numam-spdk/module/sock/posix/posix.c

1605 lines
39 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#if defined(__FreeBSD__)
#include <sys/event.h>
#define SPDK_KEVENT
#else
#include <sys/epoll.h>
#define SPDK_EPOLL
#endif
#if defined(__linux__)
#include <linux/errqueue.h>
#endif
#include "spdk/env.h"
#include "spdk/log.h"
#include "spdk/pipe.h"
#include "spdk/sock.h"
#include "spdk/util.h"
#include "spdk_internal/sock.h"
#define MAX_TMPBUF 1024
#define PORTNUMLEN 32
#if defined(SO_ZEROCOPY) && defined(MSG_ZEROCOPY)
#define SPDK_ZEROCOPY
#endif
struct spdk_posix_sock {
struct spdk_sock base;
int fd;
uint32_t sendmsg_idx;
struct spdk_pipe *recv_pipe;
void *recv_buf;
int recv_buf_sz;
bool pending_events;
bool zcopy;
int placement_id;
TAILQ_ENTRY(spdk_posix_sock) link;
};
TAILQ_HEAD(spdk_pending_events_list, spdk_posix_sock);
struct spdk_posix_sock_group_impl {
struct spdk_sock_group_impl base;
int fd;
struct spdk_pending_events_list pending_events;
int placement_id;
};
static struct spdk_sock_impl_opts g_spdk_posix_sock_impl_opts = {
.recv_buf_size = MIN_SO_RCVBUF_SIZE,
.send_buf_size = MIN_SO_SNDBUF_SIZE,
.enable_recv_pipe = true,
.enable_zerocopy_send = true,
.enable_quickack = false,
.enable_placement_id = PLACEMENT_NONE,
.enable_zerocopy_send_server = true,
.enable_zerocopy_send_client = false
};
static struct spdk_sock_map g_map = {
.entries = STAILQ_HEAD_INITIALIZER(g_map.entries),
.mtx = PTHREAD_MUTEX_INITIALIZER
};
__attribute((destructor)) static void
posix_sock_map_cleanup(void)
{
spdk_sock_map_cleanup(&g_map);
}
static int
get_addr_str(struct sockaddr *sa, char *host, size_t hlen)
{
const char *result = NULL;
if (sa == NULL || host == NULL) {
return -1;
}
switch (sa->sa_family) {
case AF_INET:
result = inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
host, hlen);
break;
case AF_INET6:
result = inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
host, hlen);
break;
default:
break;
}
if (result != NULL) {
return 0;
} else {
return -1;
}
}
#define __posix_sock(sock) (struct spdk_posix_sock *)sock
#define __posix_group_impl(group) (struct spdk_posix_sock_group_impl *)group
static int
posix_sock_getaddr(struct spdk_sock *_sock, char *saddr, int slen, uint16_t *sport,
char *caddr, int clen, uint16_t *cport)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return -1;
}
switch (sa.ss_family) {
case AF_UNIX:
/* Acceptable connection types that don't have IPs */
return 0;
case AF_INET:
case AF_INET6:
/* Code below will get IP addresses */
break;
default:
/* Unsupported socket family */
return -1;
}
rc = get_addr_str((struct sockaddr *)&sa, saddr, slen);
if (rc != 0) {
SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno);
return -1;
}
if (sport) {
if (sa.ss_family == AF_INET) {
*sport = ntohs(((struct sockaddr_in *) &sa)->sin_port);
} else if (sa.ss_family == AF_INET6) {
*sport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port);
}
}
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getpeername(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getpeername() failed (errno=%d)\n", errno);
return -1;
}
rc = get_addr_str((struct sockaddr *)&sa, caddr, clen);
if (rc != 0) {
SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno);
return -1;
}
if (cport) {
if (sa.ss_family == AF_INET) {
*cport = ntohs(((struct sockaddr_in *) &sa)->sin_port);
} else if (sa.ss_family == AF_INET6) {
*cport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port);
}
}
return 0;
}
enum posix_sock_create_type {
SPDK_SOCK_CREATE_LISTEN,
SPDK_SOCK_CREATE_CONNECT,
};
static int
posix_sock_alloc_pipe(struct spdk_posix_sock *sock, int sz)
{
uint8_t *new_buf;
struct spdk_pipe *new_pipe;
struct iovec siov[2];
struct iovec diov[2];
int sbytes;
ssize_t bytes;
if (sock->recv_buf_sz == sz) {
return 0;
}
/* If the new size is 0, just free the pipe */
if (sz == 0) {
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
sock->recv_pipe = NULL;
sock->recv_buf = NULL;
return 0;
} else if (sz < MIN_SOCK_PIPE_SIZE) {
SPDK_ERRLOG("The size of the pipe must be larger than %d\n", MIN_SOCK_PIPE_SIZE);
return -1;
}
/* Round up to next 64 byte multiple */
new_buf = calloc(SPDK_ALIGN_CEIL(sz + 1, 64), sizeof(uint8_t));
if (!new_buf) {
SPDK_ERRLOG("socket recv buf allocation failed\n");
return -ENOMEM;
}
new_pipe = spdk_pipe_create(new_buf, sz + 1);
if (new_pipe == NULL) {
SPDK_ERRLOG("socket pipe allocation failed\n");
free(new_buf);
return -ENOMEM;
}
if (sock->recv_pipe != NULL) {
/* Pull all of the data out of the old pipe */
sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov);
if (sbytes > sz) {
/* Too much data to fit into the new pipe size */
spdk_pipe_destroy(new_pipe);
free(new_buf);
return -EINVAL;
}
sbytes = spdk_pipe_writer_get_buffer(new_pipe, sz, diov);
assert(sbytes == sz);
bytes = spdk_iovcpy(siov, 2, diov, 2);
spdk_pipe_writer_advance(new_pipe, bytes);
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
}
sock->recv_buf_sz = sz;
sock->recv_buf = new_buf;
sock->recv_pipe = new_pipe;
return 0;
}
static int
posix_sock_set_recvbuf(struct spdk_sock *_sock, int sz)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
int rc;
assert(sock != NULL);
if (g_spdk_posix_sock_impl_opts.enable_recv_pipe) {
rc = posix_sock_alloc_pipe(sock, sz);
if (rc) {
return rc;
}
}
/* Set kernel buffer size to be at least MIN_SO_RCVBUF_SIZE */
if (sz < MIN_SO_RCVBUF_SIZE) {
sz = MIN_SO_RCVBUF_SIZE;
}
rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUF, &sz, sizeof(sz));
if (rc < 0) {
return rc;
}
return 0;
}
static int
posix_sock_set_sendbuf(struct spdk_sock *_sock, int sz)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
int rc;
assert(sock != NULL);
if (sz < MIN_SO_SNDBUF_SIZE) {
sz = MIN_SO_SNDBUF_SIZE;
}
rc = setsockopt(sock->fd, SOL_SOCKET, SO_SNDBUF, &sz, sizeof(sz));
if (rc < 0) {
return rc;
}
return 0;
}
static struct spdk_posix_sock *
posix_sock_alloc(int fd, bool enable_zero_copy)
{
struct spdk_posix_sock *sock;
#if defined(SPDK_ZEROCOPY) || defined(__linux__)
int flag;
int rc;
#endif
sock = calloc(1, sizeof(*sock));
if (sock == NULL) {
SPDK_ERRLOG("sock allocation failed\n");
return NULL;
}
sock->fd = fd;
#if defined(SPDK_ZEROCOPY)
flag = 1;
if (enable_zero_copy) {
/* Try to turn on zero copy sends */
rc = setsockopt(sock->fd, SOL_SOCKET, SO_ZEROCOPY, &flag, sizeof(flag));
if (rc == 0) {
sock->zcopy = true;
}
}
#endif
#if defined(__linux__)
flag = 1;
if (g_spdk_posix_sock_impl_opts.enable_quickack) {
rc = setsockopt(sock->fd, IPPROTO_TCP, TCP_QUICKACK, &flag, sizeof(flag));
if (rc != 0) {
SPDK_ERRLOG("quickack was failed to set\n");
}
}
spdk_sock_get_placement_id(sock->fd, g_spdk_posix_sock_impl_opts.enable_placement_id,
&sock->placement_id);
if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_MARK) {
/* Save placement_id */
spdk_sock_map_insert(&g_map, sock->placement_id, NULL);
}
#endif
return sock;
}
static bool
sock_is_loopback(int fd)
{
struct ifaddrs *addrs, *tmp;
struct sockaddr_storage sa = {};
socklen_t salen;
struct ifreq ifr = {};
char ip_addr[256], ip_addr_tmp[256];
int rc;
bool is_loopback = false;
salen = sizeof(sa);
rc = getsockname(fd, (struct sockaddr *)&sa, &salen);
if (rc != 0) {
return is_loopback;
}
memset(ip_addr, 0, sizeof(ip_addr));
rc = get_addr_str((struct sockaddr *)&sa, ip_addr, sizeof(ip_addr));
if (rc != 0) {
return is_loopback;
}
getifaddrs(&addrs);
for (tmp = addrs; tmp != NULL; tmp = tmp->ifa_next) {
if (tmp->ifa_addr && (tmp->ifa_flags & IFF_UP) &&
(tmp->ifa_addr->sa_family == sa.ss_family)) {
memset(ip_addr_tmp, 0, sizeof(ip_addr_tmp));
rc = get_addr_str(tmp->ifa_addr, ip_addr_tmp, sizeof(ip_addr_tmp));
if (rc != 0) {
continue;
}
if (strncmp(ip_addr, ip_addr_tmp, sizeof(ip_addr)) == 0) {
memcpy(ifr.ifr_name, tmp->ifa_name, sizeof(ifr.ifr_name));
ioctl(fd, SIOCGIFFLAGS, &ifr);
if (ifr.ifr_flags & IFF_LOOPBACK) {
is_loopback = true;
}
goto end;
}
}
}
end:
freeifaddrs(addrs);
return is_loopback;
}
static struct spdk_sock *
posix_sock_create(const char *ip, int port,
enum posix_sock_create_type type,
struct spdk_sock_opts *opts)
{
struct spdk_posix_sock *sock;
char buf[MAX_TMPBUF];
char portnum[PORTNUMLEN];
char *p;
struct addrinfo hints, *res, *res0;
int fd, flag;
int val = 1;
int rc, sz;
bool enable_zcopy_user_opts = true;
bool enable_zcopy_impl_opts = true;
assert(opts != NULL);
if (ip == NULL) {
return NULL;
}
if (ip[0] == '[') {
snprintf(buf, sizeof(buf), "%s", ip + 1);
p = strchr(buf, ']');
if (p != NULL) {
*p = '\0';
}
ip = (const char *) &buf[0];
}
snprintf(portnum, sizeof portnum, "%d", port);
memset(&hints, 0, sizeof hints);
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_NUMERICSERV;
hints.ai_flags |= AI_PASSIVE;
hints.ai_flags |= AI_NUMERICHOST;
rc = getaddrinfo(ip, portnum, &hints, &res0);
if (rc != 0) {
SPDK_ERRLOG("getaddrinfo() failed %s (%d)\n", gai_strerror(rc), rc);
return NULL;
}
/* try listen */
fd = -1;
for (res = res0; res != NULL; res = res->ai_next) {
retry:
fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (fd < 0) {
/* error */
continue;
}
sz = g_spdk_posix_sock_impl_opts.recv_buf_size;
