOG("Could not allocate new connection.\n");
goto err0;
}
/* all new connections initially default as AQ until nvmf connect */
conn->type = CONN_TYPE_AQ;
/* no session association until nvmf connect */
conn->sess = NULL;
conn->state = CONN_STATE_INVALID;
conn->sq_head = conn->sq_tail = 0;
return conn;
err0:
return NULL;
}
/**
\brief Create an NVMf fabric connection from the given parameters and schedule it
on a reactor thread.
\code
# identify reactor where the new connections work item will be scheduled
reactor = nvmf_allocate_reactor()
schedule fabric connection work item on reactor
\endcode
*/
int
spdk_nvmf_startup_conn(struct spdk_nvmf_conn *conn)
{
int lcore;
struct spdk_nvmf_conn *admin_conn;
uint64_t nvmf_session_core = spdk_app_get_core_mask();
/*
* if starting IO connection then determine core
* allocated to admin queue to request core mask.
* Can not assume nvmf session yet created at time
* of fabric connection setup. Rely on fabric
* function to locate matching controller session.
*/
if (conn->type == CONN_TYPE_IOQ && conn->cntlid != 0) {
admin_conn = spdk_find_nvmf_conn_by_cntlid(conn->cntlid);
if (admin_conn != NULL) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Located admin conn session core %d\n",
admin_conn->poller.lcore);
nvmf_session_core = 1ULL << admin_conn->poller.lcore;
}
}
lcore = nvmf_allocate_reactor(nvmf_session_core);
if (lcore < 0) {
SPDK_ERRLOG("Unable to find core to launch connection.\n");
goto err0;
}
conn->state = CONN_STATE_RUNNING;
SPDK_NOTICELOG("Launching nvmf connection[qid=%d] on core: %d\n",
conn->qid, lcore);
conn->poller.fn = spdk_nvmf_conn_do_work;
conn->poller.arg = conn;
rte_atomic32_inc(&g_num_connections[lcore]);
spdk_poller_register(&conn->poller, lcore, NULL);
return 0;
err0:
free_conn(conn);
return -1;
}
static void
_conn_destruct(spdk_event_t event)
{
struct spdk_nvmf_conn *conn = spdk_event_get_arg1(event);
/*
* Notify NVMf library of the fabric connection
* going away. If this is the AQ connection then
* set state for other connections to abort.
*/
nvmf_disconnect((void *)conn, conn->sess);
if (conn->type == CONN_TYPE_AQ) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "AQ connection destruct, trigger session closure\n");
/* Trigger all I/O connections to shutdown */
conn->state = CONN_STATE_FABRIC_DISCONNECT;
}
nvmf_rdma_conn_cleanup(conn);
pthread_mutex_lock(&g_conns_mutex);
free_conn(conn);
pthread_mutex_unlock(&g_conns_mutex);
}
static void spdk_nvmf_conn_destruct(struct spdk_nvmf_conn *conn)
{
struct spdk_event *event;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "conn %p\n", conn);
conn->state = CONN_STATE_INVALID;
event = spdk_event_allocate(rte_lcore_id(), _conn_destruct, conn, NULL, NULL);
spdk_poller_unregister(&conn->poller, event);
rte_atomic32_dec(&g_num_connections[rte_lcore_id()]);
}
static int
spdk_nvmf_get_active_conns(void)
{
struct spdk_nvmf_conn *conn;
int num = 0;
int i;
pthread_mutex_lock(&g_conns_mutex);
for (i = 0; i < g_max_conns; i++) {
conn = &g_conns_array[i];
if (!conn->is_valid)
continue;
num++;
}
pthread_mutex_unlock(&g_conns_mutex);
return num;
}
static void
spdk_nvmf_cleanup_conns(void)
{
munmap(g_conns_array, sizeof(struct spdk_nvmf_conn) * g_max_conns);
shm_unlink(g_shm_name);
close(g_conns_array_fd);
}
static void
spdk_nvmf_conn_check_shutdown(struct rte_timer *timer, void *arg)
{
