numam-spdk/examples/nvme/perf/perf.c

2911 lines
78 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/fd.h"
#include "spdk/nvme.h"
#include "spdk/vmd.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#include "spdk/histogram_data.h"
#include "spdk/endian.h"
#include "spdk/dif.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "spdk/likely.h"
#include "spdk/sock.h"
#ifdef SPDK_CONFIG_URING
#include <liburing.h>
#endif
#if HAVE_LIBAIO
#include <libaio.h>
#endif
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
enum spdk_nvme_transport_type trtype;
struct spdk_nvme_intel_rw_latency_page *latency_page;
struct spdk_nvme_qpair **unused_qpairs;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
};
enum entry_type {
ENTRY_TYPE_NVME_NS,
ENTRY_TYPE_AIO_FILE,
ENTRY_TYPE_URING_FILE,
};
struct ns_fn_table;
struct ns_entry {
enum entry_type type;
const struct ns_fn_table *fn_table;
union {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
} nvme;
#ifdef SPDK_CONFIG_URING
struct {
int fd;
} uring;
#endif
#if HAVE_LIBAIO
struct {
int fd;
} aio;
#endif
} u;
TAILQ_ENTRY(ns_entry) link;
uint32_t io_size_blocks;
uint32_t num_io_requests;
uint64_t size_in_ios;
uint32_t block_size;
uint32_t md_size;
bool md_interleave;
bool pi_loc;
enum spdk_nvme_pi_type pi_type;
uint32_t io_flags;
char name[1024];
};
static const double g_latency_cutoffs[] = {
0.01,
0.10,
0.25,
0.50,
0.75,
0.90,
0.95,
0.98,
0.99,
0.995,
0.999,
0.9999,
0.99999,
0.999999,
0.9999999,
-1,
};
struct ns_worker_stats {
uint64_t io_completed;
uint64_t last_io_completed;
uint64_t total_tsc;
uint64_t min_tsc;
uint64_t max_tsc;
uint64_t last_tsc;
uint64_t busy_tsc;
uint64_t idle_tsc;
uint64_t last_busy_tsc;
uint64_t last_idle_tsc;
};
struct ns_worker_ctx {
struct ns_entry *entry;
struct ns_worker_stats stats;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
union {
struct {
int num_active_qpairs;
int num_all_qpairs;
struct spdk_nvme_qpair **qpair;
struct spdk_nvme_poll_group *group;
int last_qpair;
} nvme;
#ifdef SPDK_CONFIG_URING
struct {
struct io_uring ring;
uint64_t io_inflight;
uint64_t io_pending;
struct io_uring_cqe **cqes;
} uring;
#endif
#if HAVE_LIBAIO
struct {
struct io_event *events;
io_context_t ctx;
} aio;
#endif
} u;
TAILQ_ENTRY(ns_worker_ctx) link;
struct spdk_histogram_data *histogram;
};
struct perf_task {
struct ns_worker_ctx *ns_ctx;
struct iovec *iovs; /* array of iovecs to transfer. */
int iovcnt; /* Number of iovecs in iovs array. */
int iovpos; /* Current iovec position. */
uint32_t iov_offset; /* Offset in current iovec. */
struct iovec md_iov;
uint64_t submit_tsc;
bool is_read;
struct spdk_dif_ctx dif_ctx;
#if HAVE_LIBAIO
struct iocb iocb;
#endif
};
struct worker_thread {
TAILQ_HEAD(, ns_worker_ctx) ns_ctx;
TAILQ_ENTRY(worker_thread) link;
unsigned lcore;
};
struct ns_fn_table {
void (*setup_payload)(struct perf_task *task, uint8_t pattern);
int (*submit_io)(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios);
int64_t (*check_io)(struct ns_worker_ctx *ns_ctx);
void (*verify_io)(struct perf_task *task, struct ns_entry *entry);
int (*init_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
void (*cleanup_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx);
void (*dump_transport_stats)(uint32_t lcore, struct ns_worker_ctx *ns_ctx);
};
static uint32_t g_io_unit_size = (UINT32_MAX & (~0x03));
static int g_outstanding_commands;
static bool g_latency_ssd_tracking_enable;
static int g_latency_sw_tracking_level;
static bool g_vmd;
static const char *g_workload_type;
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static int g_num_namespaces;
static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers);
static int g_num_workers = 0;
static uint32_t g_main_core;
static pthread_barrier_t g_worker_sync_barrier;
static uint64_t g_tsc_rate;
static bool g_monitor_perf_cores = false;
static uint32_t g_io_align = 0x200;
static bool g_io_align_specified;
static uint32_t g_io_size_bytes;
static uint32_t g_max_io_md_size;
static uint32_t g_max_io_size_blocks;
static uint32_t g_metacfg_pract_flag;
static uint32_t g_metacfg_prchk_flags;
static int g_rw_percentage = -1;
static int g_is_random;
static int g_queue_depth;
static int g_nr_io_queues_per_ns = 1;
static int g_nr_unused_io_queues;
static int g_time_in_sec;
static uint64_t g_elapsed_time_in_usec;
static int g_warmup_time_in_sec;
static uint32_t g_max_completions;
static uint32_t g_disable_sq_cmb;
static bool g_use_uring;
static bool g_warn;
static bool g_header_digest;
static bool g_data_digest;
static bool g_no_shn_notification;
static bool g_mix_specified;
/* The flag is used to exit the program while keep alive fails on the transport */
static bool g_exit;
/* Default to 10 seconds for the keep alive value. This value is arbitrary. */
static uint32_t g_keep_alive_timeout_in_ms = 10000;
static uint32_t g_quiet_count = 1;
/* When user specifies -Q, some error messages are rate limited. When rate
* limited, we only print the error message every g_quiet_count times the
* error occurs.
*
* Note: the __count is not thread safe, meaning the rate limiting will not
* be exact when running perf with multiple thread with lots of errors.
* Thread-local __count would mean rate-limiting per thread which doesn't
* seem as useful.
*/
#define RATELIMIT_LOG(...) \
{ \
static uint64_t __count = 0; \
if ((__count % g_quiet_count) == 0) { \
if (__count > 0 && g_quiet_count > 1) { \
fprintf(stderr, "Message suppressed %" PRIu32 " times: ", \
g_quiet_count - 1); \
} \
fprintf(stderr, __VA_ARGS__); \
} \
__count++; \
}
static bool g_dump_transport_stats;
static pthread_mutex_t g_stats_mutex;
#define MAX_ALLOWED_PCI_DEVICE_NUM 128
static struct spdk_pci_addr g_allowed_pci_addr[MAX_ALLOWED_PCI_DEVICE_NUM];
struct trid_entry {
struct spdk_nvme_transport_id trid;
uint16_t nsid;
char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
TAILQ_ENTRY(trid_entry) tailq;
};
static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
static int g_file_optind; /* Index of first filename in argv */
static inline void
task_complete(struct perf_task *task);
static void
perf_set_sock_zcopy(const char *impl_name, bool enable)
{
struct spdk_sock_impl_opts sock_opts = {};
size_t opts_size = sizeof(sock_opts);
int rc;
rc = spdk_sock_impl_get_opts(impl_name, &sock_opts, &opts_size);
if (rc != 0) {
if (errno == EINVAL) {
fprintf(stderr, "Unknown sock impl %s\n", impl_name);
} else {
fprintf(stderr, "Failed to get opts for sock impl %s: error %d (%s)\n", impl_name, errno,
strerror(errno));
}
return;
}
if (opts_size != sizeof(sock_opts)) {
fprintf(stderr, "Warning: sock_opts size mismatch. Expected %zu, received %zu\n",
sizeof(sock_opts), opts_size);
opts_size = sizeof(sock_opts);
}
sock_opts.enable_zerocopy_send = enable;
sock_opts.enable_zerocopy_send_client = enable;
if (spdk_sock_impl_set_opts(impl_name, &sock_opts, opts_size)) {
fprintf(stderr, "Failed to %s zcopy send for sock impl %s: error %d (%s)\n",
enable ? "enable" : "disable", impl_name, errno, strerror(errno));
}
}
static void
nvme_perf_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct iovec *iov;
struct perf_task *task = (struct perf_task *)ref;
task->iov_offset = sgl_offset;
for (task->iovpos = 0; task->iovpos < task->iovcnt; task->iovpos++) {
iov = &task->iovs[task->iovpos];
if (task->iov_offset < iov->iov_len) {
break;
}
task->iov_offset -= iov->iov_len;
}
}
static int
nvme_perf_next_sge(void *ref, void **address, uint32_t *length)
{
struct iovec *iov;
struct perf_task *task = (struct perf_task *)ref;
assert(task->iovpos < task->iovcnt);
iov = &task->iovs[task->iovpos];
assert(task->iov_offset <= iov->iov_len);
*address = iov->iov_base + task->iov_offset;
*length = iov->iov_len - task->iov_offset;
task->iovpos++;
task->iov_offset = 0;
return 0;
}
static int
nvme_perf_allocate_iovs(struct perf_task *task, void *buf, uint32_t length)
{
int iovpos = 0;
struct iovec *iov;
uint32_t offset = 0;
task->iovcnt = SPDK_CEIL_DIV(length, (uint64_t)g_io_unit_size);
task->iovs = calloc(task->iovcnt, sizeof(struct iovec));
if (!task->iovs) {
return -1;
}
while (length > 0) {
iov = &task->iovs[iovpos];
iov->iov_len = spdk_min(length, g_io_unit_size);
iov->iov_base = buf + offset;
length -= iov->iov_len;
offset += iov->iov_len;
iovpos++;
}
return 0;
}
#ifdef SPDK_CONFIG_URING
static void
uring_setup_payload(struct perf_task *task, uint8_t pattern)
{
struct iovec *iov;
task->iovs = calloc(1, sizeof(struct iovec));
if (!task->iovs) {
fprintf(stderr, "perf task failed to allocate iovs\n");
exit(1);
}
task->iovcnt = 1;
iov = &task->iovs[0];
iov->iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
iov->iov_len = g_io_size_bytes;
if (iov->iov_base == NULL) {
fprintf(stderr, "spdk_dma_zmalloc() for task->iovs[0].iov_base failed\n");
free(task->iovs);
exit(1);
}
memset(iov->iov_base, pattern, iov->iov_len);
}
static int
uring_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
struct io_uring_sqe *sqe;
sqe = io_uring_get_sqe(&ns_ctx->u.uring.ring);
if (!sqe) {
fprintf(stderr, "Cannot get sqe\n");
return -1;
}
if (task->is_read) {
io_uring_prep_readv(sqe, entry->u.uring.fd, task->iovs, 1, offset_in_ios * task->iovs[0].iov_len);
} else {
io_uring_prep_writev(sqe, entry->u.uring.fd, task->iovs, 1, offset_in_ios * task->iovs[0].iov_len);
}
io_uring_sqe_set_data(sqe, task);
ns_ctx->u.uring.io_pending++;
return 0;
}
static int64_t
uring_check_io(struct ns_worker_ctx *ns_ctx)
{
int i, to_complete, to_submit, count = 0, ret = 0;
struct perf_task *task;
to_submit = ns_ctx->u.uring.io_pending;
if (to_submit > 0) {
/* If there are I/O to submit, use io_uring_submit here.
