numam-spdk/lib/nvme/nvme_tcp.c
Josh Soref cc6920a476 spelling: lib
Part of #2256

* accessible
* activation
* additional
* allocate
* association
* attempt
* barrier
* broadcast
* buffer
* calculate
* cases
* channel
* children
* command
* completion
* connect
* copied
* currently
* descriptor
* destroy
* detachment
* doesn't
* enqueueing
* exceeds
* execution
* extended
* fallback
* finalize
* first
* handling
* hugepages
* ignored
* implementation
* in_capsule
* initialization
* initialized
* initializing
* initiator
* negotiated
* notification
* occurred
* original
* outstanding
* partially
* partition
* processing
* receive
* received
* receiving
* redirected
* regions
* request
* requested
* response
* retrieved
* running
* satisfied
* should
* snapshot
* status
* succeeds
* successfully
* supplied
* those
* transferred
* translate
* triggering
* unregister
* unsupported
* urlsafe
* virtqueue
* volumes
* workaround
* zeroed

Change-Id: I569218754bd9d332ba517d4a61ad23d29eedfd0c
Signed-off-by: Josh Soref <jsoref@gmail.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10405
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2021-12-03 08:12:55 +00:00

2429 lines
70 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe/TCP transport
*/
#include "nvme_internal.h"
#include "spdk/endian.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "spdk/stdinc.h"
#include "spdk/crc32.h"
#include "spdk/endian.h"
#include "spdk/assert.h"
#include "spdk/string.h"
#include "spdk/thread.h"
#include "spdk/trace.h"
#include "spdk/util.h"
#include "spdk_internal/nvme_tcp.h"
#define NVME_TCP_RW_BUFFER_SIZE 131072
#define NVME_TCP_TIME_OUT_IN_SECONDS 2
#define NVME_TCP_HPDA_DEFAULT 0
#define NVME_TCP_MAX_R2T_DEFAULT 1
#define NVME_TCP_PDU_H2C_MIN_DATA_SIZE 4096
/* NVMe TCP transport extensions for spdk_nvme_ctrlr */
struct nvme_tcp_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
};
struct nvme_tcp_poll_group {
struct spdk_nvme_transport_poll_group group;
struct spdk_sock_group *sock_group;
uint32_t completions_per_qpair;
int64_t num_completions;
TAILQ_HEAD(, nvme_tcp_qpair) needs_poll;
struct spdk_nvme_tcp_stat stats;
};
/* NVMe TCP qpair extensions for spdk_nvme_qpair */
struct nvme_tcp_qpair {
struct spdk_nvme_qpair qpair;
struct spdk_sock *sock;
TAILQ_HEAD(, nvme_tcp_req) free_reqs;
TAILQ_HEAD(, nvme_tcp_req) outstanding_reqs;
TAILQ_HEAD(, nvme_tcp_pdu) send_queue;
struct nvme_tcp_pdu *recv_pdu;
struct nvme_tcp_pdu *send_pdu; /* only for error pdu and init pdu */
struct nvme_tcp_pdu *send_pdus; /* Used by tcp_reqs */
enum nvme_tcp_pdu_recv_state recv_state;
struct nvme_tcp_req *tcp_reqs;
struct spdk_nvme_tcp_stat *stats;
uint16_t num_entries;
uint16_t async_complete;
struct {
uint16_t host_hdgst_enable: 1;
uint16_t host_ddgst_enable: 1;
uint16_t icreq_send_ack: 1;
uint16_t in_connect_poll: 1;
uint16_t reserved: 12;
} flags;
/** Specifies the maximum number of PDU-Data bytes per H2C Data Transfer PDU */
uint32_t maxh2cdata;
uint32_t maxr2t;
/* 0 based value, which is used to guide the padding */
uint8_t cpda;
enum nvme_tcp_qpair_state state;
TAILQ_ENTRY(nvme_tcp_qpair) link;
bool needs_poll;
uint64_t icreq_timeout_tsc;
};
enum nvme_tcp_req_state {
NVME_TCP_REQ_FREE,
NVME_TCP_REQ_ACTIVE,
NVME_TCP_REQ_ACTIVE_R2T,
};
struct nvme_tcp_req {
struct nvme_request *req;
enum nvme_tcp_req_state state;
uint16_t cid;
uint16_t ttag;
uint32_t datao;
uint32_t expected_datao;
uint32_t r2tl_remain;
uint32_t active_r2ts;
/* Used to hold a value received from subsequent R2T while we are still
* waiting for H2C complete */
uint16_t ttag_r2t_next;
bool in_capsule_data;
bool pdu_in_use;
/* It is used to track whether the req can be safely freed */
union {
uint8_t raw;
struct {
/* The last send operation completed - kernel released send buffer */
uint8_t send_ack : 1;
/* Data transfer completed - target send resp or last data bit */
uint8_t data_recv : 1;
/* tcp_req is waiting for completion of the previous send operation (buffer reclaim notification
* from kernel) to send H2C */
uint8_t h2c_send_waiting_ack : 1;
/* tcp_req received subsequent r2t while it is still waiting for send_ack.
* Rare case, actual when dealing with target that can send several R2T requests.
* SPDK TCP target sends 1 R2T for the whole data buffer */
uint8_t r2t_waiting_h2c_complete : 1;
uint8_t reserved : 4;
} bits;
} ordering;
struct nvme_tcp_pdu *pdu;
struct iovec iov[NVME_TCP_MAX_SGL_DESCRIPTORS];
uint32_t iovcnt;
/* Used to hold a value received from subsequent R2T while we are still
* waiting for H2C ack */
uint32_t r2tl_remain_next;
struct nvme_tcp_qpair *tqpair;
TAILQ_ENTRY(nvme_tcp_req) link;
struct spdk_nvme_cpl rsp;
};
static void nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req);
static int64_t nvme_tcp_poll_group_process_completions(struct spdk_nvme_transport_poll_group
*tgroup, uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb);
static void nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu);
static inline struct nvme_tcp_qpair *
nvme_tcp_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_TCP);
return SPDK_CONTAINEROF(qpair, struct nvme_tcp_qpair, qpair);
}
static inline struct nvme_tcp_poll_group *
nvme_tcp_poll_group(struct spdk_nvme_transport_poll_group *group)
{
return SPDK_CONTAINEROF(group, struct nvme_tcp_poll_group, group);
}
static inline struct nvme_tcp_ctrlr *
nvme_tcp_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP);
return SPDK_CONTAINEROF(ctrlr, struct nvme_tcp_ctrlr, ctrlr);
}
static struct nvme_tcp_req *
nvme_tcp_req_get(struct nvme_tcp_qpair *tqpair)
{
struct nvme_tcp_req *tcp_req;
tcp_req = TAILQ_FIRST(&tqpair->free_reqs);
if (!tcp_req) {
return NULL;
}
assert(tcp_req->state == NVME_TCP_REQ_FREE);
tcp_req->state = NVME_TCP_REQ_ACTIVE;
TAILQ_REMOVE(&tqpair->free_reqs, tcp_req, link);
tcp_req->datao = 0;
tcp_req->expected_datao = 0;
tcp_req->req = NULL;
tcp_req->in_capsule_data = false;
tcp_req->pdu_in_use = false;
tcp_req->r2tl_remain = 0;
tcp_req->r2tl_remain_next = 0;
tcp_req->active_r2ts = 0;
tcp_req->iovcnt = 0;
tcp_req->ordering.raw = 0;
memset(tcp_req->pdu, 0, sizeof(struct nvme_tcp_pdu));
memset(&tcp_req->rsp, 0, sizeof(struct spdk_nvme_cpl));
TAILQ_INSERT_TAIL(&tqpair->outstanding_reqs, tcp_req, link);
return tcp_req;
}
static void
nvme_tcp_req_put(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
assert(tcp_req->state != NVME_TCP_REQ_FREE);
tcp_req->state = NVME_TCP_REQ_FREE;
TAILQ_INSERT_HEAD(&tqpair->free_reqs, tcp_req, link);
}
static int
nvme_tcp_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = -EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static void
nvme_tcp_free_reqs(struct nvme_tcp_qpair *tqpair)
{
free(tqpair->tcp_reqs);
tqpair->tcp_reqs = NULL;
spdk_free(tqpair->send_pdus);
tqpair->send_pdus = NULL;
}
static int
nvme_tcp_alloc_reqs(struct nvme_tcp_qpair *tqpair)
{
uint16_t i;
struct nvme_tcp_req *tcp_req;
tqpair->tcp_reqs = calloc(tqpair->num_entries, sizeof(struct nvme_tcp_req));
if (tqpair->tcp_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate tcp_reqs on tqpair=%p\n", tqpair);
goto fail;
}
/* Add additional 2 member for the send_pdu, recv_pdu owned by the tqpair */
tqpair->send_pdus = spdk_zmalloc((tqpair->num_entries + 2) * sizeof(struct nvme_tcp_pdu),
0x1000, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (tqpair->send_pdus == NULL) {
SPDK_ERRLOG("Failed to allocate send_pdus on tqpair=%p\n", tqpair);
goto fail;
}
TAILQ_INIT(&tqpair->send_queue);
