Read CAP (Capabilities) register as part of controller initialization instead of controller construction. For now, still read CAP in the pcie and vfio-user controller construction, since they need the drstd (doorbell stride) to construct the admin queue. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: I000fe880f2ec0d6de1d565c883d7ea0ae1ac2c81 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8078 Reviewed-by: Ziye Yang <ziye.yang@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Mellanox Build Bot
1686 lines
46 KiB
C
1686 lines
46 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2017, IBM Corporation. All rights reserved.
|
|
* Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NVMe over PCIe transport
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/string.h"
|
|
#include "nvme_internal.h"
|
|
#include "nvme_pcie_internal.h"
|
|
|
|
struct nvme_pcie_enum_ctx {
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
struct spdk_pci_addr pci_addr;
|
|
bool has_pci_addr;
|
|
};
|
|
|
|
static uint16_t g_signal_lock;
|
|
static bool g_sigset = false;
|
|
static spdk_nvme_pcie_hotplug_filter_cb g_hotplug_filter_cb;
|
|
|
|
static void
|
|
nvme_sigbus_fault_sighandler(siginfo_t *info, void *ctx)
|
|
{
|
|
void *map_address;
|
|
uint16_t flag = 0;
|
|
|
|
if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
|
|
__ATOMIC_RELAXED)) {
|
|
SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n");
|
|
return;
|
|
}
|
|
|
|
if (g_thread_mmio_ctrlr == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!g_thread_mmio_ctrlr->is_remapped) {
|
|
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
|
|
if (map_address == MAP_FAILED) {
|
|
SPDK_ERRLOG("mmap failed\n");
|
|
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
|
|
return;
|
|
}
|
|
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
|
|
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
|
|
g_thread_mmio_ctrlr->is_remapped = true;
|
|
}
|
|
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
static void
|
|
_nvme_pcie_event_process(struct spdk_pci_event *event, void *cb_ctx)
|
|
{
|
|
struct spdk_nvme_transport_id trid;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
if (event->action == SPDK_UEVENT_ADD) {
|
|
if (spdk_process_is_primary()) {
|
|
if (g_hotplug_filter_cb == NULL || g_hotplug_filter_cb(&event->traddr)) {
|
|
/* The enumerate interface implement the add operation */
|
|
spdk_pci_device_allow(&event->traddr);
|
|
}
|
|
}
|
|
} else if (event->action == SPDK_UEVENT_REMOVE) {
|
|
memset(&trid, 0, sizeof(trid));
|
|
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
|
|
if (spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &event->traddr) < 0) {
|
|
SPDK_ERRLOG("Failed to format pci address\n");
|
|
return;
|
|
}
|
|
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (ctrlr == NULL) {
|
|
return;
|
|
}
|
|
SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n", trid.traddr);
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
/* get the user app to clean up and stop I/O */
|
|
if (ctrlr->remove_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
ctrlr->remove_cb(cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
_nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr, *tmp;
|
|
struct spdk_pci_event event;
|
|
|
|
if (g_spdk_nvme_driver->hotplug_fd < 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (spdk_pci_get_event(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
|
|
_nvme_pcie_event_process(&event, probe_ctx->cb_ctx);
|
|
}
|
|
|
|
/* Initiate removal of physically hotremoved PCI controllers. Even after
|
|
* they're hotremoved from the system, SPDK might still report them via RPC.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
|
|
bool do_remove = false;
|
|
struct nvme_pcie_ctrlr *pctrlr;
|
|
|
|
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
continue;
|
|
}
|
|
|
|
pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
|
|
do_remove = true;
|
|
}
|
|
|
|
if (do_remove) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_fail(ctrlr, true);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
if (ctrlr->remove_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static volatile void *
|
|
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
|
|
g_thread_mmio_ctrlr = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
assert(value != NULL);
|
|
g_thread_mmio_ctrlr = pctrlr;
|
|
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
|
|
g_thread_mmio_ctrlr = NULL;
|
|
if (~(*value) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
|
|
aqa->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
|
|
&cmbloc->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
|
|
&cmbsz->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_pmrcap(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrcap_register *pmrcap)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
|
|
&pmrcap->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw),
|
|
pmrctl->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw),
|
|
&pmrctl->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_get_pmrsts(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrsts_register *pmrsts)
|
|
{
|
|
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrsts.raw),
|
|
&pmrsts->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_pmrmscl(struct nvme_pcie_ctrlr *pctrlr, uint32_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscl.raw),
|
|
value);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_set_pmrmscu(struct nvme_pcie_ctrlr *pctrlr, uint32_t value)
|
|
{
|
|
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscu),
|
|
value);
|
|
}
|
|
|
|
static uint32_t
|
|
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
/*
|
|
* For commands requiring more than 2 PRP entries, one PRP will be
|
|
* embedded in the command (prp1), and the rest of the PRP entries
|
|
* will be in a list pointed to by the command (prp2). The number
|
|
* of PRP entries in the list is defined by
|
|
* NVME_MAX_PRP_LIST_ENTRIES.