* It will automatically call spdk_io_uring_enter appropriately. */
ret = io_uring_submit(&ns_ctx->u.uring.ring);
if (ret < 0) {
return -1;
}
ns_ctx->u.uring.io_pending = 0;
ns_ctx->u.uring.io_inflight += to_submit;
}
to_complete = ns_ctx->u.uring.io_inflight;
if (to_complete > 0) {
count = io_uring_peek_batch_cqe(&ns_ctx->u.uring.ring, ns_ctx->u.uring.cqes, to_complete);
ns_ctx->u.uring.io_inflight -= count;
for (i = 0; i < count; i++) {
assert(ns_ctx->u.uring.cqes[i] != NULL);
task = (struct perf_task *)ns_ctx->u.uring.cqes[i]->user_data;
if (ns_ctx->u.uring.cqes[i]->res != (int)task->iovs[0].iov_len) {
fprintf(stderr, "cqe[i]->status=%d\n", ns_ctx->u.uring.cqes[i]->res);
exit(0);
}
io_uring_cqe_seen(&ns_ctx->u.uring.ring, ns_ctx->u.uring.cqes[i]);
task_complete(task);
}
}
return count;
}
static void
uring_verify_io(struct perf_task *task, struct ns_entry *entry)
{
}
static int
uring_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
if (io_uring_queue_init(g_queue_depth, &ns_ctx->u.uring.ring, 0) < 0) {
SPDK_ERRLOG("uring I/O context setup failure\n");
return -1;
}
ns_ctx->u.uring.cqes = calloc(g_queue_depth, sizeof(struct io_uring_cqe *));
if (!ns_ctx->u.uring.cqes) {
io_uring_queue_exit(&ns_ctx->u.uring.ring);
return -1;
}
return 0;
}
static void
uring_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
io_uring_queue_exit(&ns_ctx->u.uring.ring);
free(ns_ctx->u.uring.cqes);
}
static const struct ns_fn_table uring_fn_table = {
.setup_payload = uring_setup_payload,
.submit_io = uring_submit_io,
.check_io = uring_check_io,
.verify_io = uring_verify_io,
.init_ns_worker_ctx = uring_init_ns_worker_ctx,
.cleanup_ns_worker_ctx = uring_cleanup_ns_worker_ctx,
};
#endif
#ifdef HAVE_LIBAIO
static void
aio_setup_payload(struct perf_task *task, uint8_t pattern)
{
struct iovec *iov;
task->iovs = calloc(1, sizeof(struct iovec));
if (!task->iovs) {
fprintf(stderr, "perf task failed to allocate iovs\n");
exit(1);
}
task->iovcnt = 1;
iov = &task->iovs[0];
iov->iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
iov->iov_len = g_io_size_bytes;
if (iov->iov_base == NULL) {
fprintf(stderr, "spdk_dma_zmalloc() for task->iovs[0].iov_base failed\n");
free(task->iovs);
exit(1);
}
memset(iov->iov_base, pattern, iov->iov_len);
}
static int
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd,
struct iovec *iov, uint64_t offset, void *cb_ctx)
{
iocb->aio_fildes = fd;
iocb->aio_reqprio = 0;
iocb->aio_lio_opcode = cmd;
iocb->u.c.buf = iov->iov_base;
iocb->u.c.nbytes = iov->iov_len;
iocb->u.c.offset = offset * iov->iov_len;
iocb->data = cb_ctx;
if (io_submit(aio_ctx, 1, &iocb) < 0) {
printf("io_submit");
return -1;
}
return 0;
}
static int
aio_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
if (task->is_read) {
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD,
task->iovs, offset_in_ios, task);
} else {
return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE,
task->iovs, offset_in_ios, task);
}
}
static int64_t
aio_check_io(struct ns_worker_ctx *ns_ctx)
{
int count, i;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout);
if (count < 0) {
fprintf(stderr, "io_getevents error\n");
exit(1);
}
for (i = 0; i < count; i++) {
task_complete(ns_ctx->u.aio.events[i].data);
}
return count;
}
static void
aio_verify_io(struct perf_task *task, struct ns_entry *entry)
{
}
static int
aio_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event));
if (!ns_ctx->u.aio.events) {
return -1;
}
ns_ctx->u.aio.ctx = 0;
if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) {
free(ns_ctx->u.aio.events);
perror("io_setup");
return -1;
}
return 0;
}
static void
aio_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
io_destroy(ns_ctx->u.aio.ctx);
free(ns_ctx->u.aio.events);
}
static const struct ns_fn_table aio_fn_table = {
.setup_payload = aio_setup_payload,
.submit_io = aio_submit_io,
.check_io = aio_check_io,
.verify_io = aio_verify_io,
.init_ns_worker_ctx = aio_init_ns_worker_ctx,
.cleanup_ns_worker_ctx = aio_cleanup_ns_worker_ctx,
};
#endif /* HAVE_LIBAIO */
#if defined(HAVE_LIBAIO) || defined(SPDK_CONFIG_URING)
static int
register_file(const char *path)
{
struct ns_entry *entry;
int flags, fd;
uint64_t size;
uint32_t blklen;
if (g_rw_percentage == 100) {
flags = O_RDONLY;
} else if (g_rw_percentage == 0) {
flags = O_WRONLY;
} else {
flags = O_RDWR;
}
flags |= O_DIRECT;
fd = open(path, flags);
if (fd < 0) {
fprintf(stderr, "Could not open device %s: %s\n", path, strerror(errno));
return -1;
}
size = spdk_fd_get_size(fd);
if (size == 0) {
fprintf(stderr, "Could not determine size of device %s\n", path);
close(fd);
return -1;
}
blklen = spdk_fd_get_blocklen(fd);
if (blklen == 0) {
fprintf(stderr, "Could not determine block size of device %s\n", path);
close(fd);
return -1;
}
/*
* TODO: This should really calculate the LCM of the current g_io_align and blklen.
* For now, it's fairly safe to just assume all block sizes are powers of 2.
*/
if (g_io_align < blklen) {
if (g_io_align_specified) {
fprintf(stderr, "Wrong IO alignment (%u). aio requires block-sized alignment (%u)\n", g_io_align,
blklen);
close(fd);
return -1;
}
g_io_align = blklen;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
close(fd);
perror("ns_entry malloc");
return -1;
}
if (g_use_uring) {
#ifdef SPDK_CONFIG_URING
entry->type = ENTRY_TYPE_URING_FILE;
entry->fn_table = &uring_fn_table;
entry->u.uring.fd = fd;
#endif
} else {
#if HAVE_LIBAIO
entry->type = ENTRY_TYPE_AIO_FILE;
entry->fn_table = &aio_fn_table;
entry->u.aio.fd = fd;
#endif
}
entry->size_in_ios = size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / blklen;
snprintf(entry->name, sizeof(entry->name), "%s", path);
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
return 0;
}
static int
register_files(int argc, char **argv)
{
int i;
/* Treat everything after the options as files for AIO/URING */
for (i = g_file_optind; i < argc; i++) {
if (register_file(argv[i]) != 0) {
return 1;
}
}
return 0;
}
#endif
static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
static void
nvme_setup_payload(struct perf_task *task, uint8_t pattern)
{
uint32_t max_io_size_bytes, max_io_md_size;
void *buf;
int rc;
/* maximum extended lba format size from all active namespace,
* it's same with g_io_size_bytes for namespace without metadata.