TAILQ_INIT(&tqpair->free_reqs);
TAILQ_INIT(&tqpair->outstanding_reqs);
for (i = 0; i < tqpair->num_entries; i++) {
tcp_req = &tqpair->tcp_reqs[i];
tcp_req->cid = i;
tcp_req->tqpair = tqpair;
tcp_req->pdu = &tqpair->send_pdus[i];
TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link);
}
tqpair->send_pdu = &tqpair->send_pdus[i];
tqpair->recv_pdu = &tqpair->send_pdus[i + 1];
return 0;
fail:
nvme_tcp_free_reqs(tqpair);
return -ENOMEM;
}
static void
nvme_tcp_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct nvme_tcp_pdu *pdu;
int rc;
struct nvme_tcp_poll_group *group;
if (tqpair->needs_poll) {
group = nvme_tcp_poll_group(qpair->poll_group);
TAILQ_REMOVE(&group->needs_poll, tqpair, link);
tqpair->needs_poll = false;
}
rc = spdk_sock_close(&tqpair->sock);
if (tqpair->sock != NULL) {
SPDK_ERRLOG("tqpair=%p, errno=%d, rc=%d\n", tqpair, errno, rc);
/* Set it to NULL manually */
tqpair->sock = NULL;
}
/* clear the send_queue */
while (!TAILQ_EMPTY(&tqpair->send_queue)) {
pdu = TAILQ_FIRST(&tqpair->send_queue);
/* Remove the pdu from the send_queue to prevent the wrong sending out
* in the next round connection
*/
TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq);
}
}
static void nvme_tcp_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
static int
nvme_tcp_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair;
assert(qpair != NULL);
nvme_tcp_qpair_abort_reqs(qpair, 1);
nvme_qpair_deinit(qpair);
tqpair = nvme_tcp_qpair(qpair);
nvme_tcp_free_reqs(tqpair);
free(tqpair->stats);
free(tqpair);
return 0;
}
static int
nvme_tcp_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
static int
nvme_tcp_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_tcp_ctrlr *tctrlr = nvme_tcp_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_tcp_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
free(tctrlr);
return 0;
}
static void
_pdu_write_done(void *cb_arg, int err)
{
struct nvme_tcp_pdu *pdu = cb_arg;
struct nvme_tcp_qpair *tqpair = pdu->qpair;
struct nvme_tcp_poll_group *pgroup;
/* If there are queued requests, we assume they are queued because they are waiting
* for resources to be released. Those resources are almost certainly released in
* response to a PDU completing here. However, to attempt to make forward progress
* the qpair needs to be polled and we can't rely on another network event to make
* that happen. Add it to a list of qpairs to poll regardless of network activity
* here. */
if (tqpair->qpair.poll_group && !STAILQ_EMPTY(&tqpair->qpair.queued_req) &&
!tqpair->needs_poll) {
pgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group);
TAILQ_INSERT_TAIL(&pgroup->needs_poll, tqpair, link);
tqpair->needs_poll = true;
}
TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq);
if (err != 0) {
nvme_transport_ctrlr_disconnect_qpair(tqpair->qpair.ctrlr, &tqpair->qpair);
return;
}
assert(pdu->cb_fn != NULL);
pdu->cb_fn(pdu->cb_arg);
}
static void
_tcp_write_pdu(struct nvme_tcp_pdu *pdu)
{
uint32_t mapped_length = 0;
struct nvme_tcp_qpair *tqpair = pdu->qpair;
pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, NVME_TCP_MAX_SGL_DESCRIPTORS, pdu,
(bool)tqpair->flags.host_hdgst_enable, (bool)tqpair->flags.host_ddgst_enable,
&mapped_length);
pdu->sock_req.cb_fn = _pdu_write_done;
pdu->sock_req.cb_arg = pdu;
TAILQ_INSERT_TAIL(&tqpair->send_queue, pdu, tailq);
tqpair->stats->submitted_requests++;
spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
}
static void
data_crc32_accel_done(void *cb_arg, int status)
{
struct nvme_tcp_pdu *pdu = cb_arg;
if (spdk_unlikely(status)) {
SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
_pdu_write_done(pdu, status);
return;
}
pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
_tcp_write_pdu(pdu);
}
static void
pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
{
struct nvme_tcp_qpair *tqpair = pdu->qpair;
uint32_t crc32c;
struct nvme_tcp_poll_group *tgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group);
/* Data Digest */
if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] &&
tqpair->flags.host_ddgst_enable) {
/* Only suport this limited case for the first step */
if ((nvme_qpair_get_state(&tqpair->qpair) >= NVME_QPAIR_CONNECTED) &&
(tgroup != NULL && tgroup->group.group->accel_fn_table.submit_accel_crc32c) &&
spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0))) {
tgroup->group.group->accel_fn_table.submit_accel_crc32c(tgroup->group.group->ctx,
&pdu->data_digest_crc32, pdu->data_iov,
pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
return;
}
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
}
_tcp_write_pdu(pdu);
}
static int
nvme_tcp_qpair_write_pdu(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu,
nvme_tcp_qpair_xfer_complete_cb cb_fn,
void *cb_arg)
{
int hlen;
uint32_t crc32c;
hlen = pdu->hdr.common.hlen;
pdu->cb_fn = cb_fn;
pdu->cb_arg = cb_arg;
pdu->qpair = tqpair;
/* Header Digest */
if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->flags.host_hdgst_enable) {
crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
}
pdu_data_crc32_compute(pdu);
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_tcp_build_contig_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
struct nvme_request *req = tcp_req->req;
tcp_req->iov[0].iov_base = req->payload.contig_or_cb_arg + req->payload_offset;
tcp_req->iov[0].iov_len = req->payload_size;
tcp_req->iovcnt = 1;
SPDK_DEBUGLOG(nvme, "enter\n");
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_tcp_build_sgl_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
int rc;
uint32_t length, remaining_size, iovcnt = 0, max_num_sgl;
struct nvme_request *req = tcp_req->req;
SPDK_DEBUGLOG(nvme, "enter\n");
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
max_num_sgl = spdk_min(req->qpair->ctrlr->max_sges, NVME_TCP_MAX_SGL_DESCRIPTORS);
remaining_size = req->payload_size;
do {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &tcp_req->iov[iovcnt].iov_base,
&length);
if (rc) {
return -1;
}
length = spdk_min(length, remaining_size);
tcp_req->iov[iovcnt].iov_len = length;
remaining_size -= length;
iovcnt++;
} while (remaining_size > 0 && iovcnt < max_num_sgl);
/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
if (remaining_size > 0) {
SPDK_ERRLOG("Failed to construct tcp_req=%p, and the iovcnt=%u, remaining_size=%u\n",
tcp_req, iovcnt, remaining_size);
return -1;
}
tcp_req->iovcnt = iovcnt;
return 0;
}
static int
nvme_tcp_req_init(struct nvme_tcp_qpair *tqpair, struct nvme_request *req,
struct nvme_tcp_req *tcp_req)
{
struct spdk_nvme_ctrlr *ctrlr = tqpair->qpair.ctrlr;
int rc = 0;
enum spdk_nvme_data_transfer xfer;
uint32_t max_in_capsule_data_size;
tcp_req->req = req;
req->cmd.cid = tcp_req->cid;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_TRANSPORT;
req->cmd.dptr.sgl1.unkeyed.length = req->payload_size;
if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_tcp_build_contig_request(tqpair, tcp_req);
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
rc = nvme_tcp_build_sgl_request(tqpair, tcp_req);
} else {
rc = -1;
}
if (rc) {
return rc;
}
if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) {
struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd;
xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype);
} else {
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
}
if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
max_in_capsule_data_size = ctrlr->ioccsz_bytes;