rc = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &sz, sizeof(sz));
if (rc) {
/* Not fatal */
}
sz = g_spdk_posix_sock_impl_opts.send_buf_size;
rc = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &sz, sizeof(sz));
if (rc) {
/* Not fatal */
}
rc = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
rc = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
#if defined(SO_PRIORITY)
if (opts->priority) {
rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &opts->priority, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
}
#endif
if (res->ai_family == AF_INET6) {
rc = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
}
if (type == SPDK_SOCK_CREATE_LISTEN) {
rc = bind(fd, res->ai_addr, res->ai_addrlen);
if (rc != 0) {
SPDK_ERRLOG("bind() failed at port %d, errno = %d\n", port, errno);
switch (errno) {
case EINTR:
/* interrupted? */
close(fd);
goto retry;
case EADDRNOTAVAIL:
SPDK_ERRLOG("IP address %s not available. "
"Verify IP address in config file "
"and make sure setup script is "
"run before starting spdk app.\n", ip);
/* FALLTHROUGH */
default:
/* try next family */
close(fd);
fd = -1;
continue;
}
}
/* bind OK */
rc = listen(fd, 512);
if (rc != 0) {
SPDK_ERRLOG("listen() failed, errno = %d\n", errno);
close(fd);
fd = -1;
break;
}
enable_zcopy_impl_opts = g_spdk_posix_sock_impl_opts.enable_zerocopy_send_server &&
g_spdk_posix_sock_impl_opts.enable_zerocopy_send;
} else if (type == SPDK_SOCK_CREATE_CONNECT) {
rc = connect(fd, res->ai_addr, res->ai_addrlen);
if (rc != 0) {
SPDK_ERRLOG("connect() failed, errno = %d\n", errno);
/* try next family */
close(fd);
fd = -1;
continue;
}
enable_zcopy_impl_opts = g_spdk_posix_sock_impl_opts.enable_zerocopy_send_client &&
g_spdk_posix_sock_impl_opts.enable_zerocopy_send;
}
flag = fcntl(fd, F_GETFL);
if (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno);
close(fd);
fd = -1;
break;
}
break;
}
freeaddrinfo(res0);
if (fd < 0) {
return NULL;
}
/* Only enable zero copy for non-loopback sockets. */
enable_zcopy_user_opts = opts->zcopy && !sock_is_loopback(fd);
sock = posix_sock_alloc(fd, enable_zcopy_user_opts && enable_zcopy_impl_opts);
if (sock == NULL) {
SPDK_ERRLOG("sock allocation failed\n");
close(fd);
return NULL;
}
return &sock->base;
}
static struct spdk_sock *
posix_sock_listen(const char *ip, int port, struct spdk_sock_opts *opts)
{
return posix_sock_create(ip, port, SPDK_SOCK_CREATE_LISTEN, opts);
}
static struct spdk_sock *
posix_sock_connect(const char *ip, int port, struct spdk_sock_opts *opts)
{
return posix_sock_create(ip, port, SPDK_SOCK_CREATE_CONNECT, opts);
}
static struct spdk_sock *
posix_sock_accept(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc, fd;
struct spdk_posix_sock *new_sock;
int flag;
memset(&sa, 0, sizeof(sa));
salen = sizeof(sa);
assert(sock != NULL);
rc = accept(sock->fd, (struct sockaddr *)&sa, &salen);
if (rc == -1) {
return NULL;
}
fd = rc;
flag = fcntl(fd, F_GETFL);
if ((!(flag & O_NONBLOCK)) && (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0)) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno);
close(fd);
return NULL;
}
#if defined(SO_PRIORITY)
/* The priority is not inherited, so call this function again */
if (sock->base.opts.priority) {
rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &sock->base.opts.priority, sizeof(int));
if (rc != 0) {
close(fd);
return NULL;
}
}
#endif
/* Inherit the zero copy feature from the listen socket */
new_sock = posix_sock_alloc(fd, sock->zcopy);
if (new_sock == NULL) {
close(fd);
return NULL;
}
return &new_sock->base;
}
static int
posix_sock_close(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
assert(TAILQ_EMPTY(&_sock->pending_reqs));
/* If the socket fails to close, the best choice is to
* leak the fd but continue to free the rest of the sock
* memory. */
close(sock->fd);
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
free(sock);
return 0;
}
#ifdef SPDK_ZEROCOPY
static int
_sock_check_zcopy(struct spdk_sock *sock)
{
struct spdk_posix_sock *psock = __posix_sock(sock);
struct msghdr msgh = {};
uint8_t buf[sizeof(struct cmsghdr) + sizeof(struct sock_extended_err)];
ssize_t rc;
struct sock_extended_err *serr;
struct cmsghdr *cm;
uint32_t idx;
struct spdk_sock_request *req, *treq;
bool found;
msgh.msg_control = buf;
msgh.msg_controllen = sizeof(buf);
while (true) {
rc = recvmsg(psock->fd, &msgh, MSG_ERRQUEUE);
if (rc < 0) {
if (errno == EWOULDBLOCK || errno == EAGAIN) {
return 0;
}
if (!TAILQ_EMPTY(&sock->pending_reqs)) {