*/
max_io_size_bytes = g_io_size_bytes + g_max_io_md_size * g_max_io_size_blocks;
buf = spdk_dma_zmalloc(max_io_size_bytes, g_io_align, NULL);
if (buf == NULL) {
fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
exit(1);
}
memset(buf, pattern, max_io_size_bytes);
rc = nvme_perf_allocate_iovs(task, buf, max_io_size_bytes);
if (rc < 0) {
fprintf(stderr, "perf task failed to allocate iovs\n");
spdk_dma_free(buf);
exit(1);
}
max_io_md_size = g_max_io_md_size * g_max_io_size_blocks;
if (max_io_md_size != 0) {
task->md_iov.iov_base = spdk_dma_zmalloc(max_io_md_size, g_io_align, NULL);
task->md_iov.iov_len = max_io_md_size;
if (task->md_iov.iov_base == NULL) {
fprintf(stderr, "task->md_buf spdk_dma_zmalloc failed\n");
spdk_dma_free(task->iovs[0].iov_base);
free(task->iovs);
exit(1);
}
}
}
static int
nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
uint64_t lba;
int rc;
int qp_num;
enum dif_mode {
DIF_MODE_NONE = 0,
DIF_MODE_DIF = 1,
DIF_MODE_DIX = 2,
} mode = DIF_MODE_NONE;
lba = offset_in_ios * entry->io_size_blocks;
if (entry->md_size != 0 && !(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
if (entry->md_interleave) {
mode = DIF_MODE_DIF;
} else {
mode = DIF_MODE_DIX;
}
}
qp_num = ns_ctx->u.nvme.last_qpair;
ns_ctx->u.nvme.last_qpair++;
if (ns_ctx->u.nvme.last_qpair == ns_ctx->u.nvme.num_active_qpairs) {
ns_ctx->u.nvme.last_qpair = 0;
}
if (mode != DIF_MODE_NONE) {
rc = spdk_dif_ctx_init(&task->dif_ctx, entry->block_size, entry->md_size,
entry->md_interleave, entry->pi_loc,
(enum spdk_dif_type)entry->pi_type, entry->io_flags,
lba, 0xFFFF, (uint16_t)entry->io_size_blocks, 0, 0);
if (rc != 0) {
fprintf(stderr, "Initialization of DIF context failed\n");
exit(1);
}
}
if (task->is_read) {
if (task->iovcnt == 1) {
return spdk_nvme_ns_cmd_read_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num],
task->iovs[0].iov_base, task->md_iov.iov_base,
lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
} else {
return spdk_nvme_ns_cmd_readv_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num],
lba, entry->io_size_blocks,
io_complete, task, entry->io_flags,
nvme_perf_reset_sgl, nvme_perf_next_sge,
task->md_iov.iov_base,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
}
} else {
switch (mode) {
case DIF_MODE_DIF:
rc = spdk_dif_generate(task->iovs, task->iovcnt, entry->io_size_blocks, &task->dif_ctx);
if (rc != 0) {
fprintf(stderr, "Generation of DIF failed\n");
return rc;
}
break;
case DIF_MODE_DIX:
rc = spdk_dix_generate(task->iovs, task->iovcnt, &task->md_iov, entry->io_size_blocks,
&task->dif_ctx);
if (rc != 0) {
fprintf(stderr, "Generation of DIX failed\n");
return rc;
}
break;
default:
break;
}
if (task->iovcnt == 1) {
return spdk_nvme_ns_cmd_write_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num],
task->iovs[0].iov_base, task->md_iov.iov_base,
lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
} else {
return spdk_nvme_ns_cmd_writev_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num],
lba, entry->io_size_blocks,
io_complete, task, entry->io_flags,
nvme_perf_reset_sgl, nvme_perf_next_sge,
task->md_iov.iov_base,
task->dif_ctx.apptag_mask, task->dif_ctx.app_tag);
}
}
}
static void
perf_disconnect_cb(struct spdk_nvme_qpair *qpair, void *ctx)
{
}
static int64_t
nvme_check_io(struct ns_worker_ctx *ns_ctx)
{
int64_t rc;
rc = spdk_nvme_poll_group_process_completions(ns_ctx->u.nvme.group, g_max_completions,
perf_disconnect_cb);
if (rc < 0) {
fprintf(stderr, "NVMe io qpair process completion error\n");
exit(1);
}
return rc;
}
static void
nvme_verify_io(struct perf_task *task, struct ns_entry *entry)
{
struct spdk_dif_error err_blk = {};
int rc;
if (!task->is_read || (entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) {
return;
}
if (entry->md_interleave) {
rc = spdk_dif_verify(task->iovs, task->iovcnt, entry->io_size_blocks, &task->dif_ctx,
&err_blk);
if (rc != 0) {
fprintf(stderr, "DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
}
} else {
rc = spdk_dix_verify(task->iovs, task->iovcnt, &task->md_iov, entry->io_size_blocks,
&task->dif_ctx, &err_blk);
if (rc != 0) {
fprintf(stderr, "DIX error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
}
}
}
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
static int
nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
struct spdk_nvme_io_qpair_opts opts;
struct ns_entry *entry = ns_ctx->entry;
struct spdk_nvme_poll_group *group;
struct spdk_nvme_qpair *qpair;
int i;
ns_ctx->u.nvme.num_active_qpairs = g_nr_io_queues_per_ns;
ns_ctx->u.nvme.num_all_qpairs = g_nr_io_queues_per_ns + g_nr_unused_io_queues;
ns_ctx->u.nvme.qpair = calloc(ns_ctx->u.nvme.num_all_qpairs, sizeof(struct spdk_nvme_qpair *));
if (!ns_ctx->u.nvme.qpair) {
return -1;
}
spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->u.nvme.ctrlr, &opts, sizeof(opts));
if (opts.io_queue_requests < entry->num_io_requests) {
opts.io_queue_requests = entry->num_io_requests;
}
opts.delay_cmd_submit = true;
opts.create_only = true;
ns_ctx->u.nvme.group = spdk_nvme_poll_group_create(NULL, NULL);
if (ns_ctx->u.nvme.group == NULL) {
goto poll_group_failed;
}
group = ns_ctx->u.nvme.group;
for (i = 0; i < ns_ctx->u.nvme.num_all_qpairs; i++) {
ns_ctx->u.nvme.qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->u.nvme.ctrlr, &opts,
sizeof(opts));
qpair = ns_ctx->u.nvme.qpair[i];
if (!qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
goto qpair_failed;
}
if (spdk_nvme_poll_group_add(group, qpair)) {
printf("ERROR: unable to add I/O qpair to poll group.\n");
spdk_nvme_ctrlr_free_io_qpair(qpair);
goto qpair_failed;
}
if (spdk_nvme_ctrlr_connect_io_qpair(entry->u.nvme.ctrlr, qpair)) {
printf("ERROR: unable to connect I/O qpair.\n");
spdk_nvme_poll_group_remove(group, qpair);
spdk_nvme_ctrlr_free_io_qpair(qpair);
goto qpair_failed;
}
}
return 0;
qpair_failed:
for (; i > 0; --i) {
spdk_nvme_poll_group_remove(ns_ctx->u.nvme.group, ns_ctx->u.nvme.qpair[i - 1]);
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair[i - 1]);
}
spdk_nvme_poll_group_destroy(ns_ctx->u.nvme.group);
poll_group_failed:
free(ns_ctx->u.nvme.qpair);
return -1;
}
static void
nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
int i;
for (i = 0; i < ns_ctx->u.nvme.num_all_qpairs; i++) {
spdk_nvme_poll_group_remove(ns_ctx->u.nvme.group, ns_ctx->u.nvme.qpair[i]);
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair[i]);
}
spdk_nvme_poll_group_destroy(ns_ctx->u.nvme.group);
free(ns_ctx->u.nvme.qpair);
}
static void
nvme_dump_rdma_statistics(struct spdk_nvme_transport_poll_group_stat *stat)
{
struct spdk_nvme_rdma_device_stat *device_stats;
uint32_t i;
printf("RDMA transport:\n");
for (i = 0; i < stat->rdma.num_devices; i++) {
device_stats = &stat->rdma.device_stats[i];
printf("\tdev name: %s\n", device_stats->name);
printf("\tpolls: %"PRIu64"\n", device_stats->polls);
printf("\tidle_polls: %"PRIu64"\n", device_stats->idle_polls);
printf("\tcompletions: %"PRIu64"\n", device_stats->completions);
printf("\tqueued_requests: %"PRIu64"\n", device_stats->queued_requests);
printf("\ttotal_send_wrs: %"PRIu64"\n", device_stats->total_send_wrs);
printf("\tsend_doorbell_updates: %"PRIu64"\n", device_stats->send_doorbell_updates);
printf("\ttotal_recv_wrs: %"PRIu64"\n", device_stats->total_recv_wrs);
printf("\trecv_doorbell_updates: %"PRIu64"\n", device_stats->recv_doorbell_updates);
printf("\t---------------------------------\n");
}
}
static void
nvme_dump_pcie_statistics(struct spdk_nvme_transport_poll_group_stat *stat)
{
struct spdk_nvme_pcie_stat *pcie_stat;
pcie_stat = &stat->pcie;
printf("PCIE transport:\n");
printf("\tpolls: %"PRIu64"\n", pcie_stat->polls);
printf("\tidle_polls: %"PRIu64"\n", pcie_stat->idle_polls);
printf("\tcompletions: %"PRIu64"\n", pcie_stat->completions);
printf("\tcq_doorbell_updates: %"PRIu64"\n", pcie_stat->cq_doorbell_updates);
printf("\tsubmitted_requests: %"PRIu64"\n", pcie_stat->submitted_requests);
printf("\tsq_doobell_updates: %"PRIu64"\n", pcie_stat->sq_doobell_updates);
printf("\tqueued_requests: %"PRIu64"\n", pcie_stat->queued_requests);
}
static void
nvme_dump_transport_stats(uint32_t lcore, struct ns_worker_ctx *ns_ctx)
{
struct spdk_nvme_poll_group *group;
struct spdk_nvme_poll_group_stat *stat = NULL;
uint32_t i;
int rc;
group = ns_ctx->u.nvme.group;
if (group == NULL) {
return;
}
rc = spdk_nvme_poll_group_get_stats(group, &stat);
if (rc) {
fprintf(stderr, "Can't get transport stats, error %d\n", rc);
return;
}
printf("\n====================\n");
printf("lcore %u, ns %s statistics:\n", lcore, ns_ctx->entry->name);
for (i = 0; i < stat->num_transports; i++) {
switch (stat->transport_stat[i]->trtype) {
case SPDK_NVME_TRANSPORT_RDMA:
nvme_dump_rdma_statistics(stat->transport_stat[i]);
break;
case SPDK_NVME_TRANSPORT_PCIE:
nvme_dump_pcie_statistics(stat->transport_stat[i]);
break;
default:
fprintf(stderr, "Unknown transport statistics %d %s\n", stat->transport_stat[i]->trtype,
spdk_nvme_transport_id_trtype_str(stat->transport_stat[i]->trtype));
}
}
spdk_nvme_poll_group_free_stats(group, stat);
}
static const struct ns_fn_table nvme_fn_table = {
.setup_payload = nvme_setup_payload,
.submit_io = nvme_submit_io,
.check_io = nvme_check_io,
.verify_io = nvme_verify_io,
.init_ns_worker_ctx = nvme_init_ns_worker_ctx,
.cleanup_ns_worker_ctx = nvme_cleanup_ns_worker_ctx,
.dump_transport_stats = nvme_dump_transport_stats
};
static int
build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr)
{
const struct spdk_nvme_transport_id *trid;
int res = 0;
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
switch (trid->trtype) {
case SPDK_NVME_TRANSPORT_PCIE:
res = snprintf(name, length, "PCIE (%s)", trid->traddr);
break;
case SPDK_NVME_TRANSPORT_RDMA:
res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_TCP:
res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_VFIOUSER:
res = snprintf(name, length, "VFIOUSER (%s)", trid->traddr);
break;
case SPDK_NVME_TRANSPORT_CUSTOM:
res = snprintf(name, length, "CUSTOM (%s)", trid->traddr);
break;
default:
fprintf(stderr, "Unknown transport type %d\n", trid->trtype);
break;
}
return res;
}
static void
build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
{
int res = 0;
res = build_nvme_name(name, length, ctrlr);
if (res > 0) {
snprintf(name + res, length - res, " NSID %u", nsid);
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t max_xfer_size, entries, sector_size;
uint64_t ns_size;
struct spdk_nvme_io_qpair_opts opts;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
g_warn = true;
return;
}
ns_size = spdk_nvme_ns_get_size(ns);
sector_size = spdk_nvme_ns_get_sector_size(ns);
if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
g_warn = true;
return;
}
max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
/* NVMe driver may add additional entries based on
* stripe size and maximum transfer size, we assume
* 1 more entry be used for stripe.