if ((req->cmd.opc == SPDK_NVME_OPC_FABRIC) || nvme_qpair_is_admin_queue(&tqpair->qpair)) {
max_in_capsule_data_size = SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE;
}
if (req->payload_size <= max_in_capsule_data_size) {
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.address = 0;
tcp_req->in_capsule_data = true;
}
}
return 0;
}
static inline bool
nvme_tcp_req_complete_safe(struct nvme_tcp_req *tcp_req)
{
struct spdk_nvme_cpl cpl;
spdk_nvme_cmd_cb user_cb;
void *user_cb_arg;
struct spdk_nvme_qpair *qpair;
struct nvme_request *req;
if (!(tcp_req->ordering.bits.send_ack && tcp_req->ordering.bits.data_recv)) {
return false;
}
assert(tcp_req->state == NVME_TCP_REQ_ACTIVE);
assert(tcp_req->tqpair != NULL);
assert(tcp_req->req != NULL);
SPDK_DEBUGLOG(nvme, "complete tcp_req(%p) on tqpair=%p\n", tcp_req, tcp_req->tqpair);
if (!tcp_req->tqpair->qpair.in_completion_context) {
tcp_req->tqpair->async_complete++;
}
/* Cache arguments to be passed to nvme_complete_request since tcp_req can be zeroed when released */
memcpy(&cpl, &tcp_req->rsp, sizeof(cpl));
user_cb = tcp_req->req->cb_fn;
user_cb_arg = tcp_req->req->cb_arg;
qpair = tcp_req->req->qpair;
req = tcp_req->req;
TAILQ_REMOVE(&tcp_req->tqpair->outstanding_reqs, tcp_req, link);
nvme_tcp_req_put(tcp_req->tqpair, tcp_req);
nvme_free_request(tcp_req->req);
nvme_complete_request(user_cb, user_cb_arg, qpair, req, &cpl);
return true;
}
static void
nvme_tcp_qpair_cmd_send_complete(void *cb_arg)
{
struct nvme_tcp_req *tcp_req = cb_arg;
SPDK_DEBUGLOG(nvme, "tcp req %p, cid %u, qid %u\n", tcp_req, tcp_req->cid,
tcp_req->tqpair->qpair.id);
tcp_req->ordering.bits.send_ack = 1;
/* Handle the r2t case */
if (spdk_unlikely(tcp_req->ordering.bits.h2c_send_waiting_ack)) {
SPDK_DEBUGLOG(nvme, "tcp req %p, send H2C data\n", tcp_req);
nvme_tcp_send_h2c_data(tcp_req);
} else {
nvme_tcp_req_complete_safe(tcp_req);
}
}
static int
nvme_tcp_qpair_capsule_cmd_send(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_req *tcp_req)
{
struct nvme_tcp_pdu *pdu;
struct spdk_nvme_tcp_cmd *capsule_cmd;
uint32_t plen = 0, alignment;
uint8_t pdo;
SPDK_DEBUGLOG(nvme, "enter\n");
pdu = tcp_req->pdu;
capsule_cmd = &pdu->hdr.capsule_cmd;
capsule_cmd->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD;
plen = capsule_cmd->common.hlen = sizeof(*capsule_cmd);
capsule_cmd->ccsqe = tcp_req->req->cmd;
SPDK_DEBUGLOG(nvme, "capsule_cmd cid=%u on tqpair(%p)\n", tcp_req->req->cmd.cid, tqpair);
if (tqpair->flags.host_hdgst_enable) {
SPDK_DEBUGLOG(nvme, "Header digest is enabled for capsule command on tcp_req=%p\n",
tcp_req);
capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
if ((tcp_req->req->payload_size == 0) || !tcp_req->in_capsule_data) {
goto end;
}
pdo = plen;
pdu->padding_len = 0;
if (tqpair->cpda) {
alignment = (tqpair->cpda + 1) << 2;
if (alignment > plen) {
pdu->padding_len = alignment - plen;
pdo = alignment;
plen = alignment;
}
}
capsule_cmd->common.pdo = pdo;
plen += tcp_req->req->payload_size;
if (tqpair->flags.host_ddgst_enable) {
capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
tcp_req->datao = 0;
nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt,
0, tcp_req->req->payload_size);
end:
capsule_cmd->common.plen = plen;
return nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_qpair_cmd_send_complete, tcp_req);
}
static int
nvme_tcp_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_tcp_qpair *tqpair;
struct nvme_tcp_req *tcp_req;
tqpair = nvme_tcp_qpair(qpair);
assert(tqpair != NULL);
assert(req != NULL);
tcp_req = nvme_tcp_req_get(tqpair);
if (!tcp_req) {
tqpair->stats->queued_requests++;
/* Inform the upper layer to try again later. */
return -EAGAIN;
}
if (nvme_tcp_req_init(tqpair, req, tcp_req)) {
SPDK_ERRLOG("nvme_tcp_req_init() failed\n");
TAILQ_REMOVE(&tcp_req->tqpair->outstanding_reqs, tcp_req, link);
nvme_tcp_req_put(tqpair, tcp_req);
return -1;
}
return nvme_tcp_qpair_capsule_cmd_send(tqpair, tcp_req);
}
static int
nvme_tcp_qpair_reset(struct spdk_nvme_qpair *qpair)
{
return 0;
}
static void
nvme_tcp_req_complete(struct nvme_tcp_req *tcp_req,
struct spdk_nvme_cpl *rsp)
{
struct nvme_request *req;
assert(tcp_req->req != NULL);
req = tcp_req->req;
TAILQ_REMOVE(&tcp_req->tqpair->outstanding_reqs, tcp_req, link);
nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp);
nvme_free_request(req);
}
static void
nvme_tcp_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct nvme_tcp_req *tcp_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.dnr = dnr;
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
nvme_tcp_req_complete(tcp_req, &cpl);
nvme_tcp_req_put(tqpair, tcp_req);
}
}
static void
nvme_tcp_qpair_set_recv_state(struct nvme_tcp_qpair *tqpair,
enum nvme_tcp_pdu_recv_state state)
{
if (tqpair->recv_state == state) {
SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
tqpair, state);
return;
}
tqpair->recv_state = state;
switch (state) {
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
case NVME_TCP_PDU_RECV_STATE_ERROR:
memset(tqpair->recv_pdu, 0, sizeof(struct nvme_tcp_pdu));
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
default:
break;
}
}
static void
nvme_tcp_qpair_send_h2c_term_req_complete(void *cb_arg)
{
struct nvme_tcp_qpair *tqpair = cb_arg;
tqpair->state = NVME_TCP_QPAIR_STATE_EXITING;
}
static void
nvme_tcp_qpair_send_h2c_term_req(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
{
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_term_req_hdr *h2c_term_req;
uint32_t h2c_term_req_hdr_len = sizeof(*h2c_term_req);
uint8_t copy_len;
rsp_pdu = tqpair->send_pdu;
memset(rsp_pdu, 0, sizeof(*rsp_pdu));
h2c_term_req = &rsp_pdu->hdr.term_req;
h2c_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ;
h2c_term_req->common.hlen = h2c_term_req_hdr_len;
if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
DSET32(&h2c_term_req->fei, error_offset);
}
copy_len = pdu->hdr.common.hlen;
if (copy_len > SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE) {
copy_len = SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE;
}
/* Copy the error info into the buffer */
memcpy((uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len, pdu->hdr.raw, copy_len);
nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len, copy_len);
/* Contain the header len of the wrong received pdu */
h2c_term_req->common.plen = h2c_term_req->common.hlen + copy_len;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_send_h2c_term_req_complete, tqpair);
}
static bool
nvme_tcp_qpair_recv_state_valid(struct nvme_tcp_qpair *tqpair)
{
switch (tqpair->state) {
case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND:
case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL:
case NVME_TCP_QPAIR_STATE_RUNNING:
return true;
default:
return false;
}
}
static void
nvme_tcp_pdu_ch_handle(struct nvme_tcp_qpair *tqpair)
{
struct nvme_tcp_pdu *pdu;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
uint32_t expected_hlen, hd_len = 0;
bool plen_error = false;
pdu = tqpair->recv_pdu;
SPDK_DEBUGLOG(nvme, "pdu type = %d\n", pdu->hdr.common.pdu_type);
if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP) {
if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
SPDK_ERRLOG("Already received IC_RESP PDU, and we should reject this pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
expected_hlen = sizeof(struct spdk_nvme_tcp_ic_resp);
if (pdu->hdr.common.plen != expected_hlen) {
plen_error = true;
}
} else {
if (spdk_unlikely(!nvme_tcp_qpair_recv_state_valid(tqpair))) {
