numam-spdk/lib/nvme/nvme_internal.h
Ben Walker fca4262987 nvme: Remove nvme_ns_update
In the one place this was called, we can call nvme_ns_construct
instead. There's no harm in re-fetching the identify pages.

Change-Id: I91292ff9650bdc7edd5588a05837b671dcac1922
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10102
Community-CI: Mellanox Build Bot
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2021-12-20 08:49:41 +00:00

1554 lines
48 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __NVME_INTERNAL_H__
#define __NVME_INTERNAL_H__
#include "spdk/config.h"
#include "spdk/likely.h"
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#if defined(__i386__) || defined(__x86_64__)
#include <x86intrin.h>
#endif
#include "spdk/queue.h"
#include "spdk/barrier.h"
#include "spdk/bit_array.h"
#include "spdk/mmio.h"
#include "spdk/pci_ids.h"
#include "spdk/util.h"
#include "spdk/memory.h"
#include "spdk/nvme_intel.h"
#include "spdk/nvmf_spec.h"
#include "spdk/uuid.h"
#include "spdk_internal/assert.h"
#include "spdk/log.h"
extern pid_t g_spdk_nvme_pid;
/*
* Some Intel devices support vendor-unique read latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_READ_LATENCY 0x1
/*
* Some Intel devices support vendor-unique write latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_WRITE_LATENCY 0x2
/*
* The controller needs a delay before starts checking the device
* readiness, which is done by reading the NVME_CSTS_RDY bit.
*/
#define NVME_QUIRK_DELAY_BEFORE_CHK_RDY 0x4
/*
* The controller performs best when I/O is split on particular
* LBA boundaries.
*/
#define NVME_INTEL_QUIRK_STRIPING 0x8
/*
* The controller needs a delay after allocating an I/O queue pair
* before it is ready to accept I/O commands.
*/
#define NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC 0x10
/*
* Earlier NVMe devices do not indicate whether unmapped blocks
* will read all zeroes or not. This define indicates that the
* device does in fact read all zeroes after an unmap event
*/
#define NVME_QUIRK_READ_ZERO_AFTER_DEALLOCATE 0x20
/*
* The controller doesn't handle Identify value others than 0 or 1 correctly.
*/
#define NVME_QUIRK_IDENTIFY_CNS 0x40
/*
* The controller supports Open Channel command set if matching additional
* condition, like the first byte (value 0x1) in the vendor specific
* bits of the namespace identify structure is set.
*/
#define NVME_QUIRK_OCSSD 0x80
/*
* The controller has an Intel vendor ID but does not support Intel vendor-specific
* log pages. This is primarily for QEMU emulated SSDs which report an Intel vendor
* ID but do not support these log pages.
*/
#define NVME_INTEL_QUIRK_NO_LOG_PAGES 0x100
/*
* The controller does not set SHST_COMPLETE in a reasonable amount of time. This
* is primarily seen in virtual VMWare NVMe SSDs. This quirk merely adds an additional
* error message that on VMWare NVMe SSDs, the shutdown timeout may be expected.
*/
#define NVME_QUIRK_SHST_COMPLETE 0x200
/*
* The controller requires an extra delay before starting the initialization process
* during attach.
*/
#define NVME_QUIRK_DELAY_BEFORE_INIT 0x400
/*
* Some SSDs exhibit poor performance with the default SPDK NVMe IO queue size.
* This quirk will increase the default to 1024 which matches other operating
* systems, at the cost of some extra memory usage. Users can still override
* the increased default by changing the spdk_nvme_io_qpair_opts when allocating
* a new queue pair.
*/
#define NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE 0x800
/**
* The maximum access width to PCI memory space is 8 Bytes, don't use AVX2 or
* SSE instructions to optimize the memory access(memcpy or memset) larger than
* 8 Bytes.
*/
#define NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH 0x1000
/**
* The SSD does not support OPAL even through it sets the security bit in OACS.
*/
#define NVME_QUIRK_OACS_SECURITY 0x2000
/**
* Intel P55XX SSDs can't support Dataset Management command with SGL format,
* so use PRP with DSM command.
*/
#define NVME_QUIRK_NO_SGL_FOR_DSM 0x4000
/**
* Maximum Data Transfer Size(MDTS) excludes interleaved metadata.
*/
#define NVME_QUIRK_MDTS_EXCLUDE_MD 0x8000
#define NVME_MAX_ASYNC_EVENTS (8)
#define NVME_MAX_ADMIN_TIMEOUT_IN_SECS (30)
/* Maximum log page size to fetch for AERs. */
#define NVME_MAX_AER_LOG_SIZE (4096)
/*
* NVME_MAX_IO_QUEUES in nvme_spec.h defines the 64K spec-limit, but this
* define specifies the maximum number of queues this driver will actually
* try to configure, if available.