if (spdk_nvmf_get_active_conns() == 0) {
RTE_VERIFY(timer == &g_shutdown_timer);
rte_timer_stop(timer);
spdk_nvmf_cleanup_conns();
spdk_app_stop(0);
}
}
void spdk_shutdown_nvmf_conns(void)
{
struct spdk_nvmf_conn *conn;
int i;
pthread_mutex_lock(&g_conns_mutex);
for (i = 0; i < g_max_conns; i++) {
conn = &g_conns_array[i];
if (!conn->is_valid)
continue;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Set conn %d state to exiting\n", i);
conn->state = CONN_STATE_EXITING;
}
pthread_mutex_unlock(&g_conns_mutex);
rte_timer_init(&g_shutdown_timer);
rte_timer_reset(&g_shutdown_timer, rte_get_timer_hz() / 1000, PERIODICAL,
rte_get_master_lcore(), spdk_nvmf_conn_check_shutdown, NULL);
}
static int
nvmf_process_property_get(struct spdk_nvmf_conn *conn,
struct nvmf_request *req)
{
struct spdk_nvmf_fabric_prop_get_rsp *response;
struct spdk_nvmf_fabric_prop_get_cmd *cmd;
int ret;
cmd = &req->cmd->prop_get_cmd;
response = &req->rsp->prop_get_rsp;
nvmf_property_get(conn->sess, cmd, response);
/* send the nvmf response if setup by NVMf library */
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "send property get capsule response\n");
ret = spdk_nvmf_request_complete(req);
if (ret) {
SPDK_ERRLOG("Unable to send aq qp tx descriptor\n");
return -1;
}
return 0;
}
static int
nvmf_process_property_set(struct spdk_nvmf_conn *conn,
struct nvmf_request *req)
{
struct spdk_nvmf_fabric_prop_set_rsp *response;
struct spdk_nvmf_fabric_prop_set_cmd *cmd;
bool shutdown = false;
int ret;
cmd = &req->cmd->prop_set_cmd;
response = &req->rsp->prop_set_rsp;
nvmf_property_set(conn->sess, cmd, response, &shutdown);
if (shutdown == true) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Call to set properties has indicated shutdown\n");
conn->state = CONN_STATE_FABRIC_DISCONNECT;
}
/* send the nvmf response if setup by NVMf library */
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "send property set capsule response\n");
ret = spdk_nvmf_request_complete(req);
if (ret) {
SPDK_ERRLOG("Unable to send aq qp tx descriptor\n");
return -1;
}
return 0;
}
/* Check the nvmf message received */
static void nvmf_trace_command(struct spdk_nvmf_capsule_cmd *cap_hdr, enum conn_type conn_type)
{
struct spdk_nvme_cmd *cmd = (struct spdk_nvme_cmd *)cap_hdr;
struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
uint8_t opc;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "NVMf %s%s Command:\n",
conn_type == CONN_TYPE_AQ ? "Admin" : "I/O",
cmd->opc == SPDK_NVME_OPC_FABRIC ? " Fabrics" : "");
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
opc = cap_hdr->fctype;
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: fctype 0x%02x\n", cap_hdr->fctype);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: cid 0x%x\n", cap_hdr->cid);
} else {
opc = cmd->opc;
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: opc 0x%02x\n", cmd->opc);
if (cmd->fuse) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: fuse %x\n", cmd->fuse);
}
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: psdt %u\n", cmd->psdt);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: cid 0x%x\n", cmd->cid);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: nsid %u\n", cmd->nsid);
if (cmd->mptr) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: mptr 0x%" PRIx64 "\n", cmd->mptr);
}
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: cdw10 0x%08x\n", cmd->cdw10);
