numam-spdk/lib/nvme/nvme_internal.h
Daniel Verkamp 5e9d859327 nvme: alloc buffer internally for non-I/O requests
Rather than forcing the NVMe library user to pass a specially-allocated
block of memory (e.g. rte_malloc() in the case of the default
nvme_impl.h), just make the NVMe library allocate a suitable buffer
itself and copy to/from the user buffer as needed.

The fast path I/O functions still require special rte_malloc()
allocations, since we don't want to add an allocation and copy to the
I/O critical path.

Change-Id: I7fe88c0ba60c859a33bbe95b7713f423c6bf1ea8
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-09-13 12:47:46 -07:00

596 lines
17 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __NVME_INTERNAL_H__
#define __NVME_INTERNAL_H__
#include "spdk/nvme.h"
#include <errno.h>
#include <pthread.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <x86intrin.h>
#include <sys/user.h>
#include "spdk/queue.h"
#include "spdk/barrier.h"
#include "spdk/mmio.h"
#include "spdk/pci_ids.h"
#include "spdk/nvme_intel.h"
/*
* Some Intel devices support vendor-unique read latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_READ_LATENCY 0x1
/*
* Some Intel devices support vendor-unique write latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_WRITE_LATENCY 0x2
#define NVME_MAX_PRP_LIST_ENTRIES (506)
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). This means
* that real max number of PRP entries we support is 506+1, which
* results in a max xfer size of 506*PAGE_SIZE.
*/
#define NVME_MAX_XFER_SIZE NVME_MAX_PRP_LIST_ENTRIES * PAGE_SIZE
#define NVME_ADMIN_TRACKERS (16)
#define NVME_ADMIN_ENTRIES (128)
/* min and max are defined in admin queue attributes section of spec */
#define NVME_MIN_ADMIN_ENTRIES (2)
#define NVME_MAX_ADMIN_ENTRIES (4096)
/*
* NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion
* queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we
* will allow outstanding on an I/O qpair at any time. The only advantage in
* having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping
* the contents of the submission and completion queues, it will show a longer
* history of data.
*/
#define NVME_IO_ENTRIES (256)
#define NVME_IO_TRACKERS (128)
#define NVME_MIN_IO_TRACKERS (4)
#define NVME_MAX_IO_TRACKERS (1024)
/*
* NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
* segment.
*/
#define NVME_MAX_SGL_DESCRIPTORS (253)
/*
* NVME_MAX_IO_ENTRIES is not defined, since it is specified in CC.MQES
* for each controller.
*/
#define NVME_MAX_ASYNC_EVENTS (8)
#define NVME_MIN_TIMEOUT_PERIOD (5)
#define NVME_MAX_TIMEOUT_PERIOD (120)
/* Maximum log page size to fetch for AERs. */
#define NVME_MAX_AER_LOG_SIZE (4096)
/*
* NVME_MAX_IO_QUEUES in nvme_spec.h defines the 64K spec-limit, but this
* define specifies the maximum number of queues this driver will actually
* try to configure, if available.
*/
#define DEFAULT_MAX_IO_QUEUES (1024)
enum nvme_payload_type {
NVME_PAYLOAD_TYPE_INVALID = 0,
/** nvme_request::u.payload.contig_buffer is valid for this request */
NVME_PAYLOAD_TYPE_CONTIG,
/** nvme_request::u.sgl is valid for this request */
NVME_PAYLOAD_TYPE_SGL,
};
/*
* Controller support flags.
*/
enum spdk_nvme_ctrlr_flags {
SPDK_NVME_CTRLR_SGL_SUPPORTED = 0x1, /**< The SGL is supported */
};
/**
* Descriptor for a request data payload.
*
* This struct is arranged so that it fits nicely in struct nvme_request.
*/
struct __attribute__((packed)) nvme_payload {
union {
/** Virtual memory address of a single physically contiguous buffer */
void *contig;
/**
* Functions for retrieving physical addresses for scattered payloads.
*/
struct {
spdk_nvme_req_reset_sgl_cb reset_sgl_fn;
spdk_nvme_req_next_sge_cb next_sge_fn;
void *cb_arg;
} sgl;
} u;
/** Virtual memory address of a single physically contiguous metadata buffer */
void *md;
/** \ref nvme_payload_type */
uint8_t type;
};
struct nvme_request {
struct spdk_nvme_cmd cmd;
/**
* Data payload for this request's command.
*/
struct nvme_payload payload;
uint8_t retries;
/**
* Number of children requests still outstanding for this
* request which was split into multiple child requests.
*/
uint8_t num_children;
uint32_t payload_size;
/**
* Offset in bytes from the beginning of payload for this request.
* This is used for I/O commands that are split into multiple requests.
*/
uint32_t payload_offset;
uint32_t md_offset;
spdk_nvme_cmd_cb cb_fn;
void *cb_arg;
STAILQ_ENTRY(nvme_request) stailq;
/**
* The following members should not be reordered with members
* above. These members are only needed when splitting
* requests which is done rarely, and the driver is careful
* to not touch the following fields until a split operation is
* needed, to avoid touching an extra cacheline.
