numam-spdk/lib/nvme/nvme.c
Changpeng Liu 8d6f48fbf8 nvme: set transport string before the probe based on transport type
Users may only set the transport type, but for the actual probe
process, the trstring field is mandatory, so set the trstring
based on transport type at first.  Also remove unnecessary
spdk_nvme_trid_populate_transport() call from each transport
module.

Fix #1228.

Change-Id: I2378065945cf725df4b1997293a737c101969e69
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/1001
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2020-02-26 09:26:09 +00:00

1279 lines
32 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/nvmf_spec.h"
#include "nvme_internal.h"
#include "nvme_io_msg.h"
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
struct nvme_driver *g_spdk_nvme_driver;
pid_t g_spdk_nvme_pid;
/* gross timeout of 180 seconds in milliseconds */
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
/* Per-process attached controller list */
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
static bool
nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
{
return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
}
void
nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
struct spdk_nvme_ctrlr *ctrlr)
{
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
}
int
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
nvme_ctrlr_proc_put_ref(ctrlr);
if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
nvme_io_msg_ctrlr_detach(ctrlr);
if (nvme_ctrlr_shared(ctrlr)) {
TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
} else {
TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
}
nvme_ctrlr_destruct(ctrlr);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_completion_poll_status *status = arg;
if (status->timed_out) {
/* There is no routine waiting for the completion of this request, free allocated memory */
free(status);
return;
}
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
status->done = true;
}
/**
* Poll qpair for completions until a command completes.
*
* \param qpair queue to poll
* \param status completion status
* \param robust_mutex optional robust mutex to lock while polling qpair
*
* \return 0 if command completed without error,
* -EIO if command completed with error,
* -ECANCELED if command is not completed due to transport/device error
*
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
* and status as the callback argument.
*/
int
spdk_nvme_wait_for_completion_robust_lock(
struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex)
{
memset(status, 0, sizeof(*status));
int rc;
while (status->done == false) {
if (robust_mutex) {
nvme_robust_mutex_lock(robust_mutex);
}
rc = spdk_nvme_qpair_process_completions(qpair, 0);
if (robust_mutex) {
nvme_robust_mutex_unlock(robust_mutex);
}
if (rc < 0) {
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
if (status->done == false) {
status->timed_out = true;
}
return -ECANCELED;
}
}
return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
}
int
spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status)
{
return spdk_nvme_wait_for_completion_robust_lock(qpair, status, NULL);
}
/**
* Poll qpair for completions until a command completes.
*
* \param qpair queue to poll
* \param status completion status
* \param timeout_in_secs optional timeout
*
* \return 0 if command completed without error,
* -EIO if command completed with error,
* -ECANCELED if command is not completed due to transport/device error or time expired
*
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
* and status as the callback argument.
*/
int
spdk_nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
uint64_t timeout_in_secs)
{
uint64_t timeout_tsc = 0;
int rc = 0;
memset(status, 0, sizeof(*status));
if (timeout_in_secs) {
timeout_tsc = spdk_get_ticks() + timeout_in_secs * spdk_get_ticks_hz();
}
while (status->done == false) {
rc = spdk_nvme_qpair_process_completions(qpair, 0);
if (rc < 0) {
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
break;
}
if (timeout_tsc && spdk_get_ticks() > timeout_tsc) {
break;
}
}
if (status->done == false || rc < 0) {
if (status->done == false) {
status->timed_out = true;
}
return -ECANCELED;
}
return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
}
static void
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *req = arg;
enum spdk_nvme_data_transfer xfer;
if (req->user_buffer && req->payload_size) {
/* Copy back to the user buffer and free the contig buffer */
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
assert(req->pid == getpid());
memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
}
spdk_free(req->payload.contig_or_cb_arg);
}
/* Call the user's original callback now that the buffer has been copied */
req->user_cb_fn(req->user_cb_arg, cpl);
}
/**
* Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
*
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
* where the overhead of a copy is not a problem.
*/
struct nvme_request *
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, bool host_to_controller)
{
struct nvme_request *req;
void *dma_buffer = NULL;
if (buffer && payload_size) {
dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!dma_buffer) {
return NULL;
}
if (host_to_controller) {
memcpy(dma_buffer, buffer, payload_size);
}
}
req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
NULL);
if (!req) {
spdk_free(dma_buffer);
return NULL;
}
req->user_cb_fn = cb_fn;
req->user_cb_arg = cb_arg;
req->user_buffer = buffer;
req->cb_arg = req;
return req;
}
/**
* Check if a request has exceeded the controller timeout.
*
* \param req request to check for timeout.