SPDK_ERRLOG("Attempting to receive from ERRQUEUE yielded error, but pending list still has orphaned entries\n");
} else {
SPDK_WARNLOG("Recvmsg yielded an error!\n");
}
return 0;
}
cm = CMSG_FIRSTHDR(&msgh);
if (!cm || cm->cmsg_level != SOL_IP || cm->cmsg_type != IP_RECVERR) {
SPDK_WARNLOG("Unexpected cmsg level or type!\n");
return 0;
}
serr = (struct sock_extended_err *)CMSG_DATA(cm);
if (serr->ee_errno != 0 || serr->ee_origin != SO_EE_ORIGIN_ZEROCOPY) {
SPDK_WARNLOG("Unexpected extended error origin\n");
return 0;
}
/* Most of the time, the pending_reqs array is in the exact
* order we need such that all of the requests to complete are
* in order, in the front. It is guaranteed that all requests
* belonging to the same sendmsg call are sequential, so once
* we encounter one match we can stop looping as soon as a
* non-match is found.
*/
for (idx = serr->ee_info; idx <= serr->ee_data; idx++) {
found = false;
TAILQ_FOREACH_SAFE(req, &sock->pending_reqs, internal.link, treq) {
if (req->internal.offset == idx) {
found = true;
rc = spdk_sock_request_put(sock, req, 0);
if (rc < 0) {
return rc;
}
} else if (found) {
break;
}
}
}
}
return 0;
}
#endif
static int
_sock_flush(struct spdk_sock *sock)
{
struct spdk_posix_sock *psock = __posix_sock(sock);
struct msghdr msg = {};
int flags;
struct iovec iovs[IOV_BATCH_SIZE];
int iovcnt;
int retval;
struct spdk_sock_request *req;
int i;
ssize_t rc;
unsigned int offset;
size_t len;
/* Can't flush from within a callback or we end up with recursive calls */
if (sock->cb_cnt > 0) {
return 0;
}
iovcnt = spdk_sock_prep_reqs(sock, iovs, 0, NULL);
if (iovcnt == 0) {
return 0;
}
/* Perform the vectored write */
msg.msg_iov = iovs;
msg.msg_iovlen = iovcnt;
#ifdef SPDK_ZEROCOPY
if (psock->zcopy) {
flags = MSG_ZEROCOPY;
} else
#endif
{
flags = 0;
}
rc = sendmsg(psock->fd, &msg, flags);
if (rc <= 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK || (errno == ENOBUFS && psock->zcopy)) {
return 0;
}
return rc;
}
/* Handling overflow case, because we use psock->sendmsg_idx - 1 for the
* req->internal.offset, so sendmsg_idx should not be zero */
if (spdk_unlikely(psock->sendmsg_idx == UINT32_MAX)) {
psock->sendmsg_idx = 1;
} else {
psock->sendmsg_idx++;
}
/* Consume the requests that were actually written */
req = TAILQ_FIRST(&sock->queued_reqs);
while (req) {
offset = req->internal.offset;
for (i = 0; i < req->iovcnt; i++) {
/* Advance by the offset first */
if (offset >= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len) {
offset -= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len;
continue;
}
/* Calculate the remaining length of this element */
len = SPDK_SOCK_REQUEST_IOV(req, i)->iov_len - offset;
if (len > (size_t)rc) {
/* This element was partially sent. */
req->internal.offset += rc;
return 0;
}
offset = 0;
req->internal.offset += len;
rc -= len;
}
/* Handled a full request. */
spdk_sock_request_pend(sock, req);
if (!psock->zcopy) {
/* The sendmsg syscall above isn't currently asynchronous,
* so it's already done. */
retval = spdk_sock_request_put(sock, req, 0);
if (retval) {
break;
}
} else {
/* Re-use the offset field to hold the sendmsg call index. The
* index is 0 based, so subtract one here because we've already
* incremented above. */
req->internal.offset = psock->sendmsg_idx - 1;
}
if (rc == 0) {
break;
}
req = TAILQ_FIRST(&sock->queued_reqs);
}
return 0;
}
static int
posix_sock_flush(struct spdk_sock *sock)
{
#ifdef SPDK_ZEROCOPY
struct spdk_posix_sock *psock = __posix_sock(sock);
if (psock->zcopy && !TAILQ_EMPTY(&sock->pending_reqs)) {
_sock_check_zcopy(sock);
}
#endif
return _sock_flush(sock);
}
static ssize_t
posix_sock_recv_from_pipe(struct spdk_posix_sock *sock, struct iovec *diov, int diovcnt)
{
struct iovec siov[2];
int sbytes;
ssize_t bytes;
struct spdk_posix_sock_group_impl *group;
sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov);
if (sbytes < 0) {
errno = EINVAL;
return -1;
} else if (sbytes == 0) {
errno = EAGAIN;
return -1;
}
bytes = spdk_iovcpy(siov, 2, diov, diovcnt);
if (bytes == 0) {
/* The only way this happens is if diov is 0 length */
errno = EINVAL;
return -1;
}
spdk_pipe_reader_advance(sock->recv_pipe, bytes);
/* If we drained the pipe, take it off the pending_events list. The socket may still have data buffered
* in the kernel to receive, but this will be handled on the next poll call when we get the same EPOLLIN
* event again. */
if (sock->base.group_impl && spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) {
group = __posix_group_impl(sock->base.group_impl);