|
|
*
|
|
* Note that the max xfer size is not (MAX_ENTRIES + 1) * page_size
|
|
* because the first PRP entry may not be aligned on a 4KiB
|
|
* boundary.
|
|
*/
|
|
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
|
|
}
|
|
|
|
static uint16_t
|
|
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return NVME_MAX_SGL_DESCRIPTORS;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr = NULL;
|
|
uint32_t bir;
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
|
|
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (!cmbsz.bits.sz) {
|
|
goto exit;
|
|
}
|
|
|
|
bir = cmbloc.bits.bir;
|
|
/* Values 0 2 3 4 5 are valid for BAR */
|
|
if (bir > 5 || bir == 1) {
|
|
goto exit;
|
|
}
|
|
|
|
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
|
|
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
|
|
/* controller memory buffer size in Bytes */
|
|
size = unit_size * cmbsz.bits.sz;
|
|
/* controller memory buffer offset from BAR in Bytes */
|
|
offset = unit_size * cmbloc.bits.ofst;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
|
|
&bar_phys_addr, &bar_size);
|
|
if ((rc != 0) || addr == NULL) {
|
|
goto exit;
|
|
}
|
|
|
|
if (offset > bar_size) {
|
|
goto exit;
|
|
}
|
|
|
|
if (size > bar_size - offset) {
|
|
goto exit;
|
|
}
|
|
|
|
pctrlr->cmb.bar_va = addr;
|
|
pctrlr->cmb.bar_pa = bar_phys_addr;
|
|
pctrlr->cmb.size = size;
|
|
pctrlr->cmb.current_offset = offset;
|
|
|
|
if (!cmbsz.bits.sqs) {
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
}
|
|
|
|
return;
|
|
exit:
|
|
pctrlr->ctrlr.opts.use_cmb_sqs = false;
|
|
return;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
void *addr = pctrlr->cmb.bar_va;
|
|
|
|
if (addr) {
|
|
if (pctrlr->cmb.mem_register_addr) {
|
|
spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get_cmbloc() failed\n");
|
|
return -EIO;
|
|
}
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
|
|
if (pctrlr->cmb.bar_va == NULL) {
|
|
SPDK_DEBUGLOG(nvme, "CMB not available\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_cmbloc_register cmbloc;
|
|
uint64_t mem_register_start, mem_register_end;
|
|
int rc;
|
|
|
|
if (pctrlr->cmb.mem_register_addr != NULL) {
|
|
*size = pctrlr->cmb.mem_register_size;
|
|
return pctrlr->cmb.mem_register_addr;
|
|
}
|
|
|
|
*size = 0;
|
|
|
|
if (pctrlr->cmb.bar_va == NULL) {
|
|
SPDK_DEBUGLOG(nvme, "CMB not available\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (ctrlr->opts.use_cmb_sqs) {
|
|
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
|
|
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* If only SQS is supported */
|
|
if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* If CMB is less than 4MiB in size then abort CMB mapping */
|
|
if (pctrlr->cmb.size < (1ULL << 22)) {
|
|
return NULL;
|
|
}
|
|
|
|
mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
|
|
VALUE_2MB - 1);
|
|
mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
|
|
pctrlr->cmb.size);
|
|
|
|
rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
|
|
if (rc) {
|
|
SPDK_ERRLOG("spdk_mem_register() failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
|
|
pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
|
|
|
|
*size = pctrlr->cmb.mem_register_size;
|
|
return pctrlr->cmb.mem_register_addr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
int rc;
|
|
|
|
if (pctrlr->cmb.mem_register_addr == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
|
|
|
|
if (rc == 0) {
|
|
pctrlr->cmb.mem_register_addr = NULL;
|
|
pctrlr->cmb.mem_register_size = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_ctrlr_map_pmr(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr = NULL;
|
|
uint32_t bir;
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
uint64_t bar_size = 0, bar_phys_addr = 0;
|
|
|
|