*/
entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
if ((g_queue_depth * entries) > opts.io_queue_size) {
printf("controller IO queue size %u less than required\n",
opts.io_queue_size);
printf("Consider using lower queue depth or small IO size because "
"IO requests may be queued at the NVMe driver.\n");
}
/* For requests which have children requests, parent request itself
* will also occupy 1 entry.
*/
entries += 1;
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->type = ENTRY_TYPE_NVME_NS;
entry->fn_table = &nvme_fn_table;
entry->u.nvme.ctrlr = ctrlr;
entry->u.nvme.ns = ns;
entry->num_io_requests = g_queue_depth * entries;
entry->size_in_ios = ns_size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / sector_size;
entry->block_size = spdk_nvme_ns_get_extended_sector_size(ns);
entry->md_size = spdk_nvme_ns_get_md_size(ns);
entry->md_interleave = spdk_nvme_ns_supports_extended_lba(ns);
entry->pi_loc = spdk_nvme_ns_get_data(ns)->dps.md_start;
entry->pi_type = spdk_nvme_ns_get_pi_type(ns);
if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
entry->io_flags = g_metacfg_pract_flag | g_metacfg_prchk_flags;
}
/* If metadata size = 8 bytes, PI is stripped (read) or inserted (write),
* and so reduce metadata size from block size. (If metadata size > 8 bytes,
* PI is passed (read) or replaced (write). So block size is not necessary
* to change.)
*/
if ((entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT) && (entry->md_size == 8)) {
entry->block_size = spdk_nvme_ns_get_sector_size(ns);
}
if (g_max_io_md_size < entry->md_size) {
g_max_io_md_size = entry->md_size;
}
if (g_max_io_size_blocks < entry->io_size_blocks) {
g_max_io_size_blocks = entry->io_size_blocks;
}
build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns));
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
}
static void
unregister_namespaces(void)
{
struct ns_entry *entry, *tmp;
TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) {
TAILQ_REMOVE(&g_namespaces, entry, link);
free(entry);
}
}
static void
enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("enable_latency_tracking_complete failed\n");
}
g_outstanding_commands--;
}
static void
set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable)
{
int res;
union spdk_nvme_intel_feat_latency_tracking latency_tracking;
if (enable) {
latency_tracking.bits.enable = 0x01;
} else {
latency_tracking.bits.enable = 0x00;
}
res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING,
latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL);
if (res) {
printf("fail to allocate nvme request.\n");
return;
}
g_outstanding_commands++;
while (g_outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
{
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
uint32_t nsid;
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->latency_page = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page),
4096, NULL);
if (entry->latency_page == NULL) {
printf("Allocation error (latency page)\n");
exit(1);
}
build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
entry->ctrlr = ctrlr;
entry->trtype = trid_entry->trid.trtype;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
if (g_latency_ssd_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
set_latency_tracking_feature(ctrlr, true);
}
if (trid_entry->nsid == 0) {
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid);
if (!ns) {
perror("Namespace does not exist.");
exit(1);
}
register_ns(ctrlr, ns);
}
}
static __thread unsigned int seed = 0;
static inline void
submit_single_io(struct perf_task *task)
{
uint64_t offset_in_ios;
int rc;
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
struct ns_entry *entry = ns_ctx->entry;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
task->submit_tsc = spdk_get_ticks();
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
task->is_read = true;
} else {
task->is_read = false;
}
rc = entry->fn_table->submit_io(task, ns_ctx, entry, offset_in_ios);
if (spdk_unlikely(rc != 0)) {
RATELIMIT_LOG("starting I/O failed\n");
spdk_dma_free(task->iovs[0].iov_base);
free(task->iovs);
spdk_dma_free(task->md_iov.iov_base);
free(task);
} else {
ns_ctx->current_queue_depth++;
}
}
static inline void
task_complete(struct perf_task *task)
{
struct ns_worker_ctx *ns_ctx;
uint64_t tsc_diff;
struct ns_entry *entry;
ns_ctx = task->ns_ctx;
entry = ns_ctx->entry;
ns_ctx->current_queue_depth--;
ns_ctx->stats.io_completed++;
tsc_diff = spdk_get_ticks() - task->submit_tsc;
ns_ctx->stats.total_tsc += tsc_diff;
if (spdk_unlikely(ns_ctx->stats.min_tsc > tsc_diff)) {
ns_ctx->stats.min_tsc = tsc_diff;
}
if (spdk_unlikely(ns_ctx->stats.max_tsc < tsc_diff)) {
ns_ctx->stats.max_tsc = tsc_diff;
}
if (spdk_unlikely(g_latency_sw_tracking_level > 0)) {
spdk_histogram_data_tally(ns_ctx->histogram, tsc_diff);
}
if (spdk_unlikely(entry->md_size > 0)) {
/* add application level verification for end-to-end data protection */
entry->fn_table->verify_io(task, entry);
}
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (spdk_unlikely(ns_ctx->is_draining)) {
spdk_dma_free(task->iovs[0].iov_base);
free(task->iovs);
spdk_dma_free(task->md_iov.iov_base);
free(task);
} else {
submit_single_io(task);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct perf_task *task = ctx;
if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
if (task->is_read) {
RATELIMIT_LOG("Read completed with error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
} else {
RATELIMIT_LOG("Write completed with error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
}
if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
cpl->status.sc == SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT) {
/* The namespace was hotplugged. Stop trying to send I/O to it. */
task->ns_ctx->is_draining = true;
}
}
task_complete(task);
}
static struct perf_task *
allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
task = calloc(1, sizeof(*task));
if (task == NULL) {
fprintf(stderr, "Out of memory allocating tasks\n");
exit(1);
}
ns_ctx->entry->fn_table->setup_payload(task, queue_depth % 8 + 1);
task->ns_ctx = ns_ctx;
return task;
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
while (queue_depth-- > 0) {
task = allocate_task(ns_ctx, queue_depth);
submit_single_io(task);
}
}
static int
init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
return ns_ctx->entry->fn_table->init_ns_worker_ctx(ns_ctx);
}
static void
cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->entry->fn_table->cleanup_ns_worker_ctx(ns_ctx);
}
static void
print_periodic_performance(bool warmup)
{
uint64_t io_this_second;
double mb_this_second;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
uint64_t busy_tsc;
uint64_t idle_tsc;
uint64_t core_busy_tsc = 0;
uint64_t core_idle_tsc = 0;
double core_busy_perc = 0;
if (!isatty(STDOUT_FILENO)) {
/* Don't print periodic stats if output is not going
* to a terminal.