TAILQ_REMOVE(&group->pending_events, sock, link);
sock->pending_events = false;
}
return bytes;
}
static inline ssize_t
posix_sock_read(struct spdk_posix_sock *sock)
{
struct iovec iov[2];
int bytes;
struct spdk_posix_sock_group_impl *group;
bytes = spdk_pipe_writer_get_buffer(sock->recv_pipe, sock->recv_buf_sz, iov);
if (bytes > 0) {
bytes = readv(sock->fd, iov, 2);
if (bytes > 0) {
spdk_pipe_writer_advance(sock->recv_pipe, bytes);
/* For normal operation, this function is called in response to an EPOLLIN
* event, which already placed the socket onto the pending_events list.
* But between polls the user may repeatedly call posix_sock_read
* and if they clear the pipe on one of those earlier calls, the
* socket will be removed from the pending_events list. In that case,
* if we now found more data, put it back on.
* This essentially never happens in practice because the application
* will stop trying to receive and wait for the next EPOLLIN event, but
* for correctness let's handle it. */
if (!sock->pending_events && sock->base.group_impl) {
group = __posix_group_impl(sock->base.group_impl);
TAILQ_INSERT_TAIL(&group->pending_events, sock, link);
sock->pending_events = true;
}
}
}
return bytes;
}
static ssize_t
posix_sock_readv(struct spdk_sock *_sock, struct iovec *iov, int iovcnt)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct spdk_posix_sock_group_impl *group = __posix_group_impl(sock->base.group_impl);
int rc, i;
size_t len;
if (sock->recv_pipe == NULL) {
if (group && sock->pending_events) {
sock->pending_events = false;
TAILQ_REMOVE(&group->pending_events, sock, link);
}
return readv(sock->fd, iov, iovcnt);
}
len = 0;
for (i = 0; i < iovcnt; i++) {
len += iov[i].iov_len;
}
if (spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) {
/* If the user is receiving a sufficiently large amount of data,
* receive directly to their buffers. */
if (len >= MIN_SOCK_PIPE_SIZE) {
if (group && sock->pending_events) {
sock->pending_events = false;
TAILQ_REMOVE(&group->pending_events, sock, link);
}
return readv(sock->fd, iov, iovcnt);
}
/* Otherwise, do a big read into our pipe */
rc = posix_sock_read(sock);
if (rc <= 0) {
return rc;
}
}
return posix_sock_recv_from_pipe(sock, iov, iovcnt);
}
static ssize_t
posix_sock_recv(struct spdk_sock *sock, void *buf, size_t len)
{
struct iovec iov[1];
iov[0].iov_base = buf;
iov[0].iov_len = len;
return posix_sock_readv(sock, iov, 1);
}
static ssize_t
posix_sock_writev(struct spdk_sock *_sock, struct iovec *iov, int iovcnt)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
int rc;
/* In order to process a writev, we need to flush any asynchronous writes
* first. */
rc = _sock_flush(_sock);
if (rc < 0) {
return rc;
}
if (!TAILQ_EMPTY(&_sock->queued_reqs)) {
/* We weren't able to flush all requests */
errno = EAGAIN;
return -1;
}
return writev(sock->fd, iov, iovcnt);
}
static void
posix_sock_writev_async(struct spdk_sock *sock, struct spdk_sock_request *req)
{
int rc;
spdk_sock_request_queue(sock, req);
/* If there are a sufficient number queued, just flush them out immediately. */
if (sock->queued_iovcnt >= IOV_BATCH_SIZE) {
rc = _sock_flush(sock);
if (rc) {
spdk_sock_abort_requests(sock);
}
}
}
static int
posix_sock_set_recvlowat(struct spdk_sock *_sock, int nbytes)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
int val;
int rc;
assert(sock != NULL);
val = nbytes;
rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVLOWAT, &val, sizeof val);
if (rc != 0) {
return -1;
}
return 0;
}
static bool
posix_sock_is_ipv6(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return false;
}
return (sa.ss_family == AF_INET6);
}
static bool
posix_sock_is_ipv4(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return false;
}
return (sa.ss_family == AF_INET);
}
static bool
posix_sock_is_connected(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
uint8_t byte;
int rc;
rc = recv(sock->fd, &byte, 1, MSG_PEEK);
if (rc == 0) {
return false;
}
if (rc < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return true;
}
return false;
}
return true;
}
static struct spdk_sock_group_impl *
posix_sock_group_impl_get_optimal(struct spdk_sock *_sock)
{
struct spdk_posix_sock *sock = __posix_sock(_sock);
struct spdk_sock_group_impl *group_impl;
if (sock->placement_id != -1) {
spdk_sock_map_lookup(&g_map, sock->placement_id, &group_impl);
return group_impl;
}
return NULL;
}
static struct spdk_sock_group_impl *
posix_sock_group_impl_create(void)
{
struct spdk_posix_sock_group_impl *group_impl;
int fd;
#if defined(SPDK_EPOLL)