if (!pctrlr->regs->cap.bits.pmrs) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
return;
|
|
}
|
|
|
|
bir = pmrcap.bits.bir;
|
|
/* Values 2 3 4 5 are valid for BAR */
|
|
if (bir > 5 || bir < 2) {
|
|
SPDK_ERRLOG("invalid base indicator register value\n");
|
|
return;
|
|
}
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, &bar_phys_addr, &bar_size);
|
|
if ((rc != 0) || addr == NULL) {
|
|
SPDK_ERRLOG("could not map the bar %d\n", bir);
|
|
return;
|
|
}
|
|
|
|
if (pmrcap.bits.cmss) {
|
|
uint32_t pmrmscl, pmrmscu, cmse = 1;
|
|
union spdk_nvme_pmrsts_register pmrsts;
|
|
|
|
/* Enable Controller Memory Space */
|
|
pmrmscl = (uint32_t)((bar_phys_addr & 0xFFFFF000ULL) | (cmse << 1));
|
|
pmrmscu = (uint32_t)((bar_phys_addr >> 32ULL) & 0xFFFFFFFFULL);
|
|
|
|
if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, pmrmscu)) {
|
|
SPDK_ERRLOG("set_pmrmscu() failed\n");
|
|
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
|
|
return;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, pmrmscl)) {
|
|
SPDK_ERRLOG("set_pmrmscl() failed\n");
|
|
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
|
|
return;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) {
|
|
SPDK_ERRLOG("get pmrsts failed\n");
|
|
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
|
|
return;
|
|
}
|
|
|
|
if (pmrsts.bits.cbai) {
|
|
SPDK_ERRLOG("Controller Memory Space Enable Failure\n");
|
|
SPDK_ERRLOG("CBA Invalid - Host Addresses cannot reference PMR\n");
|
|
} else {
|
|
SPDK_DEBUGLOG(nvme, "Controller Memory Space Enable Success\n");
|
|
SPDK_DEBUGLOG(nvme, "Host Addresses can reference PMR\n");
|
|
}
|
|
}
|
|
|
|
pctrlr->pmr.bar_va = addr;
|
|
pctrlr->pmr.bar_pa = bar_phys_addr;
|
|
pctrlr->pmr.size = pctrlr->ctrlr.pmr_size = bar_size;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_pmr(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
void *addr = pctrlr->pmr.bar_va;
|
|
|
|
if (addr == NULL) {
|
|
return rc;
|
|
}
|
|
|
|
if (pctrlr->pmr.mem_register_addr) {
|
|
spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size);
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
|
|
SPDK_ERRLOG("get_pmrcap() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (pmrcap.bits.cmss) {
|
|
if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, 0)) {
|
|
SPDK_ERRLOG("set_pmrmscu() failed\n");
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, 0)) {
|
|
SPDK_ERRLOG("set_pmrmscl() failed\n");
|
|
}
|
|
}
|
|
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, pmrcap.bits.bir, addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_config_pmr(struct spdk_nvme_ctrlr *ctrlr, bool enable)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
union spdk_nvme_pmrctl_register pmrctl;
|
|
union spdk_nvme_pmrsts_register pmrsts;
|
|
uint8_t pmrto, pmrtu;
|
|
uint64_t timeout_in_ms, ticks_per_ms, timeout_in_ticks, now_ticks;
|
|
|
|
if (!pctrlr->regs->cap.bits.pmrs) {
|
|
SPDK_ERRLOG("PMR is not supported by the controller\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
pmrto = pmrcap.bits.pmrto;
|
|
pmrtu = pmrcap.bits.pmrtu;
|
|
|
|
if (pmrtu > 1) {
|
|
SPDK_ERRLOG("PMR Time Units Invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ticks_per_ms = spdk_get_ticks_hz() / 1000;
|
|
timeout_in_ms = pmrto * (pmrtu ? (60 * 1000) : 500);
|
|
timeout_in_ticks = timeout_in_ms * ticks_per_ms;
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrctl(pctrlr, &pmrctl)) {
|
|
SPDK_ERRLOG("get pmrctl failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (enable && pmrctl.bits.en != 0) {
|
|
SPDK_ERRLOG("PMR is already enabled\n");
|
|
return -EINVAL;
|
|
} else if (!enable && pmrctl.bits.en != 1) {
|
|
SPDK_ERRLOG("PMR is already disabled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pmrctl.bits.en = enable;