*/
return;
}
io_this_second = 0;
TAILQ_FOREACH(worker, &g_workers, link) {
busy_tsc = 0;
idle_tsc = 0;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
io_this_second += ns_ctx->stats.io_completed - ns_ctx->stats.last_io_completed;
ns_ctx->stats.last_io_completed = ns_ctx->stats.io_completed;
if (g_monitor_perf_cores) {
busy_tsc += ns_ctx->stats.busy_tsc - ns_ctx->stats.last_busy_tsc;
idle_tsc += ns_ctx->stats.idle_tsc - ns_ctx->stats.last_idle_tsc;
ns_ctx->stats.last_busy_tsc = ns_ctx->stats.busy_tsc;
ns_ctx->stats.last_idle_tsc = ns_ctx->stats.idle_tsc;
}
}
if (g_monitor_perf_cores) {
core_busy_tsc += busy_tsc;
core_idle_tsc += idle_tsc;
core_busy_perc += (double)core_busy_tsc / (core_idle_tsc + core_busy_tsc) * 100;
}
}
mb_this_second = (double)io_this_second * g_io_size_bytes / (1024 * 1024);
printf("%s%9ju IOPS, %8.2f MiB/s", warmup ? "[warmup] " : "", io_this_second, mb_this_second);
if (g_monitor_perf_cores) {
printf("%3d Core(s): %6.2f%% Busy", g_num_workers, core_busy_perc);
}
printf("\r");
fflush(stdout);
}
static void
perf_dump_transport_statistics(struct worker_thread *worker)
{
struct ns_worker_ctx *ns_ctx;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (ns_ctx->entry->fn_table->dump_transport_stats) {
ns_ctx->entry->fn_table->dump_transport_stats(worker->lcore, ns_ctx);
}
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_start, tsc_end, tsc_current, tsc_next_print;
struct worker_thread *worker = (struct worker_thread *) arg;
struct ns_worker_ctx *ns_ctx = NULL;
uint32_t unfinished_ns_ctx;
bool warmup = false;
int rc;
int64_t check_rc;
uint64_t check_now;
/* Allocate queue pairs for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (init_ns_worker_ctx(ns_ctx) != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
/* Wait on barrier to avoid blocking of successful workers */
pthread_barrier_wait(&g_worker_sync_barrier);
return 1;
}
}
rc = pthread_barrier_wait(&g_worker_sync_barrier);
if (rc != 0 && rc != PTHREAD_BARRIER_SERIAL_THREAD) {
printf("ERROR: failed to wait on thread sync barrier\n");
return 1;
}
tsc_start = spdk_get_ticks();
tsc_current = tsc_start;
tsc_next_print = tsc_current + g_tsc_rate;
if (g_warmup_time_in_sec) {
warmup = true;
tsc_end = tsc_current + g_warmup_time_in_sec * g_tsc_rate;
} else {
tsc_end = tsc_current + g_time_in_sec * g_tsc_rate;
}
/* Submit initial I/O for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
submit_io(ns_ctx, g_queue_depth);
}
while (spdk_likely(!g_exit)) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
check_now = spdk_get_ticks();
check_rc = ns_ctx->entry->fn_table->check_io(ns_ctx);
if (check_rc > 0) {
ns_ctx->stats.busy_tsc += check_now - ns_ctx->stats.last_tsc;
} else {
ns_ctx->stats.idle_tsc += check_now - ns_ctx->stats.last_tsc;
}
ns_ctx->stats.last_tsc = check_now;
}
tsc_current = spdk_get_ticks();
if (worker->lcore == g_main_core && tsc_current > tsc_next_print) {
tsc_next_print += g_tsc_rate;
print_periodic_performance(warmup);
}
if (tsc_current > tsc_end) {
if (warmup) {
/* Update test end time, clear statistics */
tsc_end = tsc_current + g_time_in_sec * g_tsc_rate;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
memset(&ns_ctx->stats, 0, sizeof(ns_ctx->stats));
ns_ctx->stats.min_tsc = UINT64_MAX;
}
if (worker->lcore == g_main_core && isatty(STDOUT_FILENO)) {
/* warmup stage prints a longer string to stdout, need to erase it */
printf("%c[2K", 27);
}
warmup = false;
} else {
break;
}
}
}
/* Capture the actual elapsed time when we break out of the main loop. This will account
* for cases where we exit prematurely due to a signal. We only need to capture it on
* one core, so use the main core.
*/
if (worker->lcore == g_main_core) {
g_elapsed_time_in_usec = (tsc_current - tsc_start) * SPDK_SEC_TO_USEC / g_tsc_rate;
}
if (g_dump_transport_stats) {
pthread_mutex_lock(&g_stats_mutex);
perf_dump_transport_statistics(worker);
pthread_mutex_unlock(&g_stats_mutex);
}
/* drain the io of each ns_ctx in round robin to make the fairness */
do {
unfinished_ns_ctx = 0;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
/* first time will enter into this if case */
if (!ns_ctx->is_draining) {
ns_ctx->is_draining = true;
}
if (ns_ctx->current_queue_depth > 0) {
ns_ctx->entry->fn_table->check_io(ns_ctx);
if (ns_ctx->current_queue_depth > 0) {
unfinished_ns_ctx++;
}
}
}
} while (unfinished_ns_ctx > 0);
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
cleanup_ns_worker_ctx(ns_ctx);
}
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
#if defined(SPDK_CONFIG_URING) || defined(HAVE_LIBAIO)
printf(" [Kernel device(s)]...");
#endif
printf("\n");
printf("\t[-b, --allowed-pci-addr <addr> allowed local PCIe device address]\n");
printf("\t Example: -b 0000:d8:00.0 -b 0000:d9:00.0\n");
printf("\t[-q, --io-depth <val> io depth]\n");
printf("\t[-o, --io-size <val> io size in bytes]\n");
printf("\t[-O, --io-unit-size io unit size in bytes (4-byte aligned) for SPDK driver. default: same as io size]\n");
printf("\t[-P, --num-qpairs <val> number of io queues per namespace. default: 1]\n");
printf("\t[-U, --num-unused-qpairs <val> number of unused io queues per controller. default: 0]\n");
printf("\t[-w, --io-pattern <pattern> io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M, --rwmixread <0-100> rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-L, --enable-sw-latency-tracking enable latency tracking via sw, default: disabled]\n");
printf("\t\t-L for latency summary, -LL for detailed histogram\n");
printf("\t[-l, --enable-ssd-latency-tracking enable latency tracking via ssd (if supported), default: disabled]\n");
printf("\t[-t, --time <sec> time in seconds]\n");
printf("\t[-a, --warmup-time <sec> warmup time in seconds]\n");
printf("\t[-c, --core-mask <mask> core mask for I/O submission/completion.]\n");
printf("\t\t(default: 1)\n");
printf("\t[-D, --disable-sq-cmb disable submission queue in controller memory buffer, default: enabled]\n");
printf("\t[-H, --enable-tcp-hdgst enable header digest for TCP transport, default: disabled]\n");
printf("\t[-I, --enable-tcp-ddgst enable data digest for TCP transport, default: disabled]\n");
printf("\t[-N, --no-shst-notification no shutdown notification process for controllers, default: disabled]\n");
printf("\t[-r, --transport <fmt> Transport ID for local PCIe NVMe or NVMeoF]\n");
printf("\t Format: 'key:value [key:value] ...'\n");
printf("\t Keys:\n");
printf("\t trtype Transport type (e.g. PCIe, RDMA)\n");
printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n");
printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf("\t ns NVMe namespace ID (all active namespaces are used by default)\n");
printf("\t hostnqn Host NQN\n");
printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n");
printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
printf("\t Note: can be specified multiple times to test multiple disks/targets.\n");
printf("\t[-e, --metadata <fmt> metadata configuration]\n");
printf("\t Keys:\n");
printf("\t PRACT Protection Information Action bit (PRACT=1 or PRACT=0)\n");
printf("\t PRCHK Control of Protection Information Checking (PRCHK=GUARD|REFTAG|APPTAG)\n");
printf("\t Example: -e 'PRACT=0,PRCHK=GUARD|REFTAG|APPTAG'\n");
printf("\t -e 'PRACT=1,PRCHK=GUARD'\n");
printf("\t[-k, --keepalive <ms> keep alive timeout period in millisecond]\n");
printf("\t[-s, --hugemem-size <MB> DPDK huge memory size in MB.]\n");
printf("\t[-g, --mem-single-seg use single file descriptor for DPDK memory segments]\n");
printf("\t[-C, --max-completion-per-poll <val> max completions per poll]\n");
printf("\t\t(default: 0 - unlimited)\n");
printf("\t[-i, --shmem-grp-id <id> shared memory group ID]\n");
printf("\t[-Q, --skip-errors log I/O errors every N times (default: 1)\n");
printf("\t");
spdk_log_usage(stdout, "-T");
printf("\t[-V, --enable-vmd enable VMD enumeration]\n");
printf("\t[-z, --disable-zcopy <impl> disable zero copy send for the given sock implementation. Default for posix impl]\n");
printf("\t[-Z, --enable-zcopy <impl> enable zero copy send for the given sock implementation]\n");
printf("\t[-A, --buffer-alignment IO buffer alignment. Must be power of 2 and not less than cache line (%u)]\n",
SPDK_CACHE_LINE_SIZE);
printf("\t[-S, --default-sock-impl <impl> set the default sock impl, e.g. \"posix\"]\n");
printf("\t[-m, --cpu-usage display real-time overall cpu usage on used cores]\n");
#ifdef SPDK_CONFIG_URING
printf("\t[-R, --enable-uring enable using liburing to drive kernel devices (Default: libaio)]\n");
#endif