fd = epoll_create1(0);
#elif defined(SPDK_KEVENT)
fd = kqueue();
#endif
if (fd == -1) {
return NULL;
}
group_impl = calloc(1, sizeof(*group_impl));
if (group_impl == NULL) {
SPDK_ERRLOG("group_impl allocation failed\n");
close(fd);
return NULL;
}
group_impl->fd = fd;
TAILQ_INIT(&group_impl->pending_events);
group_impl->placement_id = -1;
if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_CPU) {
spdk_sock_map_insert(&g_map, spdk_env_get_current_core(), &group_impl->base);
group_impl->placement_id = spdk_env_get_current_core();
}
return &group_impl->base;
}
static void
posix_sock_mark(struct spdk_posix_sock_group_impl *group, struct spdk_posix_sock *sock,
int placement_id)
{
#if defined(SO_MARK)
int rc;
rc = setsockopt(sock->fd, SOL_SOCKET, SO_MARK,
&placement_id, sizeof(placement_id));
if (rc != 0) {
/* Not fatal */
SPDK_ERRLOG("Error setting SO_MARK\n");
return;
}
rc = spdk_sock_map_insert(&g_map, placement_id, &group->base);
if (rc != 0) {
/* Not fatal */
SPDK_ERRLOG("Failed to insert sock group into map: %d\n", rc);
return;
}
sock->placement_id = placement_id;
#endif
}
static void
posix_sock_update_mark(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock)
{
struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group);
if (group->placement_id == -1) {
group->placement_id = spdk_sock_map_find_free(&g_map);
/* If a free placement id is found, update existing sockets in this group */
if (group->placement_id != -1) {
struct spdk_sock *sock, *tmp;
TAILQ_FOREACH_SAFE(sock, &_group->socks, link, tmp) {
posix_sock_mark(group, __posix_sock(sock), group->placement_id);
}
}
}
if (group->placement_id != -1) {
/*
* group placement id is already determined for this poll group.
* Mark socket with group's placement id.
*/
posix_sock_mark(group, __posix_sock(_sock), group->placement_id);
}
}
static int
posix_sock_group_impl_add_sock(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock)
{
struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group);
struct spdk_posix_sock *sock = __posix_sock(_sock);
int rc;
#if defined(SPDK_EPOLL)
struct epoll_event event;
memset(&event, 0, sizeof(event));
/* EPOLLERR is always on even if we don't set it, but be explicit for clarity */
event.events = EPOLLIN | EPOLLERR;
event.data.ptr = sock;
rc = epoll_ctl(group->fd, EPOLL_CTL_ADD, sock->fd, &event);
#elif defined(SPDK_KEVENT)
struct kevent event;
struct timespec ts = {0};
EV_SET(&event, sock->fd, EVFILT_READ, EV_ADD, 0, 0, sock);
rc = kevent(group->fd, &event, 1, NULL, 0, &ts);
#endif
if (rc != 0) {
return rc;
}
/* switched from another polling group due to scheduling */
if (spdk_unlikely(sock->recv_pipe != NULL &&
(spdk_pipe_reader_bytes_available(sock->recv_pipe) > 0))) {
assert(sock->pending_events == false);
sock->pending_events = true;
TAILQ_INSERT_TAIL(&group->pending_events, sock, link);
}
if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_MARK) {
posix_sock_update_mark(_group, _sock);
} else if (sock->placement_id != -1) {
rc = spdk_sock_map_insert(&g_map, sock->placement_id, &group->base);
if (rc != 0) {
SPDK_ERRLOG("Failed to insert sock group into map: %d\n", rc);
/* Do not treat this as an error. The system will continue running. */
}
}
return rc;
}
static int
posix_sock_group_impl_remove_sock(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock)
{
struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group);
struct spdk_posix_sock *sock = __posix_sock(_sock);
int rc;
if (sock->pending_events) {
TAILQ_REMOVE(&group->pending_events, sock, link);
sock->pending_events = false;
}
if (sock->placement_id != -1) {
spdk_sock_map_release(&g_map, sock->placement_id);
}
#if defined(SPDK_EPOLL)
struct epoll_event event;
/* Event parameter is ignored but some old kernel version still require it. */
rc = epoll_ctl(group->fd, EPOLL_CTL_DEL, sock->fd, &event);
#elif defined(SPDK_KEVENT)
struct kevent event;
struct timespec ts = {0};
EV_SET(&event, sock->fd, EVFILT_READ, EV_DELETE, 0, 0, NULL);
rc = kevent(group->fd, &event, 1, NULL, 0, &ts);
if (rc == 0 && event.flags & EV_ERROR) {
rc = -1;
errno = event.data;
}
#endif
spdk_sock_abort_requests(_sock);
return rc;
}
static int
posix_sock_group_impl_poll(struct spdk_sock_group_impl *_group, int max_events,
struct spdk_sock **socks)
{
struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group);
struct spdk_sock *sock, *tmp;
int num_events, i, rc;
struct spdk_posix_sock *psock, *ptmp;
#if defined(SPDK_EPOLL)
struct epoll_event events[MAX_EVENTS_PER_POLL];
#elif defined(SPDK_KEVENT)