|
|
|
|
if (nvme_pcie_ctrlr_set_pmrctl(pctrlr, &pmrctl)) {
|
|
SPDK_ERRLOG("set pmrctl failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
now_ticks = spdk_get_ticks();
|
|
|
|
do {
|
|
if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) {
|
|
SPDK_ERRLOG("get pmrsts failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (pmrsts.bits.nrdy == enable &&
|
|
spdk_get_ticks() > now_ticks + timeout_in_ticks) {
|
|
SPDK_ERRLOG("PMR Enable - Timed Out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
} while (pmrsts.bits.nrdy == enable);
|
|
|
|
SPDK_DEBUGLOG(nvme, "PMR %s\n", enable ? "Enabled" : "Disabled");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return nvme_pcie_ctrlr_config_pmr(ctrlr, true);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return nvme_pcie_ctrlr_config_pmr(ctrlr, false);
|
|
}
|
|
|
|
static void *
|
|
nvme_pcie_ctrlr_map_io_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
uint64_t mem_register_start, mem_register_end;
|
|
int rc;
|
|
|
|
if (!pctrlr->regs->cap.bits.pmrs) {
|
|
SPDK_ERRLOG("PMR is not supported by the controller\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (pctrlr->pmr.mem_register_addr != NULL) {
|
|
*size = pctrlr->pmr.mem_register_size;
|
|
return pctrlr->pmr.mem_register_addr;
|
|
}
|
|
|
|
*size = 0;
|
|
|
|
if (pctrlr->pmr.bar_va == NULL) {
|
|
SPDK_DEBUGLOG(nvme, "PMR not available\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check if WDS / RDS is supported */
|
|
if (!(pmrcap.bits.wds || pmrcap.bits.rds)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* If PMR is less than 4MiB in size then abort PMR mapping */
|
|
if (pctrlr->pmr.size < (1ULL << 22)) {
|
|
return NULL;
|
|
}
|
|
|
|
mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + VALUE_2MB - 1);
|
|
mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + pctrlr->pmr.size);
|
|
|
|
rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
|
|
if (rc) {
|
|
SPDK_ERRLOG("spdk_mem_register() failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->pmr.mem_register_addr = (void *)mem_register_start;
|
|
pctrlr->pmr.mem_register_size = mem_register_end - mem_register_start;
|
|
|
|
*size = pctrlr->pmr.mem_register_size;
|
|
return pctrlr->pmr.mem_register_addr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_unmap_io_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
int rc;
|
|
|
|
if (pctrlr->pmr.mem_register_addr == NULL) {
|
|
return -ENXIO;
|
|
}
|
|
|
|
rc = spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size);
|
|
|
|
if (rc == 0) {
|
|
pctrlr->pmr.mem_register_addr = NULL;
|
|
pctrlr->pmr.mem_register_size = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc;
|
|
void *addr = NULL;
|
|
uint64_t phys_addr = 0, size = 0;
|
|
|
|
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
|
|
&phys_addr, &size);
|
|
|
|
if ((addr == NULL) || (rc != 0)) {
|
|
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
|
|
rc, addr);
|
|
return -1;
|
|
}
|
|
|
|
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
|
|
pctrlr->regs_size = size;
|
|
pctrlr->doorbell_base = (volatile uint32_t *)&pctrlr->regs->doorbell[0].sq_tdbl;
|
|
nvme_pcie_ctrlr_map_cmb(pctrlr);
|
|
nvme_pcie_ctrlr_map_pmr(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
|
|
{
|
|
int rc = 0;
|
|
void *addr = (void *)pctrlr->regs;
|
|
|
|
if (pctrlr->ctrlr.is_removed) {
|
|
return rc;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_unmap_pmr(pctrlr);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("nvme_ctrlr_unmap_pmr failed with error code %d\n", rc);
|
|
return -1;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
|
|
return -1;
|
|
}
|
|
|
|
if (addr) {
|
|
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
|
|
* munmap internally.