}
if (spdk_nvme_opc_get_data_transfer(opc) != SPDK_NVME_DATA_NONE) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL type 0x%x\n", sgl->generic.type);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL subtype 0x%x\n", sgl->generic.subtype);
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL address 0x%lx\n",
sgl->address);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL key 0x%x\n",
sgl->keyed.key);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL length 0x%x\n",
sgl->keyed.length);
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL %s 0x%" PRIx64 "\n",
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET ? "offset" : "address",
sgl->address);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " SQE: SGL length 0x%x\n", sgl->unkeyed.length);
}
}
}
static int
nvmf_process_io_command(struct spdk_nvmf_conn *conn,
struct nvmf_request *req)
{
int ret;
/* send to NVMf library for backend NVMe processing */
ret = nvmf_process_io_cmd(req);
if (ret) {
/* library failed the request and should have
Updated the response */
SPDK_TRACELOG(SPDK_TRACE_RDMA, "send nvme io cmd capsule error response\n");
ret = spdk_nvmf_request_complete(req);
if (ret) {
SPDK_ERRLOG("Unable to send aq qp tx descriptor\n");
return -1;
}
}
return 0;
}
static int
nvmf_process_admin_command(struct spdk_nvmf_conn *conn,
struct nvmf_request *req)
{
int ret;
ret = nvmf_process_admin_cmd(req);
if (ret) {
/* library failed the request and should have
Updated the response */
SPDK_TRACELOG(SPDK_TRACE_NVMF, "send nvme admin cmd capsule sync response\n");
ret = spdk_nvmf_request_complete(req);
if (ret) {
SPDK_ERRLOG("Unable to send aq qp tx descriptor\n");
return -1;
}
}
return 0;
}
static void
nvmf_init_conn_properites(struct spdk_nvmf_conn *conn,
struct nvmf_session *session,
struct spdk_nvmf_fabric_connect_rsp *response)
{
struct spdk_nvmf_extended_identify_ctrlr_data *lcdata;
uint32_t mdts;
conn->cntlid = response->status_code_specific.success.cntlid;
session->max_connections_allowed = g_nvmf_tgt.MaxConnectionsPerSession;
nvmf_init_session_properties(session, conn->sq_depth);
/* Update the session logical controller data with any
* application fabric side limits
*/
/* reset mdts in vcdata to equal the application default maximum */
mdts = SPDK_NVMF_MAX_RECV_DATA_TRANSFER_SIZE /
(1 << (12 + session->vcprop.cap_hi.bits.mpsmin));
if (mdts == 0) {
SPDK_ERRLOG("Min page size exceeds max transfer size!\n");
SPDK_ERRLOG("Verify setting of SPDK_NVMF_MAX_RECV_DATA_TRANSFER_SIZE and mpsmin\n");
session->vcdata.mdts = 1; /* Support single page for now */
} else {
/* set mdts as a power of 2 representing number of mpsmin units */
session->vcdata.mdts = 0;
while ((1ULL << session->vcdata.mdts) < mdts) {
session->vcdata.mdts++;
}
}
/* increase the I/O recv capsule size for in_capsule data */
lcdata = (struct spdk_nvmf_extended_identify_ctrlr_data *)&session->vcdata.reserved5[1088];
lcdata->ioccsz += (g_nvmf_tgt.MaxInCapsuleData / 16);
}
static int
nvmf_process_connect(struct spdk_nvmf_conn *conn,
struct nvmf_request *req)
{
struct spdk_nvmf_fabric_connect_cmd *connect;
struct spdk_nvmf_fabric_connect_data *connect_data;
struct spdk_nvmf_fabric_connect_rsp *response;
struct nvmf_session *session;
int ret;
if (req->length < sizeof(struct spdk_nvmf_fabric_connect_data)) {