SPDK_ERRLOG("The TCP/IP tqpair connection is not negotiated\n");
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP:
expected_hlen = sizeof(struct spdk_nvme_tcp_rsp);
if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) {
hd_len = SPDK_NVME_TCP_DIGEST_LEN;
}
if (pdu->hdr.common.plen != (expected_hlen + hd_len)) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
expected_hlen = sizeof(struct spdk_nvme_tcp_c2h_data_hdr);
if (pdu->hdr.common.plen < pdu->hdr.common.pdo) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
if ((pdu->hdr.common.plen <= expected_hlen) ||
(pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_R2T:
expected_hlen = sizeof(struct spdk_nvme_tcp_r2t_hdr);
if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) {
hd_len = SPDK_NVME_TCP_DIGEST_LEN;
}
if (pdu->hdr.common.plen != (expected_hlen + hd_len)) {
plen_error = true;
}
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu->hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
goto err;
}
}
if (pdu->hdr.common.hlen != expected_hlen) {
SPDK_ERRLOG("Expected PDU header length %u, got %u\n",
expected_hlen, pdu->hdr.common.hlen);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
goto err;
} else if (plen_error) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
goto err;
} else {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
nvme_tcp_pdu_calc_psh_len(tqpair->recv_pdu, tqpair->flags.host_hdgst_enable);
return;
}
err:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static struct nvme_tcp_req *
get_nvme_active_req_by_cid(struct nvme_tcp_qpair *tqpair, uint32_t cid)
{
assert(tqpair != NULL);
if ((cid >= tqpair->num_entries) || (tqpair->tcp_reqs[cid].state == NVME_TCP_REQ_FREE)) {
return NULL;
}
return &tqpair->tcp_reqs[cid];
}
static void
nvme_tcp_c2h_data_payload_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu, uint32_t *reaped)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
uint8_t flags;
tcp_req = pdu->req;
assert(tcp_req != NULL);
SPDK_DEBUGLOG(nvme, "enter\n");
c2h_data = &pdu->hdr.c2h_data;
tcp_req->datao += pdu->data_len;
flags = c2h_data->common.flags;
if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU) {
if (tcp_req->datao == tcp_req->req->payload_size) {
tcp_req->rsp.status.p = 0;
} else {
tcp_req->rsp.status.p = 1;
}
tcp_req->rsp.cid = tcp_req->cid;
tcp_req->rsp.sqid = tqpair->qpair.id;
if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
tcp_req->ordering.bits.data_recv = 1;
if (nvme_tcp_req_complete_safe(tcp_req)) {
(*reaped)++;
}
}
}
}
static const char *spdk_nvme_tcp_term_req_fes_str[] = {
"Invalid PDU Header Field",
"PDU Sequence Error",
"Header Digest Error",
"Data Transfer Out of Range",
"Data Transfer Limit Exceeded",
"Unsupported parameter",
};
static void
nvme_tcp_c2h_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *c2h_term_req)
{
SPDK_ERRLOG("Error info of pdu(%p): %s\n", c2h_term_req,
spdk_nvme_tcp_term_req_fes_str[c2h_term_req->fes]);
if ((c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
SPDK_DEBUGLOG(nvme, "The offset from the start of the PDU header is %u\n",
DGET32(c2h_term_req->fei));
}
/* we may also need to dump some other info here */
}
static void
nvme_tcp_c2h_term_req_payload_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
nvme_tcp_c2h_term_req_dump(&pdu->hdr.term_req);
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
}
static void
_nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped)
{
struct nvme_tcp_pdu *pdu;
assert(tqpair != NULL);
pdu = tqpair->recv_pdu;
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
nvme_tcp_c2h_data_payload_handle(tqpair, pdu, reaped);
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
nvme_tcp_c2h_term_req_payload_handle(tqpair, pdu);
break;
default:
/* The code should not go to here */
SPDK_ERRLOG("The code should not go to here\n");
break;
}
}
static void
tcp_data_recv_crc32_done(void *cb_arg, int status)
{
struct nvme_tcp_req *tcp_req = cb_arg;
struct nvme_tcp_pdu *pdu;
struct nvme_tcp_qpair *tqpair;
int rc;
struct nvme_tcp_poll_group *pgroup;
int dummy_reaped = 0;
pdu = tcp_req->pdu;
assert(pdu != NULL);
tqpair = tcp_req->tqpair;
assert(tqpair != NULL);
if (tqpair->qpair.poll_group && !tqpair->needs_poll) {
pgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group);
TAILQ_INSERT_TAIL(&pgroup->needs_poll, tqpair, link);
tqpair->needs_poll = true;
}
if (spdk_unlikely(status)) {
SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
goto end;
}
pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
rc = MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
if (rc == 0) {
SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
}
end:
tcp_req->pdu_in_use = false;
nvme_tcp_c2h_data_payload_handle(tqpair, tcp_req->pdu, &dummy_reaped);
}
static void
nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair,
uint32_t *reaped)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
uint32_t crc32c;
struct nvme_tcp_poll_group *tgroup;
struct nvme_tcp_req *tcp_req;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
pdu = tqpair->recv_pdu;
SPDK_DEBUGLOG(nvme, "enter\n");
tcp_req = pdu->req;
/* Increase the expected data offset */
tcp_req->expected_datao += pdu->data_len;
/* check data digest if need */
if (pdu->ddgst_enable) {
tgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group);
/* Only suport this limitated case for the first step */
if ((nvme_qpair_get_state(&tqpair->qpair) >= NVME_QPAIR_CONNECTED) &&
(tgroup != NULL && tgroup->group.group->accel_fn_table.submit_accel_crc32c) &&
spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
&& !tcp_req->pdu_in_use)) {
tcp_req->pdu_in_use = true;
tcp_req->pdu->hdr = pdu->hdr;
tcp_req->pdu->req = tcp_req;
memcpy(tcp_req->pdu->data_digest, pdu->data_digest, sizeof(pdu->data_digest));
memcpy(tcp_req->pdu->data_iov, pdu->data_iov, sizeof(pdu->data_iov[0]) * pdu->data_iovcnt);
tcp_req->pdu->data_iovcnt = pdu->data_iovcnt;
tcp_req->pdu->data_len = pdu->data_len;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
tgroup->group.group->accel_fn_table.submit_accel_crc32c(tgroup->group.group->ctx,
&tcp_req->pdu->data_digest_crc32, tcp_req->pdu->data_iov,
tcp_req->pdu->data_iovcnt, 0, tcp_data_recv_crc32_done, tcp_req);
return;
}
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
if (rc == 0) {
SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
tcp_req = pdu->req;
assert(tcp_req != NULL);
tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
}
}
_nvme_tcp_pdu_payload_handle(tqpair, reaped);
}
static void
nvme_tcp_send_icreq_complete(void *cb_arg)
{
struct nvme_tcp_qpair *tqpair = cb_arg;
SPDK_DEBUGLOG(nvme, "Complete the icreq send for tqpair=%p %u\n", tqpair, tqpair->qpair.id);
tqpair->flags.icreq_send_ack = true;
if (tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING) {
SPDK_DEBUGLOG(nvme, "tqpair %p %u, finalize icresp\n", tqpair, tqpair->qpair.id);
tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND;
}
}
static void
nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_ic_resp *ic_resp = &pdu->hdr.ic_resp;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
int recv_buf_size;
/* Only PFV 0 is defined currently */
if (ic_resp->pfv != 0) {
SPDK_ERRLOG("Expected ICResp PFV %u, got %u\n", 0u, ic_resp->pfv);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, pfv);
goto end;
}
if (ic_resp->maxh2cdata < NVME_TCP_PDU_H2C_MIN_DATA_SIZE) {
SPDK_ERRLOG("Expected ICResp maxh2cdata >=%u, got %u\n", NVME_TCP_PDU_H2C_MIN_DATA_SIZE,