*/
#define DEFAULT_MAX_IO_QUEUES (1024)
#define DEFAULT_ADMIN_QUEUE_SIZE (32)
#define DEFAULT_IO_QUEUE_SIZE (256)
#define DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK (1024) /* Matches Linux kernel driver */
#define DEFAULT_IO_QUEUE_REQUESTS (512)
#define SPDK_NVME_DEFAULT_RETRY_COUNT (4)
#define SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED (0)
#define SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED
#define MIN_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
/* We want to fit submission and completion rings each in a single 2MB
* hugepage to ensure physical address contiguity.
*/
#define MAX_IO_QUEUE_ENTRIES (VALUE_2MB / spdk_max( \
sizeof(struct spdk_nvme_cmd), \
sizeof(struct spdk_nvme_cpl)))
/* Default timeout for fabrics connect commands. */
#ifdef DEBUG
#define NVME_FABRIC_CONNECT_COMMAND_TIMEOUT 0
#else
/* 500 millisecond timeout. */
#define NVME_FABRIC_CONNECT_COMMAND_TIMEOUT 500000
#endif
/* This value indicates that a read from a PCIe register is invalid. This can happen when a device is no longer present */
#define SPDK_NVME_INVALID_REGISTER_VALUE 0xFFFFFFFFu
enum nvme_payload_type {
NVME_PAYLOAD_TYPE_INVALID = 0,
/** nvme_request::u.payload.contig_buffer is valid for this request */
NVME_PAYLOAD_TYPE_CONTIG,
/** nvme_request::u.sgl is valid for this request */
NVME_PAYLOAD_TYPE_SGL,
};
/** Boot partition write states */
enum nvme_bp_write_state {
SPDK_NVME_BP_WS_DOWNLOADING = 0x0,
SPDK_NVME_BP_WS_DOWNLOADED = 0x1,
SPDK_NVME_BP_WS_REPLACE = 0x2,
SPDK_NVME_BP_WS_ACTIVATE = 0x3,
};
/**
* Descriptor for a request data payload.
*/
struct nvme_payload {
/**
* Functions for retrieving physical addresses for scattered payloads.
*/
spdk_nvme_req_reset_sgl_cb reset_sgl_fn;
spdk_nvme_req_next_sge_cb next_sge_fn;
/**
* Extended IO options passed by the user
*/
struct spdk_nvme_ns_cmd_ext_io_opts *opts;
/**
* If reset_sgl_fn == NULL, this is a contig payload, and contig_or_cb_arg contains the
* virtual memory address of a single virtually contiguous buffer.
*
* If reset_sgl_fn != NULL, this is a SGL payload, and contig_or_cb_arg contains the
* cb_arg that will be passed to the SGL callback functions.
*/
void *contig_or_cb_arg;
/** Virtual memory address of a single virtually contiguous metadata buffer */
void *md;
};
#define NVME_PAYLOAD_CONTIG(contig_, md_) \
(struct nvme_payload) { \
.reset_sgl_fn = NULL, \
.next_sge_fn = NULL, \
.contig_or_cb_arg = (contig_), \
.md = (md_), \
}
#define NVME_PAYLOAD_SGL(reset_sgl_fn_, next_sge_fn_, cb_arg_, md_) \
(struct nvme_payload) { \
.reset_sgl_fn = (reset_sgl_fn_), \
.next_sge_fn = (next_sge_fn_), \
.contig_or_cb_arg = (cb_arg_), \
.md = (md_), \
}
static inline enum nvme_payload_type
nvme_payload_type(const struct nvme_payload *payload) {
return payload->reset_sgl_fn ? NVME_PAYLOAD_TYPE_SGL : NVME_PAYLOAD_TYPE_CONTIG;
}
struct nvme_error_cmd {
bool do_not_submit;
uint64_t timeout_tsc;
uint32_t err_count;
uint8_t opc;
struct spdk_nvme_status status;
TAILQ_ENTRY(nvme_error_cmd) link;
};
struct nvme_request {
struct spdk_nvme_cmd cmd;
uint8_t retries;
uint8_t timed_out : 1;
/**
* True if the request is in the queued_req list.
*/
uint8_t queued : 1;
uint8_t reserved : 6;
/**
* Number of children requests still outstanding for this
* request which was split into multiple child requests.
*/
uint16_t num_children;
/**
* Offset in bytes from the beginning of payload for this request.
* This is used for I/O commands that are split into multiple requests.
*/
uint32_t payload_offset;
uint32_t md_offset;
uint32_t payload_size;
/**
* Timeout ticks for error injection requests, can be extended in future
* to support per-request timeout feature.
*/
uint64_t timeout_tsc;
/**
* Data payload for this request's command.
*/
struct nvme_payload payload;
spdk_nvme_cmd_cb cb_fn;
void *cb_arg;
STAILQ_ENTRY(nvme_request) stailq;
struct spdk_nvme_qpair *qpair;
/*
* The value of spdk_get_ticks() when the request was submitted to the hardware.
* Only set if ctrlr->timeout_enabled is true.