SPDK_ERRLOG("Connect command data length 0x%x too small\n", req->length);
return -1;
}
connect = &req->cmd->connect_cmd;
connect_data = (struct spdk_nvmf_fabric_connect_data *)req->data;
RTE_VERIFY(connect_data != NULL);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** Connect Capsule *** %p\n", connect);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** cid = %x ***\n", connect->cid);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** recfmt = %x ***\n", connect->recfmt);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** qid = %x ***\n", connect->qid);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** sqsize = %x ***\n", connect->sqsize);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** Connect Capsule Data *** %p\n", connect_data);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** cntlid = %x ***\n", connect_data->cntlid);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** hostid = %04x%04x-%04x-%04x-%04x-%04x%04x%04x ***\n",
htons(*(unsigned short *) &connect_data->hostid[0]),
htons(*(unsigned short *) &connect_data->hostid[2]),
htons(*(unsigned short *) &connect_data->hostid[4]),
htons(*(unsigned short *) &connect_data->hostid[6]),
htons(*(unsigned short *) &connect_data->hostid[8]),
htons(*(unsigned short *) &connect_data->hostid[10]),
htons(*(unsigned short *) &connect_data->hostid[12]),
htons(*(unsigned short *) &connect_data->hostid[14]));
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** subsiqn = %s ***\n", (char *)&connect_data->subnqn[0]);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** hostiqn = %s ***\n", (char *)&connect_data->hostnqn[0]);
response = &req->rsp->connect_rsp;
session = nvmf_connect((void *)conn, connect, connect_data, response);
if (session != NULL) {
conn->sess = session;
conn->qid = connect->qid;
if (connect->qid > 0) {
conn->type = CONN_TYPE_IOQ; /* I/O Connection */
} else {
/* When session first created, set some attributes */
nvmf_init_conn_properites(conn, session, response);
}
}
/* synchronous call, nvmf library expected to init
response status.
*/
SPDK_TRACELOG(SPDK_TRACE_NVMF, "send connect capsule response\n");
SPDK_TRACELOG(SPDK_TRACE_NVMF, " *** cntlid = %x ***\n",
response->status_code_specific.success.cntlid);
ret = spdk_nvmf_request_complete(req);
if (ret) {
SPDK_ERRLOG("Unable to send aq qp tx descriptor\n");
return ret;
}
return 0;
}
static int
nvmf_process_fabrics_command(struct spdk_nvmf_conn *conn, struct nvmf_request *req)
{
struct spdk_nvmf_capsule_cmd *cap_hdr;
cap_hdr = &req->cmd->nvmf_cmd;
switch (cap_hdr->fctype) {
case SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET:
return nvmf_process_property_set(conn, req);
case SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET:
return nvmf_process_property_get(conn, req);
case SPDK_NVMF_FABRIC_COMMAND_CONNECT:
return nvmf_process_connect(conn, req);
default:
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "recv capsule header type invalid [%x]!\n",
cap_hdr->fctype);
return 1; /* skip, do nothing */
}
}
/*
* Prepare the nvmf_request data and length fields.
*
* A data transfer will be initiated if required by the request.
*
* \return 1 on success with data immediately available (in-capsule data or controller to host),
* 0 if host to controller transfer was initiated (command will be issued pending completion
* of transfer), or negative on error.