|
|
*/
|
|
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
struct spdk_nvme_transport_id trid = {};
|
|
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_pci_addr pci_addr;
|
|
|
|
pci_addr = spdk_pci_device_get_addr(pci_dev);
|
|
|
|
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
|
|
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
|
|
if (!spdk_process_is_primary()) {
|
|
if (!ctrlr) {
|
|
SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
|
|
return -1;
|
|
}
|
|
|
|
return nvme_ctrlr_add_process(ctrlr, pci_dev);
|
|
}
|
|
|
|
/* check whether user passes the pci_addr */
|
|
if (enum_ctx->has_pci_addr &&
|
|
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
|
|
return 1;
|
|
}
|
|
|
|
return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
bool direct_connect)
|
|
{
|
|
struct nvme_pcie_enum_ctx enum_ctx = {};
|
|
|
|
enum_ctx.probe_ctx = probe_ctx;
|
|
|
|
if (strlen(probe_ctx->trid.traddr) != 0) {
|
|
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
|
|
return -1;
|
|
}
|
|
enum_ctx.has_pci_addr = true;
|
|
}
|
|
|
|
/* Only the primary process can monitor hotplug. */
|
|
if (spdk_process_is_primary()) {
|
|
_nvme_pcie_hotplug_monitor(probe_ctx);
|
|
}
|
|
|
|
if (enum_ctx.has_pci_addr == false) {
|
|
return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
|
|
pcie_nvme_enum_cb, &enum_ctx);
|
|
} else {
|
|
return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
|
|
pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
|
|
}
|
|
}
|
|
|
|
static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts,
|
|
void *devhandle)
|
|
{
|
|
struct spdk_pci_device *pci_dev = devhandle;
|
|
struct nvme_pcie_ctrlr *pctrlr;
|
|
union spdk_nvme_cap_register cap;
|
|
uint16_t cmd_reg;
|
|
int rc;
|
|
struct spdk_pci_id pci_id;
|
|
|
|
rc = spdk_pci_device_claim(pci_dev);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("could not claim device %s (%s)\n",
|
|
trid->traddr, spdk_strerror(-rc));
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (pctrlr == NULL) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
SPDK_ERRLOG("could not allocate ctrlr\n");
|
|
return NULL;
|
|
}
|
|
|
|
pctrlr->is_remapped = false;
|
|
pctrlr->ctrlr.is_removed = false;
|
|
pctrlr->devhandle = devhandle;
|
|
pctrlr->ctrlr.opts = *opts;
|
|
pctrlr->ctrlr.trid = *trid;
|
|
|
|
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
|
|
if (rc != 0) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
|
|
if (rc != 0) {
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Enable PCI busmaster and disable INTx */
|
|
spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
|
|
cmd_reg |= 0x404;
|
|
spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);
|
|
|
|
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
|
|
SPDK_ERRLOG("get_cap() failed\n");
|
|
spdk_pci_device_unclaim(pci_dev);
|
|
spdk_free(pctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Doorbell stride is 2 ^ (dstrd + 2),
|
|
* but we want multiples of 4, so drop the + 2 */
|
|
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
|
|
|
|
pci_id = spdk_pci_device_get_id(pci_dev);
|
|
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
|
|
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Construct the primary process properties */
|
|
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_destruct(&pctrlr->ctrlr);
|
|
return NULL;
|
|
}
|
|
|
|
if (g_sigset != true) {
|
|
spdk_pci_register_error_handler(nvme_sigbus_fault_sighandler,
|
|
NULL);
|
|
g_sigset = true;
|
|
}
|
|
|
|
return &pctrlr->ctrlr;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
|
|
union spdk_nvme_aqa_register aqa;
|
|
|
|
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
|
|
SPDK_ERRLOG("set_asq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
|
|
SPDK_ERRLOG("set_acq() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
aqa.raw = 0;
|
|
/* acqs and asqs are 0-based. */
|
|
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
|
|
|
|
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
|
|
SPDK_ERRLOG("set_aqa() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
|
|
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
|
|
|
|
if (ctrlr->adminq) {
|
|
nvme_pcie_qpair_destroy(ctrlr->adminq);
|
|
}
|
|
|
|
nvme_ctrlr_destruct_finish(ctrlr);
|
|
|
|
nvme_ctrlr_free_processes(ctrlr);
|
|
|
|
nvme_pcie_ctrlr_free_bars(pctrlr);
|
|
|
|
if (devhandle) {
|
|
spdk_pci_device_unclaim(devhandle);
|
|
spdk_pci_device_detach(devhandle);
|
|
}
|
|
|
|
spdk_free(pctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
|
|
int (*iter_fn)(struct nvme_request *req, void *arg),
|
|
void *arg)
|
|
{
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
struct nvme_tracker *tr, *tmp;
|
|
int rc;
|
|
|
|
assert(iter_fn != NULL);
|
|
|
|
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
|
|
assert(tr->req != NULL);
|
|
|
|
rc = iter_fn(tr->req, arg);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
/*
|
|
* Bad vtophys translation, so abort this request and return
|
|
* immediately.