*/
uint64_t submit_tick;
/**
* The active admin request can be moved to a per process pending
* list based on the saved pid to tell which process it belongs
* to. The cpl saves the original completion information which
* is used in the completion callback.
* NOTE: these below two fields are only used for admin request.
*/
pid_t pid;
struct spdk_nvme_cpl cpl;
uint32_t md_size;
/**
* The following members should not be reordered with members
* above. These members are only needed when splitting
* requests which is done rarely, and the driver is careful
* to not touch the following fields until a split operation is
* needed, to avoid touching an extra cacheline.
*/
/**
* Points to the outstanding child requests for a parent request.
* Only valid if a request was split into multiple children
* requests, and is not initialized for non-split requests.
*/
TAILQ_HEAD(, nvme_request) children;
/**
* Linked-list pointers for a child request in its parent's list.
*/
TAILQ_ENTRY(nvme_request) child_tailq;
/**
* Points to a parent request if part of a split request,
* NULL otherwise.
*/
struct nvme_request *parent;
/**
* Completion status for a parent request. Initialized to all 0's
* (SUCCESS) before child requests are submitted. If a child
* request completes with error, the error status is copied here,
* to ensure that the parent request is also completed with error
* status once all child requests are completed.
*/
struct spdk_nvme_cpl parent_status;
/**
* The user_cb_fn and user_cb_arg fields are used for holding the original
* callback data when using nvme_allocate_request_user_copy.
*/
spdk_nvme_cmd_cb user_cb_fn;
void *user_cb_arg;
void *user_buffer;
};
struct nvme_completion_poll_status {
struct spdk_nvme_cpl cpl;
uint64_t timeout_tsc;
/**
* DMA buffer retained throughout the duration of the command. It'll be released
* automatically if the command times out, otherwise the user is responsible for freeing it.
*/
void *dma_data;
bool done;
/* This flag indicates that the request has been timed out and the memory
must be freed in a completion callback */
bool timed_out;
};
struct nvme_async_event_request {
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_request *req;
struct spdk_nvme_cpl cpl;
};
enum nvme_qpair_state {
NVME_QPAIR_DISCONNECTED,
NVME_QPAIR_DISCONNECTING,
NVME_QPAIR_CONNECTING,
NVME_QPAIR_CONNECTED,
NVME_QPAIR_ENABLING,
NVME_QPAIR_ENABLED,
NVME_QPAIR_DESTROYING,
};
struct spdk_nvme_qpair {
struct spdk_nvme_ctrlr *ctrlr;
uint16_t id;
uint8_t qprio;
uint8_t state : 3;
uint8_t async: 1;
uint8_t is_new_qpair: 1;
/*
* Members for handling IO qpair deletion inside of a completion context.
* These are specifically defined as single bits, so that they do not
* push this data structure out to another cacheline.
*/
uint8_t in_completion_context : 1;
uint8_t delete_after_completion_context: 1;
/*
* Set when no deletion notification is needed. For example, the process
* which allocated this qpair exited unexpectedly.
*/
uint8_t no_deletion_notification_needed: 1;
uint8_t first_fused_submitted: 1;
uint8_t transport_failure_reason: 2;
uint8_t last_transport_failure_reason: 2;
enum spdk_nvme_transport_type trtype;
STAILQ_HEAD(, nvme_request) free_req;
STAILQ_HEAD(, nvme_request) queued_req;
STAILQ_HEAD(, nvme_request) aborting_queued_req;
/* List entry for spdk_nvme_transport_poll_group::qpairs */
STAILQ_ENTRY(spdk_nvme_qpair) poll_group_stailq;
/** Commands opcode in this list will return error */
TAILQ_HEAD(, nvme_error_cmd) err_cmd_head;
/** Requests in this list will return error */
STAILQ_HEAD(, nvme_request) err_req_head;
/* List entry for spdk_nvme_ctrlr::active_io_qpairs */
TAILQ_ENTRY(spdk_nvme_qpair) tailq;
/* List entry for spdk_nvme_ctrlr_process::allocated_io_qpairs */
TAILQ_ENTRY(spdk_nvme_qpair) per_process_tailq;
struct spdk_nvme_ctrlr_process *active_proc;
struct spdk_nvme_transport_poll_group *poll_group;
void *poll_group_tailq_head;
void *req_buf;
const struct spdk_nvme_transport *transport;
struct nvme_completion_poll_status *poll_status;
};
struct spdk_nvme_poll_group {
void *ctx;
struct spdk_nvme_accel_fn_table accel_fn_table;
STAILQ_HEAD(, spdk_nvme_transport_poll_group) tgroups;
};
struct spdk_nvme_transport_poll_group {
struct spdk_nvme_poll_group *group;
const struct spdk_nvme_transport *transport;
STAILQ_HEAD(, spdk_nvme_qpair) connected_qpairs;
STAILQ_HEAD(, spdk_nvme_qpair) disconnected_qpairs;
STAILQ_ENTRY(spdk_nvme_transport_poll_group) link;
bool in_completion_context;
uint64_t num_qpairs_to_delete;
};
struct spdk_nvme_ns {
struct spdk_nvme_ctrlr *ctrlr;
uint32_t sector_size;
/*
* Size of data transferred as part of each block,
* including metadata if FLBAS indicates the metadata is transferred
* as part of the data buffer at the end of each LBA.