#ifdef DEBUG
printf("\t[-G, --enable-debug enable debug logging]\n");
#else
printf("\t[-G, --enable-debug enable debug logging (flag disabled, must reconfigure with --enable-debug)\n");
printf("\t[--transport-stats dump transport statistics]\n");
printf("\t[--iova-mode <mode> specify DPDK IOVA mode: va|pa]\n");
#endif
}
static void
check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
double **cutoff = ctx;
if (count == 0) {
return;
}
so_far_pct = (double)so_far / total;
while (so_far_pct >= **cutoff && **cutoff > 0) {
printf("%9.5f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate);
(*cutoff)++;
}
}
static void
print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
double so_far_pct;
if (count == 0) {
return;
}
so_far_pct = (double)so_far * 100 / total;
printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n",
(double)start * 1000 * 1000 / g_tsc_rate,
(double)end * 1000 * 1000 / g_tsc_rate,
so_far_pct, count);
}
static void
print_performance(void)
{
uint64_t total_io_completed, total_io_tsc;
double io_per_second, mb_per_second, average_latency, min_latency, max_latency;
double sum_ave_latency, min_latency_so_far, max_latency_so_far;
double total_io_per_second, total_mb_per_second;
int ns_count;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
uint32_t max_strlen;
total_io_per_second = 0;
total_mb_per_second = 0;
total_io_completed = 0;
total_io_tsc = 0;
min_latency_so_far = (double)UINT64_MAX;
max_latency_so_far = 0;
ns_count = 0;
max_strlen = 0;
TAILQ_FOREACH(worker, &g_workers, link) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
max_strlen = spdk_max(strlen(ns_ctx->entry->name), max_strlen);
}
}
printf("========================================================\n");
printf("%*s\n", max_strlen + 60, "Latency(us)");
printf("%-*s: %10s %10s %10s %10s %10s\n",
max_strlen + 13, "Device Information", "IOPS", "MiB/s", "Average", "min", "max");
TAILQ_FOREACH(worker, &g_workers, link) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (ns_ctx->stats.io_completed != 0) {
io_per_second = (double)ns_ctx->stats.io_completed * 1000 * 1000 / g_elapsed_time_in_usec;
mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024);
average_latency = ((double)ns_ctx->stats.total_tsc / ns_ctx->stats.io_completed) * 1000 * 1000 /
g_tsc_rate;
min_latency = (double)ns_ctx->stats.min_tsc * 1000 * 1000 / g_tsc_rate;
if (min_latency < min_latency_so_far) {
min_latency_so_far = min_latency;
}
max_latency = (double)ns_ctx->stats.max_tsc * 1000 * 1000 / g_tsc_rate;
if (max_latency > max_latency_so_far) {
max_latency_so_far = max_latency;
}
printf("%-*.*s from core %2u: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
max_strlen, max_strlen, ns_ctx->entry->name, worker->lcore,
io_per_second, mb_per_second,
average_latency, min_latency, max_latency);
total_io_per_second += io_per_second;
total_mb_per_second += mb_per_second;
total_io_completed += ns_ctx->stats.io_completed;
total_io_tsc += ns_ctx->stats.total_tsc;
ns_count++;
}
}
}
if (ns_count != 0 && total_io_completed) {
sum_ave_latency = ((double)total_io_tsc / total_io_completed) * 1000 * 1000 / g_tsc_rate;
printf("========================================================\n");
printf("%-*s: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
max_strlen + 13, "Total", total_io_per_second, total_mb_per_second,
sum_ave_latency, min_latency_so_far, max_latency_so_far);
printf("\n");
}
if (g_latency_sw_tracking_level == 0 || total_io_completed == 0) {
return;
}
TAILQ_FOREACH(worker, &g_workers, link) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
const double *cutoff = g_latency_cutoffs;
printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("=================================================================================\n");
spdk_histogram_data_iterate(ns_ctx->histogram, check_cutoff, &cutoff);
printf("\n");
}
}
if (g_latency_sw_tracking_level == 1) {
return;
}
TAILQ_FOREACH(worker, &g_workers, link) {
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore);
printf("==============================================================================\n");
printf(" Range in us Cumulative IO count\n");
spdk_histogram_data_iterate(ns_ctx->histogram, print_bucket, NULL);
printf("\n");
}
}
}
static void
print_latency_page(struct ctrlr_entry *entry)
{
int i;
printf("\n");
printf("%s\n", entry->name);
printf("--------------------------------------------------------\n");
for (i = 0; i < 32; i++) {
if (entry->latency_page->buckets_32us[i]) {
printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]);
}
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_1ms[i]) {
printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]);
}
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_32ms[i])
printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32,
entry->latency_page->buckets_32ms[i]);
}
}
static void
print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page)
{
struct ctrlr_entry *ctrlr;
printf("%s Latency Statistics:\n", op_name);
printf("========================================================\n");
TAILQ_FOREACH(ctrlr, &g_controllers, link) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG,
ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0,
enable_latency_tracking_complete,
NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
g_outstanding_commands++;
} else {
printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name);
}
}
while (g_outstanding_commands) {
TAILQ_FOREACH(ctrlr, &g_controllers, link) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr);
}
}
TAILQ_FOREACH(ctrlr, &g_controllers, link) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
print_latency_page(ctrlr);
}
}
printf("\n");
}
static void
print_stats(void)
{
print_performance();
if (g_latency_ssd_tracking_enable) {
if (g_rw_percentage != 0) {
print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
}
if (g_rw_percentage != 100) {
print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY);
}
}
}
static void
unregister_trids(void)
{
struct trid_entry *trid_entry, *tmp;
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
free(trid_entry);
}
}
static int
add_trid(const char *trid_str)
{
struct trid_entry *trid_entry;
struct spdk_nvme_transport_id *trid;
char *ns;
char *hostnqn;
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
return -1;
}
trid = &trid_entry->trid;
trid->trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
free(trid_entry);
return 1;
}
spdk_nvme_transport_id_populate_trstring(trid,
spdk_nvme_transport_id_trtype_str(trid->trtype));
ns = strcasestr(trid_str, "ns:");
if (ns) {
char nsid_str[6]; /* 5 digits maximum in an nsid */
int len;
int nsid;
ns += 3;
len = strcspn(ns, " \t\n");
if (len > 5) {
fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n");
free(trid_entry);
return 1;
}
memcpy(nsid_str, ns, len);
nsid_str[len] = '\0';
nsid = spdk_strtol(nsid_str, 10);
if (nsid <= 0 || nsid > 65535) {
fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n");
free(trid_entry);
return 1;
}
trid_entry->nsid = (uint16_t)nsid;
}
hostnqn = strcasestr(trid_str, "hostnqn:");
if (hostnqn) {
size_t len;
hostnqn += strlen("hostnqn:");
len = strcspn(hostnqn, " \t\n");
if (len > (sizeof(trid_entry->hostnqn) - 1)) {
fprintf(stderr, "Host NQN is too long\n");
free(trid_entry);
return 1;
}
memcpy(trid_entry->hostnqn, hostnqn, len);
trid_entry->hostnqn[len] = '\0';
}
TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
return 0;
}
static int
add_allowed_pci_device(const char *bdf_str, struct spdk_env_opts *env_opts)
{
int rc;
if (env_opts->num_pci_addr >= MAX_ALLOWED_PCI_DEVICE_NUM) {
fprintf(stderr, "Currently we only support allowed PCI device num=%d\n",
MAX_ALLOWED_PCI_DEVICE_NUM);
return -1;
}
rc = spdk_pci_addr_parse(&env_opts->pci_allowed[env_opts->num_pci_addr], bdf_str);
if (rc < 0) {
fprintf(stderr, "Failed to parse the given bdf_str=%s\n", bdf_str);
return -1;
}
env_opts->num_pci_addr++;
return 0;
}
static size_t
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size,
size_t val_buf_size)
{
const char *sep;
const char *separator = ", \t\n";
size_t key_len, val_len;
*str += strspn(*str, separator);
sep = strchr(*str, '=');
if (!sep) {
fprintf(stderr, "Key without '=' separator\n");
return 0;
}
key_len = sep - *str;
if (key_len >= key_buf_size) {
fprintf(stderr, "Key length %zu is greater than maximum allowed %zu\n",
key_len, key_buf_size - 1);
return 0;
}
memcpy(key, *str, key_len);
key[key_len] = '\0';
*str += key_len + 1; /* Skip key */
val_len = strcspn(*str, separator);
if (val_len == 0) {