ic_resp->maxh2cdata);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, maxh2cdata);
goto end;
}
tqpair->maxh2cdata = ic_resp->maxh2cdata;
if (ic_resp->cpda > SPDK_NVME_TCP_CPDA_MAX) {
SPDK_ERRLOG("Expected ICResp cpda <=%u, got %u\n", SPDK_NVME_TCP_CPDA_MAX, ic_resp->cpda);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, cpda);
goto end;
}
tqpair->cpda = ic_resp->cpda;
tqpair->flags.host_hdgst_enable = ic_resp->dgst.bits.hdgst_enable ? true : false;
tqpair->flags.host_ddgst_enable = ic_resp->dgst.bits.ddgst_enable ? true : false;
SPDK_DEBUGLOG(nvme, "host_hdgst_enable: %u\n", tqpair->flags.host_hdgst_enable);
SPDK_DEBUGLOG(nvme, "host_ddgst_enable: %u\n", tqpair->flags.host_ddgst_enable);
/* Now that we know whether digests are enabled, properly size the receive buffer to
* handle several incoming 4K read commands according to SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR
* parameter. */
recv_buf_size = 0x1000 + sizeof(struct spdk_nvme_tcp_c2h_data_hdr);
if (tqpair->flags.host_hdgst_enable) {
recv_buf_size += SPDK_NVME_TCP_DIGEST_LEN;
}
if (tqpair->flags.host_ddgst_enable) {
recv_buf_size += SPDK_NVME_TCP_DIGEST_LEN;
}
if (spdk_sock_set_recvbuf(tqpair->sock, recv_buf_size * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR) < 0) {
SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
tqpair,
recv_buf_size);
/* Not fatal. */
}
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
if (!tqpair->flags.icreq_send_ack) {
tqpair->state = NVME_TCP_QPAIR_STATE_INITIALIZING;
SPDK_DEBUGLOG(nvme, "tqpair %p %u, waiting icreq ack\n", tqpair, tqpair->qpair.id);
return;
}
tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND;
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvme_tcp_capsule_resp_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
uint32_t *reaped)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_rsp *capsule_resp = &pdu->hdr.capsule_resp;
uint32_t cid, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
SPDK_DEBUGLOG(nvme, "enter\n");
cid = capsule_resp->rccqe.cid;
tcp_req = get_nvme_active_req_by_cid(tqpair, cid);
if (!tcp_req) {
SPDK_ERRLOG("no tcp_req is found with cid=%u for tqpair=%p\n", cid, tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_rsp, rccqe);
goto end;
}
assert(tcp_req->req != NULL);
tcp_req->rsp = capsule_resp->rccqe;
tcp_req->ordering.bits.data_recv = 1;
/* Recv the pdu again */
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
if (nvme_tcp_req_complete_safe(tcp_req)) {
(*reaped)++;
}
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvme_tcp_c2h_term_req_hdr_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_term_req_hdr *c2h_term_req = &pdu->hdr.term_req;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
if (c2h_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
SPDK_ERRLOG("Fatal Error Status(FES) is unknown for c2h_term_req pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
goto end;
}
/* set the data buffer */
nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + c2h_term_req->common.hlen,
c2h_term_req->common.plen - c2h_term_req->common.hlen);
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvme_tcp_c2h_data_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_c2h_data_hdr *c2h_data = &pdu->hdr.c2h_data;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
int flags = c2h_data->common.flags;
SPDK_DEBUGLOG(nvme, "enter\n");
SPDK_DEBUGLOG(nvme, "c2h_data info on tqpair(%p): datao=%u, datal=%u, cccid=%d\n",
tqpair, c2h_data->datao, c2h_data->datal, c2h_data->cccid);
tcp_req = get_nvme_active_req_by_cid(tqpair, c2h_data->cccid);
if (!tcp_req) {
SPDK_ERRLOG("no tcp_req found for c2hdata cid=%d\n", c2h_data->cccid);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, cccid);
goto end;
}
SPDK_DEBUGLOG(nvme, "tcp_req(%p) on tqpair(%p): expected_datao=%u, payload_size=%u\n",
tcp_req, tqpair, tcp_req->expected_datao, tcp_req->req->payload_size);
if (spdk_unlikely((flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) &&
!(flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU))) {
SPDK_ERRLOG("Invalid flag flags=%d in c2h_data=%p\n", flags, c2h_data);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, common);
goto end;
}
if (c2h_data->datal > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid datal for tcp_req(%p), datal(%u) exceeds payload_size(%u)\n",
tcp_req, c2h_data->datal, tcp_req->req->payload_size);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
goto end;
}
if (tcp_req->expected_datao != c2h_data->datao) {
SPDK_ERRLOG("Invalid datao for tcp_req(%p), received datal(%u) != expected datao(%u) in tcp_req\n",
tcp_req, c2h_data->datao, tcp_req->expected_datao);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datao);
goto end;
}
if ((c2h_data->datao + c2h_data->datal) > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid data range for tcp_req(%p), received (datao(%u) + datal(%u)) > datao(%u) in tcp_req\n",
tcp_req, c2h_data->datao, c2h_data->datal, tcp_req->req->payload_size);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datal);
goto end;
}
nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt,
c2h_data->datao, c2h_data->datal);
pdu->req = tcp_req;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvme_tcp_qpair_h2c_data_send_complete(void *cb_arg)
{
struct nvme_tcp_req *tcp_req = cb_arg;
assert(tcp_req != NULL);
tcp_req->ordering.bits.send_ack = 1;
if (tcp_req->r2tl_remain) {
nvme_tcp_send_h2c_data(tcp_req);
} else {
assert(tcp_req->active_r2ts > 0);
tcp_req->active_r2ts--;
tcp_req->state = NVME_TCP_REQ_ACTIVE;
if (tcp_req->ordering.bits.r2t_waiting_h2c_complete) {
tcp_req->ordering.bits.r2t_waiting_h2c_complete = 0;
SPDK_DEBUGLOG(nvme, "tcp_req %p: continue r2t\n", tcp_req);
assert(tcp_req->active_r2ts > 0);
tcp_req->ttag = tcp_req->ttag_r2t_next;
tcp_req->r2tl_remain = tcp_req->r2tl_remain_next;
tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T;
nvme_tcp_send_h2c_data(tcp_req);
return;
}
/* Need also call this function to free the resource */
nvme_tcp_req_complete_safe(tcp_req);
}
}
static void
nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(tcp_req->req->qpair);
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
uint32_t plen, pdo, alignment;
/* Reinit the send_ack and h2c_send_waiting_ack bits */
tcp_req->ordering.bits.send_ack = 0;
tcp_req->ordering.bits.h2c_send_waiting_ack = 0;
rsp_pdu = tcp_req->pdu;
memset(rsp_pdu, 0, sizeof(*rsp_pdu));
h2c_data = &rsp_pdu->hdr.h2c_data;
h2c_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_DATA;
plen = h2c_data->common.hlen = sizeof(*h2c_data);
h2c_data->cccid = tcp_req->cid;
h2c_data->ttag = tcp_req->ttag;
h2c_data->datao = tcp_req->datao;
h2c_data->datal = spdk_min(tcp_req->r2tl_remain, tqpair->maxh2cdata);
nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->iov, tcp_req->iovcnt,
h2c_data->datao, h2c_data->datal);
tcp_req->r2tl_remain -= h2c_data->datal;
if (tqpair->flags.host_hdgst_enable) {
h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
rsp_pdu->padding_len = 0;
pdo = plen;
if (tqpair->cpda) {
alignment = (tqpair->cpda + 1) << 2;
if (alignment > plen) {
rsp_pdu->padding_len = alignment - plen;
pdo = plen = alignment;
}
}
h2c_data->common.pdo = pdo;
plen += h2c_data->datal;
if (tqpair->flags.host_ddgst_enable) {
h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
h2c_data->common.plen = plen;
tcp_req->datao += h2c_data->datal;
if (!tcp_req->r2tl_remain) {
h2c_data->common.flags |= SPDK_NVME_TCP_H2C_DATA_FLAGS_LAST_PDU;