*/
uint32_t extended_lba_size;
uint32_t md_size;
uint32_t pi_type;
uint32_t sectors_per_max_io;
uint32_t sectors_per_max_io_no_md;
uint32_t sectors_per_stripe;
uint32_t id;
uint16_t flags;
/* Command Set Identifier */
enum spdk_nvme_csi csi;
/* Namespace Identification Descriptor List (CNS = 03h) */
uint8_t id_desc_list[4096];
uint32_t ana_group_id;
enum spdk_nvme_ana_state ana_state;
/* Identify Namespace data. */
struct spdk_nvme_ns_data nsdata;
/* Zoned Namespace Command Set Specific Identify Namespace data. */
struct spdk_nvme_zns_ns_data *nsdata_zns;
};
/**
* State of struct spdk_nvme_ctrlr (in particular, during initialization).
*/
enum nvme_ctrlr_state {
/**
* Wait before initializing the controller.
*/
NVME_CTRLR_STATE_INIT_DELAY,
/**
* Connect the admin queue.
*/
NVME_CTRLR_STATE_CONNECT_ADMINQ,
/**
* Controller has not started initialized yet.
*/
NVME_CTRLR_STATE_INIT = NVME_CTRLR_STATE_CONNECT_ADMINQ,
/**
* Waiting for admin queue to connect.
*/
NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
/**
* Read Version (VS) register.
*/
NVME_CTRLR_STATE_READ_VS,
/**
* Waiting for Version (VS) register to be read.
*/
NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS,
/**
* Read Capabilities (CAP) register.
*/
NVME_CTRLR_STATE_READ_CAP,
/**
* Waiting for Capabilities (CAP) register to be read.
*/
NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP,
/**
* Check EN to prepare for controller initialization.
*/
NVME_CTRLR_STATE_CHECK_EN,
/**
* Waiting for CC to be read as part of EN check.
*/
NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 so that CC.EN may be set to 0.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
/**
* Waiting for CSTS register to be read as part of waiting for CSTS.RDY = 1.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
/**
* Disabling the controller by setting CC.EN to 0.
*/
NVME_CTRLR_STATE_SET_EN_0,
/**
* Waiting for the CC register to be read as part of disabling the controller.
*/
NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
/**
* Waiting for CSTS.RDY to transition from 1 to 0 so that CC.EN may be set to 1.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
/**
* Waiting for CSTS register to be read as part of waiting for CSTS.RDY = 0.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
/**
* Enable the controller by writing CC.EN to 1
*/
NVME_CTRLR_STATE_ENABLE,
/**
* Waiting for CC register to be written as part of enabling the controller.
*/
NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 after enabling the controller.
*/
NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
/**
* Waiting for CSTS register to be read as part of waiting for CSTS.RDY = 1.
*/
NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
/**
* Reset the Admin queue of the controller.
*/
NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
/**
* Identify Controller command will be sent to then controller.
*/
NVME_CTRLR_STATE_IDENTIFY,
/**
* Waiting for Identify Controller command be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
/**
* Configure AER of the controller.
*/
NVME_CTRLR_STATE_CONFIGURE_AER,
/**
* Waiting for the Configure AER to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
/**
* Set Keep Alive Timeout of the controller.
*/
NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
/**
* Waiting for Set Keep Alive Timeout to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
/**
* Get Identify I/O Command Set Specific Controller data structure.
*/
NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
/**
* Waiting for Identify I/O Command Set Specific Controller command to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
/**
* Get Commands Supported and Effects log page for the Zoned Namespace Command Set.
*/
NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
/**
* Waiting for the Get Log Page command to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
/**
* Set Number of Queues of the controller.
*/
NVME_CTRLR_STATE_SET_NUM_QUEUES,
/**
* Waiting for Set Num of Queues command to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
/**
* Get active Namespace list of the controller.
*/
NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
/**
* Waiting for the Identify Active Namespace commands to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
/**
* Get Identify Namespace Data structure for each NS.
*/
NVME_CTRLR_STATE_IDENTIFY_NS,
/**
* Waiting for the Identify Namespace commands to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
/**
* Get Identify Namespace Identification Descriptors.
*/
NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
/**
* Get Identify I/O Command Set Specific Namespace data structure for each NS.
*/
NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
/**
* Waiting for the Identify I/O Command Set Specific Namespace commands to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
/**
* Waiting for the Identify Namespace Identification
* Descriptors to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
/**
* Set supported log pages of the controller.
*/
NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
/**
* Set supported log pages of INTEL controller.
*/
NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
/**
* Waiting for supported log pages of INTEL controller.
*/
NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
/**
* Set supported features of the controller.