*/
/**
* Points to the outstanding child requests for a parent request.
* Only valid if a request was split into multiple children
* requests, and is not initialized for non-split requests.
*/
TAILQ_HEAD(, nvme_request) children;
/**
* Linked-list pointers for a child request in its parent's list.
*/
TAILQ_ENTRY(nvme_request) child_tailq;
/**
* Points to a parent request if part of a split request,
* NULL otherwise.
*/
struct nvme_request *parent;
/**
* Completion status for a parent request. Initialized to all 0's
* (SUCCESS) before child requests are submitted. If a child
* request completes with error, the error status is copied here,
* to ensure that the parent request is also completed with error
* status once all child requests are completed.
*/
struct spdk_nvme_cpl parent_status;
/**
* The user_cb_fn and user_cb_arg fields are used for holding the original
* callback data when using nvme_allocate_request_user_copy.
*/
spdk_nvme_cmd_cb user_cb_fn;
void *user_cb_arg;
void *user_buffer;
};
struct nvme_completion_poll_status {
struct spdk_nvme_cpl cpl;
bool done;
};
struct nvme_async_event_request {
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_request *req;
struct spdk_nvme_cpl cpl;
};
struct nvme_tracker {
LIST_ENTRY(nvme_tracker) list;
struct nvme_request *req;
uint16_t cid;
uint16_t rsvd1: 15;
uint16_t active: 1;
uint32_t rsvd2;
uint64_t prp_sgl_bus_addr;
union {
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
} u;
uint64_t rsvd3;
};
/*
* struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
* and so that there is no padding required to meet alignment requirements.
*/
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
struct spdk_nvme_qpair {
volatile uint32_t *sq_tdbl;
volatile uint32_t *cq_hdbl;
/**
* Submission queue
*/
struct spdk_nvme_cmd *cmd;
/**
* Completion queue
*/
struct spdk_nvme_cpl *cpl;
LIST_HEAD(, nvme_tracker) free_tr;
LIST_HEAD(, nvme_tracker) outstanding_tr;
/**
* Array of trackers indexed by command ID.
*/
struct nvme_tracker *tr;
STAILQ_HEAD(, nvme_request) queued_req;
uint16_t id;
uint16_t num_entries;
uint16_t sq_tail;
uint16_t cq_head;
uint8_t phase;
bool is_enabled;
bool sq_in_cmb;
/*
* Fields below this point should not be touched on the normal I/O happy path.
*/
uint8_t qprio;
struct spdk_nvme_ctrlr *ctrlr;
/* List entry for spdk_nvme_ctrlr::free_io_qpairs and active_io_qpairs */
TAILQ_ENTRY(spdk_nvme_qpair) tailq;
uint64_t cmd_bus_addr;
uint64_t cpl_bus_addr;
};
struct spdk_nvme_ns {
struct spdk_nvme_ctrlr *ctrlr;
uint32_t stripe_size;
uint32_t sector_size;
uint32_t md_size;
uint32_t pi_type;
uint32_t sectors_per_max_io;
uint32_t sectors_per_stripe;
uint16_t id;
uint16_t flags;
};
/**
* State of struct spdk_nvme_ctrlr (in particular, during initialization).
*/
enum nvme_ctrlr_state {
/**
* Controller has not been initialized yet.
*/
NVME_CTRLR_STATE_INIT,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 so that CC.EN may be set to 0.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
/**
* Waiting for CSTS.RDY to transition from 1 to 0 so that CC.EN may be set to 1.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 after enabling the controller.
*/
NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
/**
* Controller initialization has completed and the controller is ready.
*/
NVME_CTRLR_STATE_READY
};
#define NVME_TIMEOUT_INFINITE UINT64_MAX
/*
* One of these per allocated PCI device.
*/
struct spdk_nvme_ctrlr {
/* Hot data (accessed in I/O path) starts here. */
/** NVMe MMIO register space */
volatile struct spdk_nvme_registers *regs;
/** I/O queue pairs */
struct spdk_nvme_qpair *ioq;
/** Array of namespaces indexed by nsid - 1 */
struct spdk_nvme_ns *ns;
uint32_t num_ns;
bool is_resetting;
bool is_failed;
/** Controller support flags */
uint64_t flags;
/* Cold data (not accessed in normal I/O path) is after this point. */
enum nvme_ctrlr_state state;
uint64_t state_timeout_tsc;
TAILQ_ENTRY(spdk_nvme_ctrlr) tailq;
/** All the log pages supported */
bool log_page_supported[256];
/** All the features supported */
bool feature_supported[256];
/* Opaque handle to associated PCI device. */
struct spdk_pci_device *devhandle;
/** maximum i/o size in bytes */
uint32_t max_xfer_size;
/** minimum page size supported by this controller in bytes */
uint32_t min_page_size;
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
uint32_t doorbell_stride_u32;
uint32_t num_aers;
struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS];
spdk_nvme_aer_cb aer_cb_fn;
void *aer_cb_arg;
/** guards access to the controller itself, including admin queues */
pthread_mutex_t ctrlr_lock;
struct spdk_nvme_qpair adminq;
/**
* Identify Controller data.