* \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
* \param active_proc per-process data for the controller associated with req
* \param now_tick current time from spdk_get_ticks()
* \return 0 if requests submitted more recently than req should still be checked for timeouts, or
* 1 if requests newer than req need not be checked.
*
* The request's timeout callback will be called if needed; the caller is only responsible for
* calling this function on each outstanding request.
*/
int
nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
struct spdk_nvme_ctrlr_process *active_proc,
uint64_t now_tick)
{
struct spdk_nvme_qpair *qpair = req->qpair;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
assert(active_proc->timeout_cb_fn != NULL);
if (req->timed_out || req->submit_tick == 0) {
return 0;
}
if (req->pid != g_spdk_nvme_pid) {
return 0;
}
if (nvme_qpair_is_admin_queue(qpair) &&
req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
return 0;
}
if (req->submit_tick + active_proc->timeout_ticks > now_tick) {
return 1;
}
req->timed_out = true;
/*
* We don't want to expose the admin queue to the user,
* so when we're timing out admin commands set the
* qpair to NULL.
*/
active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
cid);
return 0;
}
int
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
{
int rc = 0;
#ifdef __FreeBSD__
pthread_mutex_init(mtx, NULL);
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr)) {
return -1;
}
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
pthread_mutex_init(mtx, &attr)) {
rc = -1;
}
pthread_mutexattr_destroy(&attr);
#endif
return rc;
}
int
nvme_driver_init(void)
{
int ret = 0;
/* Any socket ID */
int socket_id = -1;
/* Each process needs its own pid. */
g_spdk_nvme_pid = getpid();
/*
* Only one thread from one process will do this driver init work.
* The primary process will reserve the shared memory and do the
* initialization.
* The secondary process will lookup the existing reserved memory.
*/
if (spdk_process_is_primary()) {
/* The unique named memzone already reserved. */
if (g_spdk_nvme_driver != NULL) {
return 0;
} else {
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
sizeof(struct nvme_driver), socket_id,
SPDK_MEMZONE_NO_IOVA_CONTIG);
}
if (g_spdk_nvme_driver == NULL) {
SPDK_ERRLOG("primary process failed to reserve memory\n");
return -1;
}
} else {
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
/* The unique named memzone already reserved by the primary process. */
if (g_spdk_nvme_driver != NULL) {
int ms_waited = 0;
/* Wait the nvme driver to get initialized. */
while ((g_spdk_nvme_driver->initialized == false) &&
(ms_waited < g_nvme_driver_timeout_ms)) {
ms_waited++;
nvme_delay(1000); /* delay 1ms */
}
if (g_spdk_nvme_driver->initialized == false) {
SPDK_ERRLOG("timeout waiting for primary process to init\n");
return -1;
}
} else {
SPDK_ERRLOG("primary process is not started yet\n");
return -1;
}
return 0;
}
/*
* At this moment, only one thread from the primary process will do
* the g_spdk_nvme_driver initialization
*/
assert(spdk_process_is_primary());
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
if (ret != 0) {
SPDK_ERRLOG("failed to initialize mutex\n");
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
return ret;
}
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
g_spdk_nvme_driver->initialized = false;
TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return ret;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ctrlr_opts opts;
assert(trid != NULL);
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(trid);
if (ctrlr) {
/* This ctrlr already exists.
* Increase the ref count before calling attach_cb() as the user may
* call nvme_detach() immediately. */
nvme_ctrlr_proc_get_ref(ctrlr);
if (probe_ctx->attach_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
return 0;
}
ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
if (ctrlr == NULL) {
SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
return -1;
}
ctrlr->remove_cb = probe_ctx->remove_cb;
ctrlr->cb_ctx = probe_ctx->cb_ctx;
if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
/* If the user specifically set an IO queue size different than the
* default, use that value. Otherwise overwrite with the quirked value.
* This allows this quirk to be overridden when necessary.
*/
ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
}
nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
return 0;
}
return 1;
}
static int
nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_probe_ctx *probe_ctx)
{
int rc = 0;
rc = nvme_ctrlr_process_init(ctrlr);
if (rc) {
/* Controller failed to initialize. */
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
nvme_ctrlr_fail(ctrlr, false);
nvme_ctrlr_destruct(ctrlr);
return rc;
}
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return 0;
}
STAILQ_INIT(&ctrlr->io_producers);
/*
* Controller has been initialized.
* Move it to the attached_ctrlrs list.
*/
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
if (nvme_ctrlr_shared(ctrlr)) {
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
} else {
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
}
/*
* Increase the ref count before calling attach_cb() as the user may
* call nvme_detach() immediately.