*/
NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
/**
* Set Doorbell Buffer Config of the controller.
*/
NVME_CTRLR_STATE_SET_DB_BUF_CFG,
/**
* Waiting for Doorbell Buffer Config to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
/**
* Set Host ID of the controller.
*/
NVME_CTRLR_STATE_SET_HOST_ID,
/**
* Waiting for Set Host ID to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
/**
* Controller initialization has completed and the controller is ready.
*/
NVME_CTRLR_STATE_READY,
/**
* Controller initialization has an error.
*/
NVME_CTRLR_STATE_ERROR
};
#define NVME_TIMEOUT_INFINITE 0
#define NVME_TIMEOUT_KEEP_EXISTING UINT64_MAX
struct spdk_nvme_ctrlr_aer_completion_list {
struct spdk_nvme_cpl cpl;
STAILQ_ENTRY(spdk_nvme_ctrlr_aer_completion_list) link;
};
/*
* Used to track properties for all processes accessing the controller.
*/
struct spdk_nvme_ctrlr_process {
/** Whether it is the primary process */
bool is_primary;
/** Process ID */
pid_t pid;
/** Active admin requests to be completed */
STAILQ_HEAD(, nvme_request) active_reqs;
TAILQ_ENTRY(spdk_nvme_ctrlr_process) tailq;
/** Per process PCI device handle */
struct spdk_pci_device *devhandle;
/** Reference to track the number of attachment to this controller. */
int ref;
/** Allocated IO qpairs */
TAILQ_HEAD(, spdk_nvme_qpair) allocated_io_qpairs;
spdk_nvme_aer_cb aer_cb_fn;
void *aer_cb_arg;
/**
* A function pointer to timeout callback function
*/
spdk_nvme_timeout_cb timeout_cb_fn;
void *timeout_cb_arg;
/** separate timeout values for io vs. admin reqs */
uint64_t timeout_io_ticks;
uint64_t timeout_admin_ticks;
/** List to publish AENs to all procs in multiprocess setup */
STAILQ_HEAD(, spdk_nvme_ctrlr_aer_completion_list) async_events;
};
struct nvme_register_completion {
struct spdk_nvme_cpl cpl;
uint64_t value;
spdk_nvme_reg_cb cb_fn;
void *cb_ctx;
STAILQ_ENTRY(nvme_register_completion) stailq;
};
/*
* One of these per allocated PCI device.
*/
struct spdk_nvme_ctrlr {
/* Hot data (accessed in I/O path) starts here. */
/** Array of namespaces indexed by nsid - 1 */
struct spdk_nvme_ns *ns;
uint32_t num_ns;
bool is_removed;
bool is_resetting;
bool is_failed;
bool is_destructed;
bool timeout_enabled;
/* The application is preparing to reset the controller. Transports
* can use this to skip unnecessary parts of the qpair deletion process
* for example, like the DELETE_SQ/CQ commands.
*/
bool prepare_for_reset;
uint16_t max_sges;
uint16_t cntlid;
/** Controller support flags */
uint64_t flags;
/** NVMEoF in-capsule data size in bytes */
uint32_t ioccsz_bytes;
/** NVMEoF in-capsule data offset in 16 byte units */
uint16_t icdoff;
/* Cold data (not accessed in normal I/O path) is after this point. */
struct spdk_nvme_transport_id trid;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
int state;
uint64_t state_timeout_tsc;
uint64_t next_keep_alive_tick;
uint64_t keep_alive_interval_ticks;
TAILQ_ENTRY(spdk_nvme_ctrlr) tailq;
/** All the log pages supported */
bool log_page_supported[256];
/** All the features supported */
bool feature_supported[256];
/** maximum i/o size in bytes */
uint32_t max_xfer_size;
/** minimum page size supported by this controller in bytes */
uint32_t min_page_size;
/** selected memory page size for this controller in bytes */
uint32_t page_size;
uint32_t num_aers;
struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS];
/** guards access to the controller itself, including admin queues */
pthread_mutex_t ctrlr_lock;
struct spdk_nvme_qpair *adminq;
/** shadow doorbell buffer */
uint32_t *shadow_doorbell;
/** eventidx buffer */
uint32_t *eventidx;
/**
* Identify Controller data.
*/
struct spdk_nvme_ctrlr_data cdata;
/**
* Zoned Namespace Command Set Specific Identify Controller data.