*/
static int
spdk_nvmf_request_prep_data(struct nvmf_request *req)
{
struct nvme_qp_tx_desc *tx_desc = req->tx_desc;
struct nvme_qp_rx_desc *rx_desc = req->rx_desc;
struct spdk_nvmf_conn *conn = tx_desc->conn;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
enum spdk_nvme_data_transfer xfer;
int ret;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
xfer = spdk_nvme_opc_get_data_transfer(req->cmd->nvmf_cmd.fctype);
} else {
xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
}
if (xfer != SPDK_NVME_DATA_NONE) {
struct spdk_nvme_sgl_descriptor *sgl = (struct spdk_nvme_sgl_descriptor *)&cmd->dptr.sgl1;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Keyed data block: raddr 0x%" PRIx64 ", rkey 0x%x, length 0x%x\n",
sgl->address, sgl->keyed.key, sgl->keyed.length);
if (sgl->keyed.length > rx_desc->bb_sgl.length) {
SPDK_ERRLOG("SGL length 0x%x exceeds BB length 0x%x\n",
sgl->keyed.length, rx_desc->bb_sgl.length);
return -1;
}
req->data = rx_desc->bb;
req->remote_addr = sgl->address;
req->rkey = sgl->keyed.key;
req->length = sgl->keyed.length;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = rx_desc->bb_sgl.length;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, sgl->unkeyed.length);
if (conn->type == CONN_TYPE_AQ) {
SPDK_ERRLOG("In-capsule data not allowed for admin queue\n");
return -1;
}
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
return -1;
}
max_len -= (uint32_t)offset;
if (sgl->unkeyed.length > max_len) {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
sgl->unkeyed.length, max_len);
return -1;
}
req->data = rx_desc->bb + offset;
req->length = sgl->unkeyed.length;
} else {
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
return -1;
}
if (req->length == 0) {
xfer = SPDK_NVME_DATA_NONE;
req->data = NULL;
}
req->xfer = xfer;
/*
* For any I/O that requires data to be
* pulled into target BB before processing by
* the backend NVMe device
*/
if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Issuing RDMA Read to get host data\n");
/* temporarily adjust SGE to only copy what the host is prepared to send. */
rx_desc->bb_sgl.length = req->length;
ret = nvmf_post_rdma_read(conn, tx_desc);
if (ret) {
SPDK_ERRLOG("Unable to post rdma read tx descriptor\n");
return -1;
}
/* Wait for transfer to complete before executing command. */
return 1;
}
}
}
if (xfer == SPDK_NVME_DATA_NONE) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "No data to transfer\n");
RTE_VERIFY(req->data == NULL);
RTE_VERIFY(req->length == 0);
} else {
RTE_VERIFY(req->data != NULL);
RTE_VERIFY(req->length != 0);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "%s data ready\n",
xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER ? "Host to Controller" :
"Controller to Host");
}
return 0;
}
static int
spdk_nvmf_request_exec(struct spdk_nvmf_conn *conn, struct nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
return nvmf_process_fabrics_command(conn, req);
} else if (conn->type == CONN_TYPE_AQ) {
return nvmf_process_admin_command(conn, req);
} else {
return nvmf_process_io_command(conn, req);
}
}
static int nvmf_recv(struct spdk_nvmf_conn *conn, struct ibv_wc *wc)
{
struct nvme_qp_rx_desc *rx_desc;
struct nvme_qp_tx_desc *tx_desc = NULL;
struct spdk_nvmf_capsule_cmd *cap_hdr;
struct nvmf_request *req;
int ret = 0;
rx_desc = (struct nvme_qp_rx_desc *)wc->wr_id;
cap_hdr = (struct spdk_nvmf_capsule_cmd *)&rx_desc->msg_buf;
/* Update Connection SQ Tracking, increment
the SQ tail consuming a free RX recv slot.
Check for exceeding queue full - should
never happen.
*/
conn->sq_tail < (conn->sq_depth - 1) ? (conn->sq_tail++) : (conn->sq_tail = 0);
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "sq_head %x, sq_tail %x, sq_depth %x\n",
conn->sq_head, conn->sq_tail, conn->sq_depth);
/* trap if initiator exceeds qdepth */
if (conn->sq_head == conn->sq_tail) {
SPDK_ERRLOG(" *** SQ Overflow !! ***\n");
/* controller fatal status condition:
set the cfs flag in controller status
and stop processing this and any I/O
on this queue.