fprintf(stderr, "Key without value\n");
return 0;
}
if (val_len >= val_buf_size) {
fprintf(stderr, "Value length %zu is greater than maximum allowed %zu\n",
val_len, val_buf_size - 1);
return 0;
}
memcpy(val, *str, val_len);
val[val_len] = '\0';
*str += val_len;
return val_len;
}
static int
parse_metadata(const char *metacfg_str)
{
const char *str;
size_t val_len;
char key[32];
char val[1024];
if (metacfg_str == NULL) {
return -EINVAL;
}
str = metacfg_str;
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
fprintf(stderr, "Failed to parse metadata\n");
return -EINVAL;
}
if (strcmp(key, "PRACT") == 0) {
if (*val == '1') {
g_metacfg_pract_flag = SPDK_NVME_IO_FLAGS_PRACT;
}
} else if (strcmp(key, "PRCHK") == 0) {
if (strstr(val, "GUARD") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
}
if (strstr(val, "REFTAG") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
}
if (strstr(val, "APPTAG") != NULL) {
g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_APPTAG;
}
} else {
fprintf(stderr, "Unknown key '%s'\n", key);
}
}
return 0;
}
#define PERF_GETOPT_SHORT "a:b:c:e:gi:lmo:q:r:k:s:t:w:z:A:C:DGHILM:NO:P:Q:RS:T:U:VZ:"
static const struct option g_perf_cmdline_opts[] = {
#define PERF_WARMUP_TIME 'a'
{"warmup-time", required_argument, NULL, PERF_WARMUP_TIME},
#define PERF_ALLOWED_PCI_ADDR 'b'
{"allowed-pci-addr", required_argument, NULL, PERF_ALLOWED_PCI_ADDR},
#define PERF_CORE_MASK 'c'
{"core-mask", required_argument, NULL, PERF_CORE_MASK},
#define PERF_METADATA 'e'
{"metadata", required_argument, NULL, PERF_METADATA},
#define PERF_MEM_SINGL_SEG 'g'
{"mem-single-seg", no_argument, NULL, PERF_MEM_SINGL_SEG},
#define PERF_SHMEM_GROUP_ID 'i'
{"shmem-grp-id", required_argument, NULL, PERF_SHMEM_GROUP_ID},
#define PERF_ENABLE_SSD_LATENCY_TRACING 'l'
{"enable-ssd-latency-tracking", no_argument, NULL, PERF_ENABLE_SSD_LATENCY_TRACING},
#define PERF_CPU_USAGE 'm'
{"cpu-usage", no_argument, NULL, PERF_CPU_USAGE},
#define PERF_IO_SIZE 'o'
{"io-size", required_argument, NULL, PERF_IO_SIZE},
#define PERF_IO_DEPTH 'q'
{"io-depth", required_argument, NULL, PERF_IO_DEPTH},
#define PERF_TRANSPORT 'r'
{"transport", required_argument, NULL, PERF_TRANSPORT},
#define PERF_KEEPALIVE 'k'
{"keepalive", required_argument, NULL, PERF_KEEPALIVE},
#define PERF_HUGEMEM_SIZE 's'
{"hugemem-size", required_argument, NULL, PERF_HUGEMEM_SIZE},
#define PERF_TIME 't'
{"time", required_argument, NULL, PERF_TIME},
#define PERF_IO_PATTERN 'w'
{"io-pattern", required_argument, NULL, PERF_IO_PATTERN},
#define PERF_DISABLE_ZCOPY 'z'
{"disable-zcopy", required_argument, NULL, PERF_DISABLE_ZCOPY},
#define PERF_BUFFER_ALIGNMENT 'A'
{"buffer-alignment", required_argument, NULL, PERF_BUFFER_ALIGNMENT},
#define PERF_MAX_COMPLETIONS_PER_POLL 'C'
{"max-completion-per-poll", required_argument, NULL, PERF_MAX_COMPLETIONS_PER_POLL},
#define PERF_DISABLE_SQ_CMB 'D'
{"disable-sq-cmb", no_argument, NULL, PERF_DISABLE_SQ_CMB},
#define PERF_ENABLE_DEBUG 'G'
{"enable-debug", no_argument, NULL, PERF_ENABLE_DEBUG},
#define PERF_ENABLE_TCP_HDGST 'H'
{"enable-tcp-hdgst", no_argument, NULL, PERF_ENABLE_TCP_HDGST},
#define PERF_ENABLE_TCP_DDGST 'I'
{"enable-tcp-ddgst", no_argument, NULL, PERF_ENABLE_TCP_DDGST},
#define PERF_ENABLE_SW_LATENCY_TRACING 'L'
{"enable-sw-latency-tracking", no_argument, NULL, PERF_ENABLE_SW_LATENCY_TRACING},
#define PERF_RW_MIXREAD 'M'
{"rwmixread", required_argument, NULL, PERF_RW_MIXREAD},
#define PERF_NO_SHST_NOTIFICATION 'N'
{"no-shst-notification", no_argument, NULL, PERF_NO_SHST_NOTIFICATION},
#define PERF_IO_UNIT_SIZE 'O'
{"io-unit-size", required_argument, NULL, PERF_IO_UNIT_SIZE},
#define PERF_IO_QUEUES_PER_NS 'P'
{"num-qpairs", required_argument, NULL, PERF_IO_QUEUES_PER_NS},
#define PERF_SKIP_ERRRORS 'Q'
{"skip-errors", required_argument, NULL, PERF_SKIP_ERRRORS},
#define PERF_ENABLE_URING 'R'
{"enable-uring", no_argument, NULL, PERF_ENABLE_URING},
#define PERF_DEFAULT_SOCK_IMPL 'S'
{"default-sock-impl", required_argument, NULL, PERF_DEFAULT_SOCK_IMPL},
#define PERF_LOG_FLAG 'T'
{"logflag", required_argument, NULL, PERF_LOG_FLAG},
#define PERF_NUM_UNUSED_IO_QPAIRS 'U'
{"num-unused-qpairs", required_argument, NULL, PERF_NUM_UNUSED_IO_QPAIRS},
#define PERF_ENABLE_VMD 'V'
{"enable-vmd", no_argument, NULL, PERF_ENABLE_VMD},
#define PERF_ENABLE_ZCOPY 'Z'
{"enable-zcopy", required_argument, NULL, PERF_ENABLE_ZCOPY},
#define PERF_TRANSPORT_STATISTICS 257
{"transport-stats", no_argument, NULL, PERF_TRANSPORT_STATISTICS},
#define PERF_IOVA_MODE 258
{"iova-mode", required_argument, NULL, PERF_IOVA_MODE},
/* Should be the last element */
{0, 0, 0, 0}
};
static int
parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
{
int op, long_idx;
long int val;
int rc;
while ((op = getopt_long(argc, argv, PERF_GETOPT_SHORT, g_perf_cmdline_opts, &long_idx)) != -1) {
switch (op) {
case PERF_WARMUP_TIME:
case PERF_BUFFER_ALIGNMENT:
case PERF_SHMEM_GROUP_ID:
case PERF_MAX_COMPLETIONS_PER_POLL:
case PERF_IO_QUEUES_PER_NS:
case PERF_IO_SIZE:
case PERF_IO_UNIT_SIZE:
case PERF_IO_DEPTH:
case PERF_KEEPALIVE:
case PERF_HUGEMEM_SIZE:
case PERF_TIME:
case PERF_RW_MIXREAD:
case PERF_NUM_UNUSED_IO_QPAIRS:
case PERF_SKIP_ERRRORS:
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case PERF_WARMUP_TIME:
g_warmup_time_in_sec = val;
break;
case PERF_SHMEM_GROUP_ID:
env_opts->shm_id = val;
break;
case PERF_MAX_COMPLETIONS_PER_POLL:
g_max_completions = val;
break;
case PERF_IO_QUEUES_PER_NS:
g_nr_io_queues_per_ns = val;
break;
case PERF_IO_SIZE:
g_io_size_bytes = val;
break;
case PERF_IO_UNIT_SIZE:
g_io_unit_size = val;
break;
case PERF_IO_DEPTH:
g_queue_depth = val;
break;
case PERF_KEEPALIVE:
g_keep_alive_timeout_in_ms = val;
break;
case PERF_HUGEMEM_SIZE:
env_opts->mem_size = val;
break;
case PERF_TIME:
g_time_in_sec = val;
break;
case PERF_RW_MIXREAD:
g_rw_percentage = val;
g_mix_specified = true;
break;
case PERF_SKIP_ERRRORS:
g_quiet_count = val;
break;
case PERF_NUM_UNUSED_IO_QPAIRS:
g_nr_unused_io_queues = val;
break;
case PERF_BUFFER_ALIGNMENT:
g_io_align = val;
if (!spdk_u32_is_pow2(g_io_align) || g_io_align < SPDK_CACHE_LINE_SIZE) {
fprintf(stderr, "Wrong alignment %u. Must be power of 2 and not less than cache lize (%u)\n",
g_io_align, SPDK_CACHE_LINE_SIZE);
usage(argv[0]);
return 1;
}
g_io_align_specified = true;
break;
}
break;
case PERF_ALLOWED_PCI_ADDR:
if (add_allowed_pci_device(optarg, env_opts)) {
usage(argv[0]);
return 1;
}
break;
case PERF_CORE_MASK:
env_opts->core_mask = optarg;
break;
case PERF_METADATA:
if (parse_metadata(optarg)) {
usage(argv[0]);
return 1;
}
break;
case PERF_MEM_SINGL_SEG:
env_opts->hugepage_single_segments = true;
break;
case PERF_ENABLE_SSD_LATENCY_TRACING:
g_latency_ssd_tracking_enable = true;
break;
case PERF_CPU_USAGE:
g_monitor_perf_cores = true;
break;
case PERF_TRANSPORT:
if (add_trid(optarg)) {
usage(argv[0]);
return 1;
}
break;
case PERF_IO_PATTERN:
g_workload_type = optarg;
break;
case PERF_DISABLE_SQ_CMB:
g_disable_sq_cmb = 1;
break;
case PERF_ENABLE_DEBUG:
#ifndef DEBUG
fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n",
argv[0]);
usage(argv[0]);
return 1;
#else
spdk_log_set_flag("nvme");
spdk_log_set_print_level(SPDK_LOG_DEBUG);
break;
#endif
case PERF_ENABLE_TCP_HDGST:
g_header_digest = 1;
break;
case PERF_ENABLE_TCP_DDGST:
g_data_digest = 1;
break;
case PERF_ENABLE_SW_LATENCY_TRACING:
g_latency_sw_tracking_level++;
break;
case PERF_NO_SHST_NOTIFICATION:
g_no_shn_notification = true;
break;
case PERF_ENABLE_URING:
#ifndef SPDK_CONFIG_URING
fprintf(stderr, "%s must be rebuilt with CONFIG_URING=y for -R flag.\n",
argv[0]);
usage(argv[0]);
return 0;
#endif
g_use_uring = true;
break;
case PERF_LOG_FLAG:
rc = spdk_log_set_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
#ifdef DEBUG
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#endif
break;
case PERF_ENABLE_VMD:
g_vmd = true;
break;
case PERF_DISABLE_ZCOPY:
perf_set_sock_zcopy(optarg, false);
break;
case PERF_ENABLE_ZCOPY:
perf_set_sock_zcopy(optarg, true);
break;
case PERF_DEFAULT_SOCK_IMPL:
rc = spdk_sock_set_default_impl(optarg);
if (rc) {
fprintf(stderr, "Failed to set sock impl %s, err %d (%s)\n", optarg, errno, strerror(errno));
return 1;
}
break;
case PERF_TRANSPORT_STATISTICS:
g_dump_transport_stats = true;
break;
case PERF_IOVA_MODE:
env_opts->iova_mode = optarg;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_nr_io_queues_per_ns) {
usage(argv[0]);
return 1;
}
if (!g_queue_depth) {
fprintf(stderr, "missing -q (--io-depth) operand\n");
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