|
|
*/
|
|
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
|
|
SPDK_NVME_SC_INVALID_FIELD,
|
|
1 /* do not retry */, true);
|
|
}
|
|
|
|
/*
|
|
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
|
|
*
|
|
* *prp_index will be updated to account for the number of PRP entries used.
|
|
*/
|
|
static inline int
|
|
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
|
|
uint32_t page_size)
|
|
{
|
|
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
|
|
uintptr_t page_mask = page_size - 1;
|
|
uint64_t phys_addr;
|
|
uint32_t i;
|
|
|
|
SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
|
|
*prp_index, virt_addr, (uint32_t)len);
|
|
|
|
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
i = *prp_index;
|
|
while (len) {
|
|
uint32_t seg_len;
|
|
|
|
/*
|
|
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
|
|
* so prp_index == count is valid.
|
|
*/
|
|
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
|
|
SPDK_ERRLOG("out of PRP entries\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
phys_addr = spdk_vtophys(virt_addr, NULL);
|
|
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
|
|
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (i == 0) {
|
|
SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
|
|
cmd->dptr.prp.prp1 = phys_addr;
|
|
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
|
|
} else {
|
|
if ((phys_addr & page_mask) != 0) {
|
|
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
|
|
tr->u.prp[i - 1] = phys_addr;
|
|
seg_len = page_size;
|
|
}
|
|
|
|
seg_len = spdk_min(seg_len, len);
|
|
virt_addr += seg_len;
|
|
len -= seg_len;
|
|
i++;
|
|
}
|
|
|
|
cmd->psdt = SPDK_NVME_PSDT_PRP;
|
|
if (i <= 1) {
|
|
cmd->dptr.prp.prp2 = 0;
|
|
} else if (i == 2) {
|
|
cmd->dptr.prp.prp2 = tr->u.prp[0];
|
|
SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
|
|
} else {
|
|
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
|
|
SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
|
|
}
|
|
|
|
*prp_index = i;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
assert(0);
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing physically contiguous payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
uint32_t prp_index = 0;
|
|
int rc;
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
|
|
req->payload_size, qpair->ctrlr->page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Build an SGL describing a physically contiguous payload buffer.
|
|
*
|
|
* This is more efficient than using PRP because large buffers can be
|
|
* described this way.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
void *virt_addr;
|
|
uint64_t phys_addr, mapping_length;
|
|
uint32_t length;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
uint32_t nseg = 0;
|
|
|
|
assert(req->payload_size != 0);
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
|
|
|
|
sgl = tr->u.sgl;
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
|
|
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
|
|
|
|
length = req->payload_size;
|
|
virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
|
|
|
|
while (length > 0) {
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
mapping_length = length;
|
|
phys_addr = spdk_vtophys(virt_addr, &mapping_length);
|
|
if (phys_addr == SPDK_VTOPHYS_ERROR) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
mapping_length = spdk_min(length, mapping_length);
|
|
|
|
length -= mapping_length;
|
|
virt_addr += mapping_length;
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.length = mapping_length;
|
|
sgl->address = phys_addr;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
}
|
|
|
|
if (nseg == 1) {
|
|
/*
|
|
* The whole transfer can be described by a single SGL descriptor.
|
|
* Use the special case described by the spec where SGL1's type is Data Block.