*/
if (conn->sess) {
conn->sess->vcprop.csts.bits.cfs = 1;
conn->state = CONN_STATE_OVERFLOW;
}
if (conn->type == CONN_TYPE_IOQ) {
/* if overflow on the I/O queue
stop processing, allow for
remote host to query failure
via admin queue
*/
goto drop_recv;
} else {
/* if overflow on the admin queue
there is no recovery, error out
to trigger disconnect
*/
goto recv_error;
}
}
if (wc->byte_len < sizeof(*cap_hdr)) {
SPDK_ERRLOG("recv length less than capsule header\n");
goto recv_error;
}
rx_desc->recv_bc = wc->byte_len;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "recv byte count %x\n", rx_desc->recv_bc);
/* get a response buffer */
if (STAILQ_EMPTY(&conn->qp_tx_desc)) {
SPDK_ERRLOG("tx desc pool empty!\n");
goto recv_error;
}
tx_desc = STAILQ_FIRST(&conn->qp_tx_desc);
nvmf_active_tx_desc(tx_desc);
req = &tx_desc->req_state;
req->session = conn->sess;
req->tx_desc = tx_desc;
req->rx_desc = rx_desc;
req->length = 0;
req->xfer = SPDK_NVME_DATA_NONE;
req->data = NULL;
req->cid = cap_hdr->cid;
req->cmd = &rx_desc->msg_buf;
nvmf_trace_command(cap_hdr, conn->type);
ret = spdk_nvmf_request_prep_data(req);
if (ret < 0) {
SPDK_ERRLOG("prep_data failed\n");
goto recv_error;
}
if (ret == 0) {
/* Data is available now; execute command immediately. */
ret = spdk_nvmf_request_exec(conn, req);
if (ret < 0) {
SPDK_ERRLOG("Command execution failed\n");
goto recv_error;
}
if (ret == 1) {
/*
* Immediate completion.
* Re-post rx_desc and re-queue tx_desc here,
* there is not a delayed posting because of
* command processing.
*/
nvmf_deactive_tx_desc(tx_desc);
if (nvmf_post_rdma_recv(conn, rx_desc)) {
SPDK_ERRLOG("Unable to re-post aq rx descriptor\n");
return -1;
}
}
}
drop_recv:
return 0;
recv_error:
/* recover the tx_desc */
if (tx_desc != NULL) {
nvmf_deactive_tx_desc(tx_desc);
}
return -1;
}
static int nvmf_check_rdma_completions(struct spdk_nvmf_conn *conn)
{
struct ibv_wc wc;
struct nvme_qp_tx_desc *tx_desc;
struct nvmf_request *req;
int rc;
int cq_count = 0;
int i;
for (i = 0; i < conn->sq_depth; i++) {
tx_desc = NULL;
/* if an overflow condition was hit
we want to stop all processing, but
do not disconnect.
*/
if (conn->state == CONN_STATE_OVERFLOW)
break;
rc = ibv_poll_cq(conn->cq, 1, &wc);
if (rc == 0) // No completions at this time
break;
if (rc < 0) {
SPDK_ERRLOG("Poll CQ error!(%d): %s\n",
errno, strerror(errno));
goto handler_error;
}
/* OK, process the single successful cq event */
cq_count += rc;
if (wc.status) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "CQ completion error status %d, exiting handler\n",
wc.status);
break;
}
switch (wc.opcode) {
case IBV_WC_SEND:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "\nCQ send completion\n");
tx_desc = (struct nvme_qp_tx_desc *)wc.wr_id;
nvmf_deactive_tx_desc(tx_desc);
break;
case IBV_WC_RDMA_WRITE:
/*
* Will get this event only if we set IBV_SEND_SIGNALED
* flag in rdma_write, to trace rdma write latency
*/
SPDK_TRACELOG(SPDK_TRACE_RDMA, "\nCQ rdma write completion\n");
tx_desc = (struct nvme_qp_tx_desc *)wc.wr_id;
req = &tx_desc->req_state;
spdk_trace_record(TRACE_RDMA_WRITE_COMPLETE, 0, 0, (uint64_t)req, 0);
break;
case IBV_WC_RDMA_READ:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "\nCQ rdma read completion\n");
tx_desc = (struct nvme_qp_tx_desc *)wc.wr_id;