*/
nvme_ctrlr_proc_get_ref(ctrlr);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
if (probe_ctx->attach_cb) {
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
return 0;
}
return 0;
}
static int
nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
{
int rc = 0;
while (true) {
rc = spdk_nvme_probe_poll_async(probe_ctx);
if (rc != -EAGAIN) {
return rc;
}
}
return rc;
}
/* This function must not be called while holding g_spdk_nvme_driver->lock */
static struct spdk_nvme_ctrlr *
spdk_nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_ctrlr *ctrlr;
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(trid);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return ctrlr;
}
/* This function must be called while holding g_spdk_nvme_driver->lock */
struct spdk_nvme_ctrlr *
spdk_nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_ctrlr *ctrlr;
/* Search per-process list */
TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
return ctrlr;
}
}
/* Search multi-process shared list */
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
return ctrlr;
}
}
return NULL;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
spdk_nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
int rc;
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
SPDK_ERRLOG("NVMe trtype %u not available\n", probe_ctx->trid.trtype);
return -1;
}
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
if (rc != 0) {
SPDK_ERRLOG("NVMe ctrlr scan failed\n");
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
nvme_transport_ctrlr_destruct(ctrlr);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return -1;
}
/*
* Probe controllers on the shared_attached_ctrlrs list
*/
if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
/* Do not attach other ctrlrs if user specify a valid trid */
if ((strlen(probe_ctx->trid.traddr) != 0) &&
(spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
continue;
}
/* Do not attach if we failed to initialize it in this process */
if (spdk_nvme_ctrlr_get_current_process(ctrlr) == NULL) {
continue;
}
nvme_ctrlr_proc_get_ref(ctrlr);
/*
* Unlock while calling attach_cb() so the user can call other functions
* that may take the driver lock, like nvme_detach().
*/
if (probe_ctx->attach_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
static void
spdk_nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
probe_ctx->trid = *trid;
probe_ctx->cb_ctx = cb_ctx;
probe_ctx->probe_cb = probe_cb;
probe_ctx->attach_cb = attach_cb;
probe_ctx->remove_cb = remove_cb;
TAILQ_INIT(&probe_ctx->init_ctrlrs);
}
int
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_transport_id trid_pcie;
struct spdk_nvme_probe_ctx *probe_ctx;
if (trid == NULL) {
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
trid = &trid_pcie;
}
probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
attach_cb, remove_cb);
if (!probe_ctx) {
SPDK_ERRLOG("Create probe context failed\n");
return -1;
}
/*
* Keep going even if one or more nvme_attach() calls failed,
* but maintain the value of rc to signal errors when we return.
*/
return nvme_init_controllers(probe_ctx);
}
static bool
spdk_nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
assert(requested_opts);
memcpy(opts, requested_opts, sizeof(*opts));
return true;
}
struct spdk_nvme_ctrlr *
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
{
int rc;
struct spdk_nvme_ctrlr *ctrlr = NULL;
struct spdk_nvme_probe_ctx *probe_ctx;
if (trid == NULL) {
SPDK_ERRLOG("No transport ID specified\n");
return NULL;
}
if (opts && (opts_size != sizeof(*opts))) {
SPDK_ERRLOG("Invalid opts size\n");
return NULL;
}
probe_ctx = spdk_nvme_connect_async(trid, opts, NULL);
if (!probe_ctx) {
SPDK_ERRLOG("Create probe context failed\n");
return NULL;
}
rc = nvme_init_controllers(probe_ctx);
if (rc != 0) {
return NULL;
}
ctrlr = spdk_nvme_get_ctrlr_by_trid(trid);
return ctrlr;
}
void
spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
enum spdk_nvme_transport_type trtype)
{
const char *trstring;
trid->trtype = trtype;
switch (trtype) {
case SPDK_NVME_TRANSPORT_FC:
trstring = SPDK_NVME_TRANSPORT_NAME_FC;
break;
case SPDK_NVME_TRANSPORT_PCIE:
trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
break;
case SPDK_NVME_TRANSPORT_RDMA:
trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
break;
case SPDK_NVME_TRANSPORT_TCP:
trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
break;
case SPDK_NVME_TRANSPORT_CUSTOM:
default:
SPDK_ERRLOG("don't use this for custom transports\n");
assert(0);
return;
}
snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
}
int
spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
{
int len, i, rc;
if (trstring == NULL) {