|
|
* This means the SGL in the tracker is not used at all, so copy the first (and only)
|
|
* SGL element into SGL1.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
|
|
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
|
|
} else {
|
|
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
|
|
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
|
|
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Build SGL list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint64_t phys_addr, mapping_length;
|
|
uint32_t remaining_transfer_len, remaining_user_sge_len, length;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
uint32_t nseg = 0;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(req->payload_size != 0);
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.reset_sgl_fn != NULL);
|
|
assert(req->payload.next_sge_fn != NULL);
|
|
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
|
|
|
|
sgl = tr->u.sgl;
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
|
|
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
|
|
while (remaining_transfer_len > 0) {
|
|
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
|
|
&virt_addr, &remaining_user_sge_len);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Bit Bucket SGL descriptor */
|
|
if ((uint64_t)virt_addr == UINT64_MAX) {
|
|
/* TODO: enable WRITE and COMPARE when necessary */
|
|
if (req->cmd.opc != SPDK_NVME_OPC_READ) {
|
|
SPDK_ERRLOG("Only READ command can be supported\n");
|
|
goto exit;
|
|
}
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
SPDK_ERRLOG("Too many SGL entries\n");
|
|
goto exit;
|
|
}
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
|
|
/* If the SGL describes a destination data buffer, the length of data
|
|
* buffer shall be discarded by controller, and the length is included
|
|
* in Number of Logical Blocks (NLB) parameter. Otherwise, the length
|
|
* is not included in the NLB parameter.
|
|
*/
|
|
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
|
|
remaining_transfer_len -= remaining_user_sge_len;
|
|
|
|
sgl->unkeyed.length = remaining_user_sge_len;
|
|
sgl->address = 0;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
|
|
continue;
|
|
}
|
|
|
|
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
|
|
remaining_transfer_len -= remaining_user_sge_len;
|
|
while (remaining_user_sge_len > 0) {
|
|
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
|
|
SPDK_ERRLOG("Too many SGL entries\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
|
|
goto exit;
|
|
}
|
|
|
|
mapping_length = remaining_user_sge_len;
|
|
phys_addr = spdk_vtophys(virt_addr, &mapping_length);
|
|
if (phys_addr == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
|
|
length = spdk_min(remaining_user_sge_len, mapping_length);
|
|
remaining_user_sge_len -= length;
|
|
virt_addr += length;
|
|
|
|
if (nseg > 0 && phys_addr ==
|
|
(*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
|
|
/* extend previous entry */
|
|
(*(sgl - 1)).unkeyed.length += length;
|
|
continue;
|
|
}
|
|
|
|
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.length = length;
|
|
sgl->address = phys_addr;
|
|
sgl->unkeyed.subtype = 0;
|
|
|
|
sgl++;
|
|
nseg++;
|
|
}
|
|
}
|
|
|
|
if (nseg == 1) {
|
|
/*
|
|
* The whole transfer can be described by a single SGL descriptor.
|
|
* Use the special case described by the spec where SGL1's type is Data Block.
|
|
* This means the SGL in the tracker is not used at all, so copy the first (and only)
|
|
* SGL element into SGL1.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
|
|
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
|
|
} else {
|
|
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
|
|
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
|
|
*/
|
|
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
|
|
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/**
|
|
* Build PRP list describing scattered payload buffer.
|
|
*/
|
|
static int
|
|
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
|
|
struct nvme_tracker *tr, bool dword_aligned)
|
|
{
|
|
int rc;
|
|
void *virt_addr;
|
|
uint32_t remaining_transfer_len, length;
|
|
uint32_t prp_index = 0;
|
|
uint32_t page_size = qpair->ctrlr->page_size;
|
|
|
|
/*
|
|
* Build scattered payloads.
|
|
*/
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
|
|
assert(req->payload.reset_sgl_fn != NULL);
|
|
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
|
|
|
|
remaining_transfer_len = req->payload_size;
|
|
while (remaining_transfer_len > 0) {
|
|
assert(req->payload.next_sge_fn != NULL);
|
|
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
length = spdk_min(remaining_transfer_len, length);
|
|
|
|
/*
|
|
* Any incompatible sges should have been handled up in the splitting routine,
|
|
* but assert here as an additional check.
|
|
*
|
|
* All SGEs except last must end on a page boundary.