req = &tx_desc->req_state;
spdk_trace_record(TRACE_RDMA_READ_COMPLETE, 0, 0, (uint64_t)req, 0);
rc = spdk_nvmf_request_exec(conn, req);
if (rc) {
SPDK_ERRLOG("request_exec error %d after RDMA Read completion\n", rc);
goto handler_error;
}
/*
* Check for any pending rdma_reads to start
*/
conn->pending_rdma_read_count--;
if (!STAILQ_EMPTY(&conn->qp_pending_desc)) {
tx_desc = STAILQ_FIRST(&conn->qp_pending_desc);
STAILQ_REMOVE_HEAD(&conn->qp_pending_desc, link);
STAILQ_INSERT_TAIL(&conn->qp_tx_active_desc, tx_desc, link);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Issue rdma read from pending queue: tx_desc %p\n",
tx_desc);
rc = nvmf_post_rdma_read(conn, tx_desc);
if (rc) {
SPDK_ERRLOG("Unable to post pending rdma read descriptor\n");
goto handler_error;
}
}
break;
case IBV_WC_RECV:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "\nCQ recv completion\n");
spdk_trace_record(TRACE_NVMF_IO_START, 0, 0, wc.wr_id, 0);
rc = nvmf_recv(conn, &wc);
if (rc) {
SPDK_ERRLOG("nvmf_recv processing failure\n");
goto handler_error;
}
break;
default:
SPDK_ERRLOG("Poll cq opcode type unknown!!!!! completion\n");
goto handler_error;
}
}
return cq_count;
handler_error:
if (tx_desc != NULL)
nvmf_deactive_tx_desc(tx_desc);
SPDK_ERRLOG("handler error, exiting!\n");
return -1;
}
static void
spdk_nvmf_conn_do_work(void *arg)
{
struct spdk_nvmf_conn *conn = arg;
/* process pending NVMe device completions */
if (conn->sess) {
if (conn->type == CONN_TYPE_AQ) {
nvmf_check_admin_completions(conn->sess);
} else {
nvmf_check_io_completions(conn->sess);
}
}
/* process pending RDMA completions */
nvmf_check_rdma_completions(conn);
if (conn->state == CONN_STATE_EXITING ||
conn->state == CONN_STATE_FABRIC_DISCONNECT) {
spdk_nvmf_conn_destruct(conn);
}
}
static int
nvmf_allocate_reactor(uint64_t cpumask)
{
int i, selected_core;
enum rte_lcore_state_t state;
int master_lcore = rte_get_master_lcore();
int32_t num_pollers, min_pollers;
cpumask &= spdk_app_get_core_mask();
if (cpumask == 0) {
return 0;
}
min_pollers = INT_MAX;
selected_core = 0;
/* we use u64 as CPU core mask */
for (i = 0; i < RTE_MAX_LCORE && i < 64; i++) {
if (!((1ULL << i) & cpumask)) {
continue;
}
/*
* DPDK returns WAIT for the master lcore instead of RUNNING.
* So we always treat the reactor on master core as RUNNING.
*/
if (i == master_lcore) {
state = RUNNING;
} else {
state = rte_eal_get_lcore_state(i);
}
if (state == FINISHED) {
rte_eal_wait_lcore(i);
}
switch (state) {
case WAIT:
case FINISHED:
/* Idle cores have 0 pollers */
if (0 < min_pollers) {
selected_core = i;
min_pollers = 0;
}
break;
case RUNNING:
/* This lcore is running, check how many pollers it already has */
num_pollers = rte_atomic32_read(&g_num_connections[i]);
/* Fill each lcore to target minimum, else select least loaded lcore */
if (num_pollers < (SPDK_NVMF_DEFAULT_NUM_SESSIONS_PER_LCORE *
g_nvmf_tgt.MaxConnectionsPerSession)) {
/* If fewer than the target number of session connections
* exist then add to this lcore
*/
return i;
} else if (num_pollers < min_pollers) {
/* Track the lcore that has the minimum number of pollers
* to be used if no lcores have already met our criteria
*/
selected_core = i;
min_pollers = num_pollers;
}
break;
}
}
return selected_core;
}