*/
struct spdk_nvme_zns_ctrlr_data *cdata_zns;
/**
* Keep track of active namespaces
*/
uint32_t active_ns_count;
uint32_t *active_ns_list;
struct spdk_bit_array *free_io_qids;
TAILQ_HEAD(, spdk_nvme_qpair) active_io_qpairs;
struct spdk_nvme_ctrlr_opts opts;
uint64_t quirks;
/* Extra sleep time during controller initialization */
uint64_t sleep_timeout_tsc;
/** Track all the processes manage this controller */
TAILQ_HEAD(, spdk_nvme_ctrlr_process) active_procs;
STAILQ_HEAD(, nvme_request) queued_aborts;
uint32_t outstanding_aborts;
/* CB to notify the user when the ctrlr is removed/failed. */
spdk_nvme_remove_cb remove_cb;
void *cb_ctx;
struct spdk_nvme_qpair *external_io_msgs_qpair;
pthread_mutex_t external_io_msgs_lock;
struct spdk_ring *external_io_msgs;
STAILQ_HEAD(, nvme_io_msg_producer) io_producers;
struct spdk_nvme_ana_page *ana_log_page;
struct spdk_nvme_ana_group_descriptor *copied_ana_desc;
uint32_t ana_log_page_size;
/* scratchpad pointer that can be used to send data between two NVME_CTRLR_STATEs */
void *tmp_ptr;
/* maximum zone append size in bytes */
uint32_t max_zone_append_size;
/* PMR size in bytes */
uint64_t pmr_size;
/* Boot Partition Info */
enum nvme_bp_write_state bp_ws;
uint32_t bpid;
spdk_nvme_cmd_cb bp_write_cb_fn;
void *bp_write_cb_arg;
/* Firmware Download */
void *fw_payload;
unsigned int fw_size_remaining;
unsigned int fw_offset;
unsigned int fw_transfer_size;
/* Completed register operations */
STAILQ_HEAD(, nvme_register_completion) register_operations;
union spdk_nvme_cc_register process_init_cc;
};
struct spdk_nvme_probe_ctx {
struct spdk_nvme_transport_id trid;
void *cb_ctx;
spdk_nvme_probe_cb probe_cb;
spdk_nvme_attach_cb attach_cb;
spdk_nvme_remove_cb remove_cb;
TAILQ_HEAD(, spdk_nvme_ctrlr) init_ctrlrs;
};
typedef void (*nvme_ctrlr_detach_cb)(struct spdk_nvme_ctrlr *ctrlr);
enum nvme_ctrlr_detach_state {
NVME_CTRLR_DETACH_SET_CC,
NVME_CTRLR_DETACH_CHECK_CSTS,
NVME_CTRLR_DETACH_GET_CSTS,
NVME_CTRLR_DETACH_GET_CSTS_DONE,
};
struct nvme_ctrlr_detach_ctx {
struct spdk_nvme_ctrlr *ctrlr;
nvme_ctrlr_detach_cb cb_fn;
uint64_t shutdown_start_tsc;
uint32_t shutdown_timeout_ms;
bool shutdown_complete;
enum nvme_ctrlr_detach_state state;
union spdk_nvme_csts_register csts;
TAILQ_ENTRY(nvme_ctrlr_detach_ctx) link;
};
struct spdk_nvme_detach_ctx {
TAILQ_HEAD(, nvme_ctrlr_detach_ctx) head;
};
struct spdk_nvme_ctrlr_reset_ctx {
struct spdk_nvme_ctrlr *ctrlr;
};
struct nvme_driver {
pthread_mutex_t lock;
/** Multi-process shared attached controller list */
TAILQ_HEAD(, spdk_nvme_ctrlr) shared_attached_ctrlrs;
bool initialized;
struct spdk_uuid default_extended_host_id;
/** netlink socket fd for hotplug messages */
int hotplug_fd;
};
extern struct nvme_driver *g_spdk_nvme_driver;
int nvme_driver_init(void);
#define nvme_delay usleep
static inline bool
nvme_qpair_is_admin_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id == 0;
}
static inline bool
nvme_qpair_is_io_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id != 0;
}
static inline int
nvme_robust_mutex_lock(pthread_mutex_t *mtx)
{
int rc = pthread_mutex_lock(mtx);
#ifndef __FreeBSD__
if (rc == EOWNERDEAD) {
rc = pthread_mutex_consistent(mtx);
}
#endif
return rc;
}
static inline int
nvme_robust_mutex_unlock(pthread_mutex_t *mtx)
{
return pthread_mutex_unlock(mtx);
}
/* Poll group management functions. */
int nvme_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair);
int nvme_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair);
/* Admin functions */
int nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr,
uint8_t cns, uint16_t cntid, uint32_t nsid,
uint8_t csi, void *payload, size_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr,
uint32_t num_queues, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr,
union spdk_nvme_feat_async_event_configuration config,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_host_id(struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr,
uint64_t prp1, uint64_t prp2,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_fw_commit *fw_commit,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr,
uint32_t size, uint32_t offset, void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_sanitize(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_sanitize *sanitize, uint32_t cdw11,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl);
int nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status);
int nvme_wait_for_completion_robust_lock(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex);
int nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
uint64_t timeout_in_usecs);
int nvme_wait_for_completion_robust_lock_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex,
uint64_t timeout_in_usecs);
int nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex);
struct spdk_nvme_ctrlr_process *nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr,
pid_t pid);
struct spdk_nvme_ctrlr_process *nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle);
void nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr);
struct spdk_pci_device *nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle);
int nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_ctrlr_detach_ctx *ctx);
int nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_ctrlr_detach_ctx *ctx);
void nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove);
int nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_request *req);
int nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap);
int nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs);
int nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz);
int nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap);
int nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo);
int nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel);
int nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value);
bool nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_cpl *cpl);
void nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair);
void nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr);
int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
struct spdk_nvme_ctrlr *ctrlr,
enum spdk_nvme_qprio qprio,
uint32_t num_requests, bool async);
void nvme_qpair_deinit(struct spdk_nvme_qpair *qpair);
void nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair);
int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req);