*/
struct spdk_nvme_ctrlr_data cdata;
/**
* Array of Identify Namespace data.
*
* Stored separately from ns since nsdata should not normally be accessed during I/O.
*/
struct spdk_nvme_ns_data *nsdata;
TAILQ_HEAD(, spdk_nvme_qpair) free_io_qpairs;
TAILQ_HEAD(, spdk_nvme_qpair) active_io_qpairs;
struct spdk_nvme_ctrlr_opts opts;
/** BAR mapping address which contains controller memory buffer */
void *cmb_bar_virt_addr;
/** BAR physical address which contains controller memory buffer */
uint64_t cmb_bar_phys_addr;
/** Controller memory buffer size in Bytes */
uint64_t cmb_size;
/** Current offset of controller memory buffer */
uint64_t cmb_current_offset;
};
struct nvme_driver {
pthread_mutex_t lock;
TAILQ_HEAD(, spdk_nvme_ctrlr) init_ctrlrs;
TAILQ_HEAD(, spdk_nvme_ctrlr) attached_ctrlrs;
};
struct pci_id {
uint16_t vendor_id;
uint16_t dev_id;
uint16_t sub_vendor_id;
uint16_t sub_dev_id;
};
extern struct nvme_driver *g_spdk_nvme_driver;
#define nvme_min(a,b) (((a)<(b))?(a):(b))
#define INTEL_DC_P3X00_DEVID 0x09538086
#define nvme_mmio_read_4(sc, reg) \
spdk_mmio_read_4(&(sc)->regs->reg)
#define nvme_mmio_read_8(sc, reg) \
spdk_mmio_read_8(&(sc)->regs->reg)
#define nvme_mmio_write_4(sc, reg, val) \
spdk_mmio_write_4(&(sc)->regs->reg, val)
#define nvme_mmio_write_8(sc, reg, val) \
spdk_mmio_write_8(&(sc)->regs->reg, val)
#define nvme_delay usleep
static inline uint32_t
nvme_u32log2(uint32_t x)
{
if (x == 0) {
/* __builtin_clz(0) is undefined, so just bail */
return 0;
}
return 31u - __builtin_clz(x);
}
static inline uint32_t
nvme_align32pow2(uint32_t x)
{
return 1u << (1 + nvme_u32log2(x - 1));
}
/* Admin functions */
int nvme_ctrlr_cmd_identify_controller(struct spdk_nvme_ctrlr *ctrlr,
void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_identify_namespace(struct spdk_nvme_ctrlr *ctrlr,
uint16_t nsid, void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr,
uint32_t num_queues, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr,
union spdk_nvme_critical_warning_state state,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_abort(struct spdk_nvme_ctrlr *ctrlr, uint16_t cid,
uint16_t sqid, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_fw_commit *fw_commit,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr,
uint32_t size, uint32_t offset, void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl);
int nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr, void *devhandle);
void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_start(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_request *req);
int nvme_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
uint64_t *offset);
int nvme_qpair_construct(struct spdk_nvme_qpair *qpair, uint16_t id,
uint16_t num_entries,
uint16_t num_trackers,
struct spdk_nvme_ctrlr *ctrlr);
void nvme_qpair_destroy(struct spdk_nvme_qpair *qpair);
void nvme_qpair_enable(struct spdk_nvme_qpair *qpair);
void nvme_qpair_disable(struct spdk_nvme_qpair *qpair);
int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req);
void nvme_qpair_reset(struct spdk_nvme_qpair *qpair);
void nvme_qpair_fail(struct spdk_nvme_qpair *qpair);
int nvme_ns_construct(struct spdk_nvme_ns *ns, uint16_t id,
struct spdk_nvme_ctrlr *ctrlr);
void nvme_ns_destruct(struct spdk_nvme_ns *ns);
struct nvme_request *nvme_allocate_request(const struct nvme_payload *payload,
uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
struct nvme_request *nvme_allocate_request_null(spdk_nvme_cmd_cb cb_fn, void *cb_arg);
struct nvme_request *nvme_allocate_request_contig(void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
struct nvme_request *nvme_allocate_request_user_copy(void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller);
void nvme_free_request(struct nvme_request *req);
void nvme_request_remove_child(struct nvme_request *parent, struct nvme_request *child);
bool nvme_intel_has_quirk(struct pci_id *id, uint64_t quirk);
void spdk_nvme_ctrlr_opts_set_defaults(struct spdk_nvme_ctrlr_opts *opts);
int nvme_mutex_init_shared(pthread_mutex_t *mtx);
#endif /* __NVME_INTERNAL_H__ */