return -EINVAL;
}
len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
return -EINVAL;
}
rc = snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
if (rc < 0) {
return rc;
}
/* cast official trstring to uppercase version of input. */
for (i = 0; i < len; i++) {
trid->trstring[i] = toupper(trid->trstring[i]);
}
return 0;
}
int
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
{
if (trtype == NULL || str == NULL) {
return -EINVAL;
}
if (strcasecmp(str, "PCIe") == 0) {
*trtype = SPDK_NVME_TRANSPORT_PCIE;
} else if (strcasecmp(str, "RDMA") == 0) {
*trtype = SPDK_NVME_TRANSPORT_RDMA;
} else if (strcasecmp(str, "FC") == 0) {
*trtype = SPDK_NVME_TRANSPORT_FC;
} else if (strcasecmp(str, "TCP") == 0) {
*trtype = SPDK_NVME_TRANSPORT_TCP;
} else {
*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
}
return 0;
}
const char *
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
{
switch (trtype) {
case SPDK_NVME_TRANSPORT_PCIE:
return "PCIe";
case SPDK_NVME_TRANSPORT_RDMA:
return "RDMA";
case SPDK_NVME_TRANSPORT_FC:
return "FC";
case SPDK_NVME_TRANSPORT_TCP:
return "TCP";
case SPDK_NVME_TRANSPORT_CUSTOM:
return "CUSTOM";
default:
return NULL;
}
}
int
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
{
if (adrfam == NULL || str == NULL) {
return -EINVAL;
}
if (strcasecmp(str, "IPv4") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IPV4;
} else if (strcasecmp(str, "IPv6") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IPV6;
} else if (strcasecmp(str, "IB") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IB;
} else if (strcasecmp(str, "FC") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_FC;
} else {
return -ENOENT;
}
return 0;
}
const char *
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
{
switch (adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
return "IPv4";
case SPDK_NVMF_ADRFAM_IPV6:
return "IPv6";
case SPDK_NVMF_ADRFAM_IB:
return "IB";
case SPDK_NVMF_ADRFAM_FC:
return "FC";
default:
return NULL;
}
}
static size_t
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
{
const char *sep, *sep1;
const char *whitespace = " \t\n";
size_t key_len, val_len;
*str += strspn(*str, whitespace);
sep = strchr(*str, ':');
if (!sep) {
sep = strchr(*str, '=');
if (!sep) {
SPDK_ERRLOG("Key without ':' or '=' separator\n");
return 0;
}
} else {
sep1 = strchr(*str, '=');
if ((sep1 != NULL) && (sep1 < sep)) {
sep = sep1;
}
}
key_len = sep - *str;
if (key_len >= key_buf_size) {
SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
key_len, key_buf_size - 1);
return 0;
}
memcpy(key, *str, key_len);
key[key_len] = '\0';
*str += key_len + 1; /* Skip key: */
val_len = strcspn(*str, whitespace);
if (val_len == 0) {
SPDK_ERRLOG("Key without value\n");
return 0;
}
if (val_len >= val_buf_size) {
SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
val_len, val_buf_size - 1);
return 0;
}
memcpy(val, *str, val_len);
val[val_len] = '\0';
*str += val_len;
return val_len;
}
int
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
{
size_t val_len;
char key[32];
char val[1024];
if (trid == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse transport ID\n");
return -EINVAL;
}
if (strcasecmp(key, "trtype") == 0) {
if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
SPDK_ERRLOG("invalid transport '%s'\n", val);
return -EINVAL;
}
if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
SPDK_ERRLOG("Unknown trtype '%s'\n", val);
return -EINVAL;
}
} else if (strcasecmp(key, "adrfam") == 0) {
if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
return -EINVAL;
}
} else if (strcasecmp(key, "traddr") == 0) {
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
return -EINVAL;
}
memcpy(trid->traddr, val, val_len + 1);
} else if (strcasecmp(key, "trsvcid") == 0) {
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
return -EINVAL;
}
memcpy(trid->trsvcid, val, val_len + 1);
} else if (strcasecmp(key, "subnqn") == 0) {
if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_NQN_MAX_LEN);
return -EINVAL;
}
memcpy(trid->subnqn, val, val_len + 1);
} else if (strcasecmp(key, "hostaddr") == 0) {
continue;
} else if (strcasecmp(key, "hostsvcid") == 0) {
continue;
} else if (strcasecmp(key, "ns") == 0) {
/*
* Special case. The namespace id parameter may
* optionally be passed in the transport id string
* for an SPDK application (e.g. nvme/perf)
* and additionally parsed therein to limit
* targeting a specific namespace. For this
* scenario, just silently ignore this key
* rather than letting it default to logging
* it as an invalid key.
*/
continue;
} else if (strcasecmp(key, "alt_traddr") == 0) {
/*
* Used by applications for enabling transport ID failover.