}
SPDK_DEBUGLOG(nvme, "h2c_data info: datao=%u, datal=%u, pdu_len=%u for tqpair=%p\n",
h2c_data->datao, h2c_data->datal, h2c_data->common.plen, tqpair);
nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_h2c_data_send_complete, tcp_req);
}
static void
nvme_tcp_r2t_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_r2t_hdr *r2t = &pdu->hdr.r2t;
uint32_t cid, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
SPDK_DEBUGLOG(nvme, "enter\n");
cid = r2t->cccid;
tcp_req = get_nvme_active_req_by_cid(tqpair, cid);
if (!tcp_req) {
SPDK_ERRLOG("Cannot find tcp_req for tqpair=%p\n", tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, cccid);
goto end;
}
SPDK_DEBUGLOG(nvme, "r2t info: r2to=%u, r2tl=%u for tqpair=%p\n", r2t->r2to, r2t->r2tl,
tqpair);
if (tcp_req->state == NVME_TCP_REQ_ACTIVE) {
assert(tcp_req->active_r2ts == 0);
tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T;
}
if (tcp_req->datao != r2t->r2to) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2to);
goto end;
}
if ((r2t->r2tl + r2t->r2to) > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid R2T info for tcp_req=%p: (r2to(%u) + r2tl(%u)) exceeds payload_size(%u)\n",
tcp_req, r2t->r2to, r2t->r2tl, tqpair->maxh2cdata);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2tl);
goto end;
}
tcp_req->active_r2ts++;
if (spdk_unlikely(tcp_req->active_r2ts > tqpair->maxr2t)) {
if (tcp_req->state == NVME_TCP_REQ_ACTIVE_R2T && !tcp_req->ordering.bits.send_ack) {
/* We receive a subsequent R2T while we are waiting for H2C transfer to complete */
SPDK_DEBUGLOG(nvme, "received a subsequent R2T\n");
assert(tcp_req->active_r2ts == tqpair->maxr2t + 1);
tcp_req->ttag_r2t_next = r2t->ttag;
tcp_req->r2tl_remain_next = r2t->r2tl;
tcp_req->ordering.bits.r2t_waiting_h2c_complete = 1;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
return;
} else {
fes = SPDK_NVME_TCP_TERM_REQ_FES_R2T_LIMIT_EXCEEDED;
SPDK_ERRLOG("Invalid R2T: Maximum number of R2T exceeded! Max: %u for tqpair=%p\n", tqpair->maxr2t,
tqpair);
goto end;
}
}
tcp_req->ttag = r2t->ttag;
tcp_req->r2tl_remain = r2t->r2tl;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
if (spdk_likely(tcp_req->ordering.bits.send_ack)) {
nvme_tcp_send_h2c_data(tcp_req);
} else {
tcp_req->ordering.bits.h2c_send_waiting_ack = 1;
}
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static void
nvme_tcp_pdu_psh_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped)
{
struct nvme_tcp_pdu *pdu;
int rc;
uint32_t crc32c, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
pdu = tqpair->recv_pdu;
SPDK_DEBUGLOG(nvme, "enter: pdu type =%u\n", pdu->hdr.common.pdu_type);
/* check header digest if needed */
if (pdu->has_hdgst) {
crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
if (rc == 0) {
SPDK_ERRLOG("header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_IC_RESP:
nvme_tcp_icresp_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP:
nvme_tcp_capsule_resp_hdr_handle(tqpair, pdu, reaped);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
nvme_tcp_c2h_data_hdr_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
nvme_tcp_c2h_term_req_hdr_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_R2T:
nvme_tcp_r2t_hdr_handle(tqpair, pdu);
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu->hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = 1;
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
break;
}
}
static int
nvme_tcp_read_pdu(struct nvme_tcp_qpair *tqpair, uint32_t *reaped)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
uint32_t data_len;
enum nvme_tcp_pdu_recv_state prev_state;
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = tqpair->recv_state;
switch (tqpair->recv_state) {
/* If in a new state */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
break;
/* common header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
pdu = tqpair->recv_pdu;
if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
rc = nvme_tcp_read_data(tqpair->sock,
sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
(uint8_t *)&pdu->hdr.common + pdu->ch_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->ch_valid_bytes += rc;
if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
rc = NVME_TCP_PDU_IN_PROGRESS;
goto out;
}
}
/* The command header of this PDU has now been read from the socket. */
nvme_tcp_pdu_ch_handle(tqpair);
break;
/* Wait for the pdu specific header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
pdu = tqpair->recv_pdu;
rc = nvme_tcp_read_data(tqpair->sock,
pdu->psh_len - pdu->psh_valid_bytes,
(uint8_t *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->psh_valid_bytes += rc;
if (pdu->psh_valid_bytes < pdu->psh_len) {
rc = NVME_TCP_PDU_IN_PROGRESS;
goto out;
}
/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
nvme_tcp_pdu_psh_handle(tqpair, reaped);
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
pdu = tqpair->recv_pdu;
/* check whether the data is valid, if not we just return */
if (!pdu->data_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
data_len = pdu->data_len;
/* data digest */
if (spdk_unlikely((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) &&
tqpair->flags.host_ddgst_enable)) {
data_len += SPDK_NVME_TCP_DIGEST_LEN;
pdu->ddgst_enable = true;
}
rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->rw_offset += rc;
if (pdu->rw_offset < data_len) {
rc = NVME_TCP_PDU_IN_PROGRESS;
goto out;
}
assert(pdu->rw_offset == data_len);
/* All of this PDU has now been read from the socket. */
nvme_tcp_pdu_payload_handle(tqpair, reaped);
break;
case NVME_TCP_PDU_RECV_STATE_ERROR:
rc = NVME_TCP_PDU_FATAL;
break;
default:
assert(0);
break;
}
} while (prev_state != tqpair->recv_state);
out:
*reaped += tqpair->async_complete;
tqpair->async_complete = 0;
return rc;
}
static void
nvme_tcp_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct nvme_tcp_req *tcp_req, *tmp;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
assert(tcp_req->req != NULL);
if (nvme_request_check_timeout(tcp_req->req, tcp_req->cid, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
static int nvme_tcp_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
static int
nvme_tcp_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
uint32_t reaped;
int rc;
if (qpair->poll_group == NULL) {
rc = spdk_sock_flush(tqpair->sock);
if (rc < 0) {
return rc;
}
}
if (max_completions == 0) {
max_completions = tqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, tqpair->num_entries);
}
reaped = 0;
do {
rc = nvme_tcp_read_pdu(tqpair, &reaped);
if (rc < 0) {
SPDK_DEBUGLOG(nvme, "Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
goto fail;
} else if (rc == 0) {
/* Partial PDU is read */
break;
}
} while (reaped < max_completions);
if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) {
nvme_tcp_qpair_check_timeout(qpair);
}
if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
rc = nvme_tcp_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
if (rc != 0 && rc != -EAGAIN) {
SPDK_ERRLOG("Failed to connect tqpair=%p\n", tqpair);
goto fail;
} else if (rc == 0) {
/* Once the connection is completed, we can submit queued requests */
nvme_qpair_resubmit_requests(qpair, tqpair->num_entries);
}
}
return reaped;
fail:
/*
* Since admin queues take the ctrlr_lock before entering this function,
* we can call nvme_transport_ctrlr_disconnect_qpair. For other qpairs we need
* to call the generic function which will take the lock for us.