struct kevent events[MAX_EVENTS_PER_POLL];
struct timespec ts = {0};
#endif
#ifdef SPDK_ZEROCOPY
/* When all of the following conditions are met
* - non-blocking socket
* - zero copy is enabled
* - interrupts suppressed (i.e. busy polling)
* - the NIC tx queue is full at the time sendmsg() is called
* - epoll_wait determines there is an EPOLLIN event for the socket
* then we can get into a situation where data we've sent is queued
* up in the kernel network stack, but interrupts have been suppressed
* because other traffic is flowing so the kernel misses the signal
* to flush the software tx queue. If there wasn't incoming data
* pending on the socket, then epoll_wait would have been sufficient
* to kick off the send operation, but since there is a pending event
* epoll_wait does not trigger the necessary operation.
*
* We deal with this by checking for all of the above conditions and
* additionally looking for EPOLLIN events that were not consumed from
* the last poll loop. We take this to mean that the upper layer is
* unable to consume them because it is blocked waiting for resources
* to free up, and those resources are most likely freed in response
* to a pending asynchronous write completing.
*
* Additionally, sockets that have the same placement_id actually share
* an underlying hardware queue. That means polling one of them is
* equivalent to polling all of them. As a quick mechanism to avoid
* making extra poll() calls, stash the last placement_id during the loop
* and only poll if it's not the same. The overwhelmingly common case
* is that all sockets in this list have the same placement_id because
* SPDK is intentionally grouping sockets by that value, so even
* though this won't stop all extra calls to poll(), it's very fast
* and will catch all of them in practice.
*/
int last_placement_id = -1;
TAILQ_FOREACH(psock, &group->pending_events, link) {
if (psock->zcopy && psock->placement_id >= 0 &&
psock->placement_id != last_placement_id) {
struct pollfd pfd = {psock->fd, POLLIN | POLLERR, 0};
poll(&pfd, 1, 0);
last_placement_id = psock->placement_id;
}
}
#endif
/* This must be a TAILQ_FOREACH_SAFE because while flushing,
* a completion callback could remove the sock from the
* group. */
TAILQ_FOREACH_SAFE(sock, &_group->socks, link, tmp) {
rc = _sock_flush(sock);
if (rc) {
spdk_sock_abort_requests(sock);
}
}
assert(max_events > 0);
#if defined(SPDK_EPOLL)
num_events = epoll_wait(group->fd, events, max_events, 0);
#elif defined(SPDK_KEVENT)
num_events = kevent(group->fd, NULL, 0, events, max_events, &ts);
#endif
if (num_events == -1) {
return -1;
} else if (num_events == 0 && !TAILQ_EMPTY(&_group->socks)) {
sock = TAILQ_FIRST(&_group->socks);
psock = __posix_sock(sock);
/* poll() is called here to busy poll the queue associated with
* first socket in list and potentially reap incoming data.
*/
if (sock->opts.priority) {
struct pollfd pfd = {0, 0, 0};
pfd.fd = psock->fd;
pfd.events = POLLIN | POLLERR;
poll(&pfd, 1, 0);
}
}
for (i = 0; i < num_events; i++) {
#if defined(SPDK_EPOLL)
sock = events[i].data.ptr;
psock = __posix_sock(sock);
#ifdef SPDK_ZEROCOPY
if (events[i].events & EPOLLERR) {
rc = _sock_check_zcopy(sock);
/* If the socket was closed or removed from
* the group in response to a send ack, don't
* add it to the array here. */
if (rc || sock->cb_fn == NULL) {
continue;
}
}
#endif
if ((events[i].events & EPOLLIN) == 0) {
continue;
}
#elif defined(SPDK_KEVENT)
sock = events[i].udata;
psock = __posix_sock(sock);
#endif
/* If the socket does not already have recv pending, add it now */
if (!psock->pending_events) {
psock->pending_events = true;
TAILQ_INSERT_TAIL(&group->pending_events, psock, link);
}
}
num_events = 0;
TAILQ_FOREACH_SAFE(psock, &group->pending_events, link, ptmp) {
if (num_events == max_events) {
break;
}
/* If the socket's cb_fn is NULL, just remove it from the
* list and do not add it to socks array */
if (spdk_unlikely(psock->base.cb_fn == NULL)) {
psock->pending_events = false;
TAILQ_REMOVE(&group->pending_events, psock, link);
continue;
}
socks[num_events++] = &psock->base;
}
/* Cycle the pending_events list so that each time we poll things aren't
* in the same order. Say we have 6 sockets in the list, named as follows:
* A B C D E F
* And all 6 sockets had epoll events, but max_events is only 3. That means
* psock currently points at D. We want to rearrange the list to the following:
* D E F A B C
*
* The variables below are named according to this example to make it easier to
* follow the swaps.