void nvme_qpair_abort_all_queued_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
uint32_t nvme_qpair_abort_queued_reqs_with_cbarg(struct spdk_nvme_qpair *qpair, void *cmd_cb_arg);
void nvme_qpair_abort_queued_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
void nvme_qpair_resubmit_requests(struct spdk_nvme_qpair *qpair, uint32_t num_requests);
int nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ns_set_identify_data(struct spdk_nvme_ns *ns);
void nvme_ns_set_id_desc_list_data(struct spdk_nvme_ns *ns);
void nvme_ns_free_zns_specific_data(struct spdk_nvme_ns *ns);
void nvme_ns_free_iocs_specific_data(struct spdk_nvme_ns *ns);
bool nvme_ns_has_supported_iocs_specific_data(struct spdk_nvme_ns *ns);
int nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id,
struct spdk_nvme_ctrlr *ctrlr);
void nvme_ns_destruct(struct spdk_nvme_ns *ns);
int nvme_ns_cmd_zone_append_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
void *buffer, void *metadata, uint64_t zslba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag);
int nvme_ns_cmd_zone_appendv_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t zslba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn, void *metadata,
uint16_t apptag_mask, uint16_t apptag);
int nvme_fabric_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value);
int nvme_fabric_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value);
int nvme_fabric_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value);
int nvme_fabric_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value);
int nvme_fabric_ctrlr_set_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint32_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_fabric_ctrlr_set_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint64_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_fabric_ctrlr_get_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_fabric_ctrlr_get_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_fabric_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect);
int nvme_fabric_ctrlr_discover(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_probe_ctx *probe_ctx);
int nvme_fabric_qpair_connect(struct spdk_nvme_qpair *qpair, uint32_t num_entries);
int nvme_fabric_qpair_connect_async(struct spdk_nvme_qpair *qpair, uint32_t num_entries);
int nvme_fabric_qpair_connect_poll(struct spdk_nvme_qpair *qpair);
typedef int (*spdk_nvme_parse_ana_log_page_cb)(
const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
int nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg);
static inline struct nvme_request *
nvme_allocate_request(struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload, uint32_t payload_size, uint32_t md_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = STAILQ_FIRST(&qpair->free_req);
if (req == NULL) {
return req;
}
STAILQ_REMOVE_HEAD(&qpair->free_req, stailq);
/*
* Only memset/zero fields that need it. All other fields
* will be initialized appropriately either later in this
* function, or before they are needed later in the
* submission patch. For example, the children
* TAILQ_ENTRY and following members are
* only used as part of I/O splitting so we avoid
* memsetting them until it is actually needed.
* They will be initialized in nvme_request_add_child()
* if the request is split.
*/
memset(req, 0, offsetof(struct nvme_request, payload_size));
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->payload = *payload;
req->payload_size = payload_size;
req->md_size = md_size;
req->pid = g_spdk_nvme_pid;
req->submit_tick = 0;
return req;
}
static inline struct nvme_request *
nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_payload payload;
payload = NVME_PAYLOAD_CONTIG(buffer, NULL);
return nvme_allocate_request(qpair, &payload, payload_size, 0, cb_fn, cb_arg);
}
static inline struct nvme_request *
nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg);
}
struct nvme_request *nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller);
static inline void
nvme_complete_request(spdk_nvme_cmd_cb cb_fn, void *cb_arg, struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_cpl err_cpl;
struct nvme_error_cmd *cmd;
/* error injection at completion path,
* only inject for successful completed commands
*/
if (spdk_unlikely(!TAILQ_EMPTY(&qpair->err_cmd_head) &&
!spdk_nvme_cpl_is_error(cpl))) {
TAILQ_FOREACH(cmd, &qpair->err_cmd_head, link) {
if (cmd->do_not_submit) {
continue;
}
if ((cmd->opc == req->cmd.opc) && cmd->err_count) {
err_cpl = *cpl;
err_cpl.status.sct = cmd->status.sct;
err_cpl.status.sc = cmd->status.sc;
cpl = &err_cpl;
cmd->err_count--;
break;
}
}
}
if (cb_fn) {
cb_fn(cb_arg, cpl);
}
}
static inline void
nvme_free_request(struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
assert(req->qpair != NULL);
STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq);
}
static inline void
nvme_qpair_set_state(struct spdk_nvme_qpair *qpair, enum nvme_qpair_state state)
{
qpair->state = state;
if (state == NVME_QPAIR_ENABLED) {
qpair->is_new_qpair = false;
}
}
static inline enum nvme_qpair_state
nvme_qpair_get_state(struct spdk_nvme_qpair *qpair) {
return qpair->state;
}
static inline void
nvme_qpair_free_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq);
}
static inline void
nvme_request_remove_child(struct nvme_request *parent, struct nvme_request *child)
{
assert(parent != NULL);
assert(child != NULL);
assert(child->parent == parent);
assert(parent->num_children != 0);
parent->num_children--;
child->parent = NULL;
TAILQ_REMOVE(&parent->children, child, child_tailq);
}
static inline void
nvme_cb_complete_child(void *child_arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *child = child_arg;
struct nvme_request *parent = child->parent;
nvme_request_remove_child(parent, child);
if (spdk_nvme_cpl_is_error(cpl)) {
memcpy(&parent->parent_status, cpl, sizeof(*cpl));
}
if (parent->num_children == 0) {
nvme_complete_request(parent->cb_fn, parent->cb_arg, parent->qpair,
parent, &parent->parent_status);
nvme_free_request(parent);
}
}
static inline void
nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child)
{
assert(parent->num_children != UINT16_MAX);
if (parent->num_children == 0) {
/*
* Defer initialization of the children TAILQ since it falls
* on a separate cacheline. This ensures we do not touch this
* cacheline except on request splitting cases, which are
* relatively rare.