*/
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_transport_ctrlr_disconnect_qpair(qpair->ctrlr, qpair);
} else {
nvme_ctrlr_disconnect_qpair(qpair);
}
return -ENXIO;
}
static void
nvme_tcp_qpair_sock_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
{
struct spdk_nvme_qpair *qpair = ctx;
struct nvme_tcp_poll_group *pgroup = nvme_tcp_poll_group(qpair->poll_group);
int32_t num_completions;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
if (tqpair->needs_poll) {
TAILQ_REMOVE(&pgroup->needs_poll, tqpair, link);
tqpair->needs_poll = false;
}
num_completions = spdk_nvme_qpair_process_completions(qpair, pgroup->completions_per_qpair);
if (pgroup->num_completions >= 0 && num_completions >= 0) {
pgroup->num_completions += num_completions;
pgroup->stats.nvme_completions += num_completions;
} else {
pgroup->num_completions = -ENXIO;
}
}
static int
nvme_tcp_qpair_icreq_send(struct nvme_tcp_qpair *tqpair)
{
struct spdk_nvme_tcp_ic_req *ic_req;
struct nvme_tcp_pdu *pdu;
pdu = tqpair->send_pdu;
memset(tqpair->send_pdu, 0, sizeof(*tqpair->send_pdu));
ic_req = &pdu->hdr.ic_req;
ic_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_REQ;
ic_req->common.hlen = ic_req->common.plen = sizeof(*ic_req);
ic_req->pfv = 0;
ic_req->maxr2t = NVME_TCP_MAX_R2T_DEFAULT - 1;
ic_req->hpda = NVME_TCP_HPDA_DEFAULT;
ic_req->dgst.bits.hdgst_enable = tqpair->qpair.ctrlr->opts.header_digest;
ic_req->dgst.bits.ddgst_enable = tqpair->qpair.ctrlr->opts.data_digest;
nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_send_icreq_complete, tqpair);
tqpair->icreq_timeout_tsc = spdk_get_ticks() + (NVME_TCP_TIME_OUT_IN_SECONDS * spdk_get_ticks_hz());
return 0;
}
static int
nvme_tcp_qpair_connect_sock(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
int rc;
struct nvme_tcp_qpair *tqpair;
int family;
long int port;
struct spdk_sock_opts opts;
tqpair = nvme_tcp_qpair(qpair);
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
rc = -1;
return rc;
}
SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_tcp_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_tcp_parse_addr() failed\n");
return rc;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_tcp_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_tcp_parse_addr() failed\n");
return rc;
}
}
port = spdk_strtol(ctrlr->trid.trsvcid, 10);
if (port <= 0 || port >= INT_MAX) {
SPDK_ERRLOG("Invalid port: %s\n", ctrlr->trid.trsvcid);
rc = -1;
return rc;
}
opts.opts_size = sizeof(opts);
spdk_sock_get_default_opts(&opts);
opts.priority = ctrlr->trid.priority;
opts.zcopy = !nvme_qpair_is_admin_queue(qpair);
tqpair->sock = spdk_sock_connect_ext(ctrlr->trid.traddr, port, NULL, &opts);
if (!tqpair->sock) {
SPDK_ERRLOG("sock connection error of tqpair=%p with addr=%s, port=%ld\n",
tqpair, ctrlr->trid.traddr, port);
rc = -1;
return rc;
}
return 0;
}
static int
nvme_tcp_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair;
int rc;
tqpair = nvme_tcp_qpair(qpair);
/* Prevent this function from being called recursively, as it could lead to issues with
* nvme_fabric_qpair_connect_poll() if the connect response is received in the recursive
* call.
*/
if (tqpair->flags.in_connect_poll) {
return -EAGAIN;
}
tqpair->flags.in_connect_poll = 1;
switch (tqpair->state) {
case NVME_TCP_QPAIR_STATE_INVALID:
case NVME_TCP_QPAIR_STATE_INITIALIZING:
if (spdk_get_ticks() > tqpair->icreq_timeout_tsc) {
SPDK_ERRLOG("Failed to construct the tqpair=%p via correct icresp\n", tqpair);
rc = -ETIMEDOUT;
break;
}
rc = -EAGAIN;
break;
case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND:
rc = nvme_fabric_qpair_connect_async(&tqpair->qpair, tqpair->num_entries);
if (rc < 0) {
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
break;
}
tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL;
rc = -EAGAIN;
break;
case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL:
rc = nvme_fabric_qpair_connect_poll(&tqpair->qpair);
if (rc == 0) {
tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING;
nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
} else if (rc != -EAGAIN) {
SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
}
break;
case NVME_TCP_QPAIR_STATE_RUNNING:
rc = 0;
break;
default:
assert(false);
rc = -EINVAL;
break;
}
tqpair->flags.in_connect_poll = 0;
return rc;
}
static int
nvme_tcp_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
int rc = 0;
struct nvme_tcp_qpair *tqpair;
struct nvme_tcp_poll_group *tgroup;
tqpair = nvme_tcp_qpair(qpair);
if (!tqpair->sock) {
rc = nvme_tcp_qpair_connect_sock(ctrlr, qpair);
if (rc < 0) {
return rc;
}
}
if (qpair->poll_group) {
rc = nvme_poll_group_connect_qpair(qpair);
if (rc) {
SPDK_ERRLOG("Unable to activate the tcp qpair.\n");
return rc;
}
tgroup = nvme_tcp_poll_group(qpair->poll_group);
tqpair->stats = &tgroup->stats;
} else {
tqpair->stats = calloc(1, sizeof(*tqpair->stats));
if (!tqpair->stats) {
SPDK_ERRLOG("tcp stats memory allocation failed\n");
return -ENOMEM;
}
}
tqpair->maxr2t = NVME_TCP_MAX_R2T_DEFAULT;
/* Explicitly set the state and recv_state of tqpair */
tqpair->state = NVME_TCP_QPAIR_STATE_INVALID;
if (tqpair->recv_state != NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
}
rc = nvme_tcp_qpair_icreq_send(tqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the tqpair\n");
return rc;
}
return rc;
}
static struct spdk_nvme_qpair *
nvme_tcp_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests, bool async)
{
struct nvme_tcp_qpair *tqpair;
struct spdk_nvme_qpair *qpair;
int rc;
tqpair = calloc(1, sizeof(struct nvme_tcp_qpair));
if (!tqpair) {
SPDK_ERRLOG("failed to get create tqpair\n");
return NULL;
}
tqpair->num_entries = qsize;
qpair = &tqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
if (rc != 0) {
free(tqpair);
return NULL;
}
rc = nvme_tcp_alloc_reqs(tqpair);
if (rc) {
nvme_tcp_ctrlr_delete_io_qpair(ctrlr, qpair);
return NULL;
}
/* spdk_nvme_qpair_get_optimal_poll_group needs socket information.
* So create the socket first when creating a qpair. */
rc = nvme_tcp_qpair_connect_sock(ctrlr, qpair);
if (rc) {
nvme_tcp_ctrlr_delete_io_qpair(ctrlr, qpair);
return NULL;
}
return qpair;
}
static struct spdk_nvme_qpair *
nvme_tcp_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_tcp_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests, opts->async_mode);
}
static struct spdk_nvme_ctrlr *nvme_tcp_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_tcp_ctrlr *tctrlr;
int rc;
tctrlr = calloc(1, sizeof(*tctrlr));
if (tctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
tctrlr->ctrlr.opts = *opts;
tctrlr->ctrlr.trid = *trid;
rc = nvme_ctrlr_construct(&tctrlr->ctrlr);
if (rc != 0) {
free(tctrlr);
return NULL;
}
tctrlr->ctrlr.adminq = nvme_tcp_ctrlr_create_qpair(&tctrlr->ctrlr, 0,
tctrlr->ctrlr.opts.admin_queue_size, 0,
tctrlr->ctrlr.opts.admin_queue_size, true);
if (!tctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
nvme_tcp_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_add_process(&tctrlr->ctrlr, 0) != 0) {
SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
nvme_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
return &tctrlr->ctrlr;
}
static uint32_t
nvme_tcp_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* TCP transport doesn't limit maximum IO transfer size. */
return UINT32_MAX;
}
static uint16_t
nvme_tcp_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* We do not support >1 SGE in the initiator currently,
* so we can only return 1 here. Once that support is
* added, this should return ctrlr->cdata.nvmf_specific.msdbd
* instead.