* Please see the case above for more information on custom parameters.
*/
continue;
} else {
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
}
}
return 0;
}
int
spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
{
size_t key_size = 32;
size_t val_size = 1024;
size_t val_len;
char key[key_size];
char val[val_size];
if (hostid == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, key_size, val_size);
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse host ID\n");
return val_len;
}
/* Ignore the rest of the options from the transport ID. */
if (strcasecmp(key, "trtype") == 0) {
continue;
} else if (strcasecmp(key, "adrfam") == 0) {
continue;
} else if (strcasecmp(key, "traddr") == 0) {
continue;
} else if (strcasecmp(key, "trsvcid") == 0) {
continue;
} else if (strcasecmp(key, "subnqn") == 0) {
continue;
} else if (strcasecmp(key, "ns") == 0) {
continue;
} else if (strcasecmp(key, "hostaddr") == 0) {
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
return -EINVAL;
}
memcpy(hostid->hostaddr, val, val_len + 1);
} else if (strcasecmp(key, "hostsvcid") == 0) {
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
return -EINVAL;
}
memcpy(hostid->hostsvcid, val, val_len + 1);
} else {
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
}
}
return 0;
}
static int
cmp_int(int a, int b)
{
return a - b;
}
int
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
const struct spdk_nvme_transport_id *trid2)
{
int cmp;
if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
cmp = strcasecmp(trid1->trstring, trid2->trstring);
} else {
cmp = cmp_int(trid1->trtype, trid2->trtype);
}
if (cmp) {
return cmp;
}
if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
struct spdk_pci_addr pci_addr1 = {};
struct spdk_pci_addr pci_addr2 = {};
/* Normalize PCI addresses before comparing */
if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
return -1;
}
/* PCIe transport ID only uses trtype and traddr */
return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
}
cmp = strcasecmp(trid1->traddr, trid2->traddr);
if (cmp) {
return cmp;
}
cmp = cmp_int(trid1->adrfam, trid2->adrfam);
if (cmp) {
return cmp;
}
cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
if (cmp) {
return cmp;
}
cmp = strcmp(trid1->subnqn, trid2->subnqn);
if (cmp) {
return cmp;
}
return 0;
}
int
spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
{
size_t val_len;
char key[32];
char val[1024];
if (prchk_flags == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse prchk\n");
return -EINVAL;
}
if (strcasecmp(key, "prchk") == 0) {
if (strcasestr(val, "reftag") != NULL) {
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
}
if (strcasestr(val, "guard") != NULL) {
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
}
} else {
SPDK_ERRLOG("Unknown key '%s'\n", key);
return -EINVAL;
}
}
return 0;
}
const char *
spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
{
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
return "prchk:reftag|guard";
} else {
return "prchk:reftag";
}
} else {
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
return "prchk:guard";
} else {
return NULL;
}
}
}
struct spdk_nvme_probe_ctx *
spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
int rc;
struct spdk_nvme_probe_ctx *probe_ctx;
rc = nvme_driver_init();
if (rc != 0) {
return NULL;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (!probe_ctx) {
return NULL;
}
spdk_nvme_probe_ctx_init(probe_ctx, trid, cb_ctx, probe_cb, attach_cb, remove_cb);
rc = spdk_nvme_probe_internal(probe_ctx, false);
if (rc != 0) {
free(probe_ctx);
return NULL;
}
return probe_ctx;
}
int
spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
{
int rc = 0;
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
free(probe_ctx);
return 0;
}
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
rc = nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
if (rc != 0) {
rc = -EIO;
break;
}
}
if (rc != 0 || TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
g_spdk_nvme_driver->initialized = true;
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
free(probe_ctx);
return rc;
}
return -EAGAIN;
}
struct spdk_nvme_probe_ctx *
spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
spdk_nvme_attach_cb attach_cb)
{
int rc;
spdk_nvme_probe_cb probe_cb = NULL;
struct spdk_nvme_probe_ctx *probe_ctx;
rc = nvme_driver_init();
if (rc != 0) {
return NULL;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (!probe_ctx) {
return NULL;
}
if (opts) {
probe_cb = spdk_nvme_connect_probe_cb;
}
spdk_nvme_probe_ctx_init(probe_ctx, trid, (void *)opts, probe_cb, attach_cb, NULL);
rc = spdk_nvme_probe_internal(probe_ctx, true);
if (rc != 0) {
free(probe_ctx);
return NULL;
}
return probe_ctx;
}
SPDK_LOG_REGISTER_COMPONENT("nvme", SPDK_LOG_NVME)