fprintf(stderr, "missing -o (--io-size) operand\n");
usage(argv[0]);
return 1;
}
if (!g_io_unit_size || g_io_unit_size % 4) {
fprintf(stderr, "io unit size can not be 0 or non 4-byte aligned\n");
return 1;
}
if (!g_workload_type) {
fprintf(stderr, "missing -w (--io-pattern) operand\n");
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
fprintf(stderr, "missing -t (--time) operand\n");
usage(argv[0]);
return 1;
}
if (!g_quiet_count) {
fprintf(stderr, "-Q (--skip-errors) value must be greater than 0\n");
usage(argv[0]);
return 1;
}
if (strncmp(g_workload_type, "rand", 4) == 0) {
g_is_random = 1;
g_workload_type = &g_workload_type[4];
}
if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) {
g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0;
if (g_mix_specified) {
fprintf(stderr, "Ignoring -M (--rwmixread) option... Please use -M option"
" only when using rw or randrw.\n");
}
} else if (strcmp(g_workload_type, "rw") == 0) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M (--rwmixread) must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
} else {
fprintf(stderr,
"-o (--io-pattern) io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (TAILQ_EMPTY(&g_trid_list)) {
/* If no transport IDs specified, default to enumerating all local PCIe devices */
add_trid("trtype:PCIe");
} else {
struct trid_entry *trid_entry, *trid_entry_tmp;
env_opts->no_pci = true;
/* check whether there is local PCIe type */
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
env_opts->no_pci = false;
break;
}
}
}
g_file_optind = optind;
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return -1;
}
TAILQ_INIT(&worker->ns_ctx);
worker->lcore = i;
TAILQ_INSERT_TAIL(&g_workers, worker, link);
g_num_workers++;
}
return 0;
}
static void
unregister_workers(void)
{
struct worker_thread *worker, *tmp_worker;
struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx;
/* Free namespace context and worker thread */
TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) {
TAILQ_REMOVE(&g_workers, worker, link);
TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) {
TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link);
spdk_histogram_data_free(ns_ctx->histogram);
free(ns_ctx);
}
free(worker);
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct trid_entry *trid_entry = cb_ctx;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
if (g_disable_sq_cmb) {
opts->use_cmb_sqs = false;
}
if (g_no_shn_notification) {
opts->no_shn_notification = true;
}
}
/* Set io_queue_size to UINT16_MAX, NVMe driver
* will then reduce this to MQES to maximize
* the io_queue_size as much as possible.
*/
opts->io_queue_size = UINT16_MAX;
/* Set the header and data_digest */
opts->header_digest = g_header_digest;
opts->data_digest = g_data_digest;
opts->keep_alive_timeout_ms = g_keep_alive_timeout_in_ms;
memcpy(opts->hostnqn, trid_entry->hostnqn, sizeof(opts->hostnqn));
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct trid_entry *trid_entry = cb_ctx;
struct spdk_pci_addr pci_addr;
struct spdk_pci_device *pci_dev;
struct spdk_pci_id pci_id;
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
} else {
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
return;
}
pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
if (!pci_dev) {
return;
}
pci_id = spdk_pci_device_get_id(pci_dev);
printf("Attached to NVMe Controller at %s [%04x:%04x]\n",
trid->traddr,
pci_id.vendor_id, pci_id.device_id);
}
register_ctrlr(ctrlr, trid_entry);
}
static int
register_controllers(void)
{
struct trid_entry *trid_entry;
printf("Initializing NVMe Controllers\n");
if (g_vmd && spdk_vmd_init()) {
fprintf(stderr, "Failed to initialize VMD."
" Some NVMe devices can be unavailable.\n");
}
TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
trid_entry->trid.traddr);
return -1;
}
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry, *tmp;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
TAILQ_REMOVE(&g_controllers, entry, link);
spdk_dma_free(entry->latency_page);
if (g_latency_ssd_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) {
set_latency_tracking_feature(entry->ctrlr, false);
}
if (g_nr_unused_io_queues) {
int i;
for (i = 0; i < g_nr_unused_io_queues; i++) {
spdk_nvme_ctrlr_free_io_qpair(entry->unused_qpairs[i]);
}
free(entry->unused_qpairs);
}
spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
free(entry);
}
while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
;
}
if (g_vmd) {
spdk_vmd_fini();
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = TAILQ_FIRST(&g_namespaces);
struct worker_thread *worker = TAILQ_FIRST(&g_workers);
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->stats.min_tsc = UINT64_MAX;
ns_ctx->entry = entry;
ns_ctx->histogram = spdk_histogram_data_alloc();
TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
worker = TAILQ_NEXT(worker, link);
if (worker == NULL) {
worker = TAILQ_FIRST(&g_workers);
}
entry = TAILQ_NEXT(entry, link);
if (entry == NULL) {
entry = TAILQ_FIRST(&g_namespaces);
}
}
return 0;
}
static void *
nvme_poll_ctrlrs(void *arg)
{
struct ctrlr_entry *entry;
int oldstate;
int rc;
spdk_unaffinitize_thread();
while (true) {
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
TAILQ_FOREACH(entry, &g_controllers, link) {
if (entry->trtype != SPDK_NVME_TRANSPORT_PCIE) {
rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
if (spdk_unlikely(rc < 0 && !g_exit)) {
g_exit = true;
}
}
}
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
/* This is a pthread cancellation point and cannot be removed. */
sleep(1);
}
return NULL;
}
static void
sig_handler(int signo)
{
g_exit = true;
}
static int
setup_sig_handlers(void)
{
struct sigaction sigact = {};
int rc;
sigemptyset(&sigact.sa_mask);
sigact.sa_handler = sig_handler;
rc = sigaction(SIGINT, &sigact, NULL);
if (rc < 0) {
fprintf(stderr, "sigaction(SIGINT) failed, errno %d (%s)\n", errno, strerror(errno));
return -1;
}
rc = sigaction(SIGTERM, &sigact, NULL);
if (rc < 0) {
fprintf(stderr, "sigaction(SIGTERM) failed, errno %d (%s)\n", errno, strerror(errno));
return -1;
}
return 0;
}
int main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *main_worker;
struct spdk_env_opts opts;
pthread_t thread_id = 0;
spdk_env_opts_init(&opts);
opts.name = "perf";
opts.pci_allowed = g_allowed_pci_addr;
rc = parse_args(argc, argv, &opts);
if (rc != 0) {
return rc;
}
/* Transport statistics are printed from each thread.
* To avoid mess in terminal, init and use mutex */
rc = pthread_mutex_init(&g_stats_mutex, NULL);
if (rc != 0) {
fprintf(stderr, "Failed to init mutex\n");
goto cleanup;
}
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
rc = -1;
goto cleanup;
}
rc = setup_sig_handlers();
if (rc != 0) {
rc = -1;
goto cleanup;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
rc = -1;
goto cleanup;
}
#if defined(HAVE_LIBAIO) || defined(SPDK_CONFIG_URING)
if (register_files(argc, argv) != 0) {
rc = -1;
goto cleanup;
}
#endif
if (register_controllers() != 0) {
rc = -1;
goto cleanup;
}
if (g_warn) {
printf("WARNING: Some requested NVMe devices were skipped\n");
}
if (g_num_namespaces == 0) {
fprintf(stderr, "No valid NVMe controllers or AIO or URING devices found\n");
goto cleanup;
}
if (g_num_workers > 1 && g_quiet_count > 1) {
fprintf(stderr, "Error message rate-limiting enabled across multiple threads.\n");
fprintf(stderr, "Error suppression count may not be exact.\n");
}
rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
if (rc != 0) {
fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
goto cleanup;
}
if (associate_workers_with_ns() != 0) {
rc = -1;
goto cleanup;
}
rc = pthread_barrier_init(&g_worker_sync_barrier, NULL, g_num_workers);
if (rc != 0) {
fprintf(stderr, "Unable to initialize thread sync barrier\n");
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
/* Launch all of the secondary workers */
g_main_core = spdk_env_get_current_core();
main_worker = NULL;
TAILQ_FOREACH(worker, &g_workers, link) {
if (worker->lcore != g_main_core) {
spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
} else {
assert(main_worker == NULL);
main_worker = worker;
}
}
assert(main_worker != NULL);
rc = work_fn(main_worker);
spdk_env_thread_wait_all();
print_stats();
pthread_barrier_destroy(&g_worker_sync_barrier);
cleanup:
if (thread_id && pthread_cancel(thread_id) == 0) {
pthread_join(thread_id, NULL);
}
unregister_trids();
unregister_namespaces();
unregister_controllers();
unregister_workers();
pthread_mutex_destroy(&g_stats_mutex);
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}