*/
TAILQ_INIT(&parent->children);
parent->parent = NULL;
memset(&parent->parent_status, 0, sizeof(struct spdk_nvme_cpl));
}
parent->num_children++;
TAILQ_INSERT_TAIL(&parent->children, child, child_tailq);
child->parent = parent;
child->cb_fn = nvme_cb_complete_child;
child->cb_arg = child;
}
static inline void
nvme_request_free_children(struct nvme_request *req)
{
struct nvme_request *child, *tmp;
if (req->num_children == 0) {
return;
}
/* free all child nvme_request */
TAILQ_FOREACH_SAFE(child, &req->children, child_tailq, tmp) {
nvme_request_remove_child(req, child);
nvme_request_free_children(child);
nvme_free_request(child);
}
}
int nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
struct spdk_nvme_ctrlr_process *active_proc, uint64_t now_tick);
uint64_t nvme_get_quirks(const struct spdk_pci_id *id);
int nvme_robust_mutex_init_shared(pthread_mutex_t *mtx);
int nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx);
bool nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl);
struct spdk_nvme_ctrlr *nvme_get_ctrlr_by_trid_unsafe(
const struct spdk_nvme_transport_id *trid);
const struct spdk_nvme_transport *nvme_get_transport(const char *transport_name);
const struct spdk_nvme_transport *nvme_get_first_transport(void);
const struct spdk_nvme_transport *nvme_get_next_transport(const struct spdk_nvme_transport
*transport);
void nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr);
/* Transport specific functions */
struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle);
int nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect);
int nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value);
int nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value);
int nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value);
int nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value);
int nvme_transport_ctrlr_set_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint32_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_transport_ctrlr_set_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint64_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_transport_ctrlr_get_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg);
int nvme_transport_ctrlr_get_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg);
uint32_t nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr);
uint16_t nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr);
struct spdk_nvme_qpair *nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts);
int nvme_transport_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr);
void *nvme_transport_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size);
int nvme_transport_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr);
void *nvme_transport_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size);
int nvme_transport_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr);
void nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
int nvme_transport_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
void nvme_transport_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
int nvme_transport_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
struct spdk_memory_domain **domains, int array_size);
void nvme_transport_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
int nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair);
int nvme_transport_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req);
int32_t nvme_transport_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions);
void nvme_transport_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair);
int nvme_transport_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
int (*iter_fn)(struct nvme_request *req, void *arg),
void *arg);
struct spdk_nvme_transport_poll_group *nvme_transport_poll_group_create(
const struct spdk_nvme_transport *transport);
struct spdk_nvme_transport_poll_group *nvme_transport_qpair_get_optimal_poll_group(
const struct spdk_nvme_transport *transport,
struct spdk_nvme_qpair *qpair);
int nvme_transport_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair);
int nvme_transport_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair);
int nvme_transport_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair);
int nvme_transport_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair);
int64_t nvme_transport_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb);
int nvme_transport_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup);
int nvme_transport_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat **stats);
void nvme_transport_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat *stats);
enum spdk_nvme_transport_type nvme_transport_get_trtype(const struct spdk_nvme_transport
*transport);
/*
* Below ref related functions must be called with the global
* driver lock held for the multi-process condition.
* Within these functions, the per ctrlr ctrlr_lock is also
* acquired for the multi-thread condition.
*/
void nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr);
static inline bool
_is_page_aligned(uint64_t address, uint64_t page_size)
{
return (address & (page_size - 1)) == 0;
}
#endif /* __NVME_INTERNAL_H__ */