*/
return 1;
}
static int
nvme_tcp_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
int (*iter_fn)(struct nvme_request *req, void *arg),
void *arg)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct nvme_tcp_req *tcp_req, *tmp;
int rc;
assert(iter_fn != NULL);
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
assert(tcp_req->req != NULL);
rc = iter_fn(tcp_req->req, arg);
if (rc != 0) {
return rc;
}
}
return 0;
}
static void
nvme_tcp_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_req *tcp_req, *tmp;
struct spdk_nvme_cpl cpl;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
assert(tcp_req->req != NULL);
if (tcp_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
continue;
}
nvme_tcp_req_complete(tcp_req, &cpl);
nvme_tcp_req_put(tqpair, tcp_req);
}
}
static struct spdk_nvme_transport_poll_group *
nvme_tcp_poll_group_create(void)
{
struct nvme_tcp_poll_group *group = calloc(1, sizeof(*group));
if (group == NULL) {
SPDK_ERRLOG("Unable to allocate poll group.\n");
return NULL;
}
TAILQ_INIT(&group->needs_poll);
group->sock_group = spdk_sock_group_create(group);
if (group->sock_group == NULL) {
free(group);
SPDK_ERRLOG("Unable to allocate sock group.\n");
return NULL;
}
return &group->group;
}
static struct spdk_nvme_transport_poll_group *
nvme_tcp_qpair_get_optimal_poll_group(struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct spdk_sock_group *group = NULL;
int rc;
rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group);
if (!rc && group != NULL) {
return spdk_sock_group_get_ctx(group);
}
return NULL;
}
static int
nvme_tcp_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(qpair->poll_group);
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
if (spdk_sock_group_add_sock(group->sock_group, tqpair->sock, nvme_tcp_qpair_sock_cb, qpair)) {
return -EPROTO;
}
return 0;
}
static int
nvme_tcp_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(qpair->poll_group);
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
if (tqpair->needs_poll) {
TAILQ_REMOVE(&group->needs_poll, tqpair, link);
tqpair->needs_poll = false;
}
if (tqpair->sock && group->sock_group) {
if (spdk_sock_group_remove_sock(group->sock_group, tqpair->sock)) {
return -EPROTO;
}
}
return 0;
}
static int
nvme_tcp_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup);
/* disconnected qpairs won't have a sock to add. */
if (nvme_qpair_get_state(qpair) >= NVME_QPAIR_CONNECTED) {
if (spdk_sock_group_add_sock(group->sock_group, tqpair->sock, nvme_tcp_qpair_sock_cb, qpair)) {
return -EPROTO;
}
}
return 0;
}
static int
nvme_tcp_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair;
int rc = 0;
if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) {
rc = nvme_poll_group_disconnect_qpair(qpair);
}
tqpair = nvme_tcp_qpair(qpair);
/* When qpair is deleted, stats are freed. free(NULL) is valid case, so just set
* stats pointer to NULL */
tqpair->stats = NULL;
return rc;
}
static int64_t
nvme_tcp_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
{
struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup);
struct spdk_nvme_qpair *qpair, *tmp_qpair;
struct nvme_tcp_qpair *tqpair, *tmp_tqpair;
int num_events;
group->completions_per_qpair = completions_per_qpair;
group->num_completions = 0;
group->stats.polls++;
num_events = spdk_sock_group_poll(group->sock_group);
STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
disconnected_qpair_cb(qpair, tgroup->group->ctx);
}
/* If any qpairs were marked as needing to be polled due to an asynchronous write completion
* and they weren't polled as a consequence of calling spdk_sock_group_poll above, poll them now. */
TAILQ_FOREACH_SAFE(tqpair, &group->needs_poll, link, tmp_tqpair) {
nvme_tcp_qpair_sock_cb(&tqpair->qpair, group->sock_group, tqpair->sock);
}
if (spdk_unlikely(num_events < 0)) {
return num_events;
}
group->stats.idle_polls += !num_events;
group->stats.socket_completions += num_events;
return group->num_completions;
}
static int
nvme_tcp_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
{
int rc;
struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup);
if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
return -EBUSY;
}
rc = spdk_sock_group_close(&group->sock_group);
if (rc != 0) {
SPDK_ERRLOG("Failed to close the sock group for a tcp poll group.\n");
assert(false);
}
free(tgroup);
return 0;
}
static int
nvme_tcp_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat **_stats)
{
struct nvme_tcp_poll_group *group;
struct spdk_nvme_transport_poll_group_stat *stats;
if (tgroup == NULL || _stats == NULL) {
SPDK_ERRLOG("Invalid stats or group pointer\n");
return -EINVAL;
}
group = nvme_tcp_poll_group(tgroup);
stats = calloc(1, sizeof(*stats));
if (!stats) {
SPDK_ERRLOG("Can't allocate memory for TCP stats\n");
return -ENOMEM;
}
stats->trtype = SPDK_NVME_TRANSPORT_TCP;
memcpy(&stats->tcp, &group->stats, sizeof(group->stats));
*_stats = stats;
return 0;
}
static void
nvme_tcp_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat *stats)
{
free(stats);
}
const struct spdk_nvme_transport_ops tcp_ops = {
.name = "TCP",
.type = SPDK_NVME_TRANSPORT_TCP,
.ctrlr_construct = nvme_tcp_ctrlr_construct,
.ctrlr_scan = nvme_fabric_ctrlr_scan,
.ctrlr_destruct = nvme_tcp_ctrlr_destruct,
.ctrlr_enable = nvme_tcp_ctrlr_enable,
.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
.ctrlr_get_max_xfer_size = nvme_tcp_ctrlr_get_max_xfer_size,
.ctrlr_get_max_sges = nvme_tcp_ctrlr_get_max_sges,
.ctrlr_create_io_qpair = nvme_tcp_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_tcp_ctrlr_delete_io_qpair,
.ctrlr_connect_qpair = nvme_tcp_ctrlr_connect_qpair,
.ctrlr_disconnect_qpair = nvme_tcp_ctrlr_disconnect_qpair,
.qpair_abort_reqs = nvme_tcp_qpair_abort_reqs,
.qpair_reset = nvme_tcp_qpair_reset,
.qpair_submit_request = nvme_tcp_qpair_submit_request,
.qpair_process_completions = nvme_tcp_qpair_process_completions,
.qpair_iterate_requests = nvme_tcp_qpair_iterate_requests,
.admin_qpair_abort_aers = nvme_tcp_admin_qpair_abort_aers,
.poll_group_create = nvme_tcp_poll_group_create,
.qpair_get_optimal_poll_group = nvme_tcp_qpair_get_optimal_poll_group,
.poll_group_connect_qpair = nvme_tcp_poll_group_connect_qpair,
.poll_group_disconnect_qpair = nvme_tcp_poll_group_disconnect_qpair,
.poll_group_add = nvme_tcp_poll_group_add,
.poll_group_remove = nvme_tcp_poll_group_remove,
.poll_group_process_completions = nvme_tcp_poll_group_process_completions,
.poll_group_destroy = nvme_tcp_poll_group_destroy,
.poll_group_get_stats = nvme_tcp_poll_group_get_stats,
.poll_group_free_stats = nvme_tcp_poll_group_free_stats,
};
SPDK_NVME_TRANSPORT_REGISTER(tcp, &tcp_ops);