*/
if (psock != NULL) {
struct spdk_posix_sock *pa, *pc, *pd, *pf;
/* Capture pointers to the elements we need */
pd = psock;
pc = TAILQ_PREV(pd, spdk_pending_events_list, link);
pa = TAILQ_FIRST(&group->pending_events);
pf = TAILQ_LAST(&group->pending_events, spdk_pending_events_list);
/* Break the link between C and D */
pc->link.tqe_next = NULL;
pd->link.tqe_prev = NULL;
/* Connect F to A */
pf->link.tqe_next = pa;
pa->link.tqe_prev = &pf->link.tqe_next;
/* Fix up the list first/last pointers */
group->pending_events.tqh_first = pd;
group->pending_events.tqh_last = &pc->link.tqe_next;
}
return num_events;
}
static int
posix_sock_group_impl_close(struct spdk_sock_group_impl *_group)
{
struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group);
int rc;
if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_CPU) {
spdk_sock_map_release(&g_map, spdk_env_get_current_core());
}
rc = close(group->fd);
free(group);
return rc;
}
static int
posix_sock_impl_get_opts(struct spdk_sock_impl_opts *opts, size_t *len)
{
if (!opts || !len) {
errno = EINVAL;
return -1;
}
memset(opts, 0, *len);
#define FIELD_OK(field) \
offsetof(struct spdk_sock_impl_opts, field) + sizeof(opts->field) <= *len
#define GET_FIELD(field) \
if (FIELD_OK(field)) { \
opts->field = g_spdk_posix_sock_impl_opts.field; \
}
GET_FIELD(recv_buf_size);
GET_FIELD(send_buf_size);
GET_FIELD(enable_recv_pipe);
GET_FIELD(enable_zerocopy_send);
GET_FIELD(enable_quickack);
GET_FIELD(enable_placement_id);
GET_FIELD(enable_zerocopy_send_server);
GET_FIELD(enable_zerocopy_send_client);
#undef GET_FIELD
#undef FIELD_OK
*len = spdk_min(*len, sizeof(g_spdk_posix_sock_impl_opts));
return 0;
}
static int
posix_sock_impl_set_opts(const struct spdk_sock_impl_opts *opts, size_t len)
{
if (!opts) {
errno = EINVAL;
return -1;
}
#define FIELD_OK(field) \
offsetof(struct spdk_sock_impl_opts, field) + sizeof(opts->field) <= len
#define SET_FIELD(field) \
if (FIELD_OK(field)) { \
g_spdk_posix_sock_impl_opts.field = opts->field; \
}
SET_FIELD(recv_buf_size);
SET_FIELD(send_buf_size);
SET_FIELD(enable_recv_pipe);
SET_FIELD(enable_zerocopy_send);
SET_FIELD(enable_quickack);
SET_FIELD(enable_placement_id);
SET_FIELD(enable_zerocopy_send_server);
SET_FIELD(enable_zerocopy_send_client);
#undef SET_FIELD
#undef FIELD_OK
return 0;
}
static struct spdk_net_impl g_posix_net_impl = {
.name = "posix",
.getaddr = posix_sock_getaddr,
.connect = posix_sock_connect,
.listen = posix_sock_listen,
.accept = posix_sock_accept,
.close = posix_sock_close,
.recv = posix_sock_recv,
.readv = posix_sock_readv,
.writev = posix_sock_writev,
.writev_async = posix_sock_writev_async,
.flush = posix_sock_flush,
.set_recvlowat = posix_sock_set_recvlowat,
.set_recvbuf = posix_sock_set_recvbuf,
.set_sendbuf = posix_sock_set_sendbuf,
.is_ipv6 = posix_sock_is_ipv6,
.is_ipv4 = posix_sock_is_ipv4,
.is_connected = posix_sock_is_connected,
.group_impl_get_optimal = posix_sock_group_impl_get_optimal,
.group_impl_create = posix_sock_group_impl_create,
.group_impl_add_sock = posix_sock_group_impl_add_sock,
.group_impl_remove_sock = posix_sock_group_impl_remove_sock,
.group_impl_poll = posix_sock_group_impl_poll,
.group_impl_close = posix_sock_group_impl_close,
.get_opts = posix_sock_impl_get_opts,
.set_opts = posix_sock_impl_set_opts,
};
SPDK_NET_IMPL_REGISTER(posix, &g_posix_net_impl, DEFAULT_SOCK_PRIORITY);