|
|
*/
|
|
assert((length == remaining_transfer_len) ||
|
|
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
|
|
|
|
rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
|
|
if (rc) {
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return rc;
|
|
}
|
|
|
|
remaining_transfer_len -= length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
|
|
bool);
|
|
|
|
static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
|
|
[NVME_PAYLOAD_TYPE_INVALID] = {
|
|
nvme_pcie_qpair_build_request_invalid, /* PRP */
|
|
nvme_pcie_qpair_build_request_invalid /* SGL */
|
|
},
|
|
[NVME_PAYLOAD_TYPE_CONTIG] = {
|
|
nvme_pcie_qpair_build_contig_request, /* PRP */
|
|
nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */
|
|
},
|
|
[NVME_PAYLOAD_TYPE_SGL] = {
|
|
nvme_pcie_qpair_build_prps_sgl_request, /* PRP */
|
|
nvme_pcie_qpair_build_hw_sgl_request /* SGL */
|
|
}
|
|
};
|
|
|
|
static int
|
|
nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
bool sgl_supported, bool dword_aligned)
|
|
{
|
|
void *md_payload;
|
|
struct nvme_request *req = tr->req;
|
|
|
|
if (req->payload.md) {
|
|
md_payload = req->payload.md + req->md_offset;
|
|
if (dword_aligned && ((uintptr_t)md_payload & 3)) {
|
|
SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
|
|
goto exit;
|
|
}
|
|
|
|
if (sgl_supported && dword_aligned) {
|
|
assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
|
|
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
|
|
tr->meta_sgl.address = spdk_vtophys(md_payload, NULL);
|
|
if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
tr->meta_sgl.unkeyed.length = req->md_size;
|
|
tr->meta_sgl.unkeyed.subtype = 0;
|
|
req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
|
|
} else {
|
|
req->cmd.mptr = spdk_vtophys(md_payload, NULL);
|
|
if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
int rc = 0;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
|
|
enum nvme_payload_type payload_type;
|
|
bool sgl_supported;
|
|
bool dword_aligned = true;
|
|
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
tr = TAILQ_FIRST(&pqpair->free_tr);
|
|
|
|
if (tr == NULL) {
|
|
pqpair->stat->queued_requests++;
|
|
/* Inform the upper layer to try again later. */
|
|
rc = -EAGAIN;
|
|
goto exit;
|
|
}
|
|
|
|
pqpair->stat->submitted_requests++;
|
|
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
|
|
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
|
|
tr->req = req;
|
|
tr->cb_fn = req->cb_fn;
|
|
tr->cb_arg = req->cb_arg;
|
|
req->cmd.cid = tr->cid;
|
|
|
|
if (req->payload_size != 0) {
|
|
payload_type = nvme_payload_type(&req->payload);
|
|
/* According to the specification, PRPs shall be used for all
|
|
* Admin commands for NVMe over PCIe implementations.
|
|
*/
|
|
sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
|
|
!nvme_qpair_is_admin_queue(qpair);
|
|
|
|
if (sgl_supported) {
|
|
/* Don't use SGL for DSM command */
|
|
if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_NO_SGL_FOR_DSM) &&
|
|
(req->cmd.opc == SPDK_NVME_OPC_DATASET_MANAGEMENT))) {
|
|
sgl_supported = false;
|
|
}
|
|
}
|
|
|
|
if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
|
|
dword_aligned = false;
|
|
}
|
|
rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
|
|
if (rc < 0) {
|
|
goto exit;
|
|
}
|
|
|
|
rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
|
|
if (rc < 0) {
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
nvme_pcie_qpair_submit_tracker(qpair, tr);
|
|
|
|
exit:
|
|
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_pcie_set_hotplug_filter(spdk_nvme_pcie_hotplug_filter_cb filter_cb)
|
|
{
|
|
g_hotplug_filter_cb = filter_cb;
|
|
}
|
|
|
|
static int
|
|
nvme_pcie_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
|
|
struct spdk_nvme_transport_poll_group_stat **_stats)
|
|
{
|
|
struct nvme_pcie_poll_group *group;
|
|
struct spdk_nvme_transport_poll_group_stat *stats;
|
|
|
|
if (tgroup == NULL || _stats == NULL) {
|
|
SPDK_ERRLOG("Invalid stats or group pointer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
group = SPDK_CONTAINEROF(tgroup, struct nvme_pcie_poll_group, group);
|
|
stats = calloc(1, sizeof(*stats));
|
|
if (!stats) {
|
|
SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
|
|
return -ENOMEM;
|
|
}
|
|
stats->trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
memcpy(&stats->pcie, &group->stats, sizeof(group->stats));
|
|
|
|
*_stats = stats;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_pcie_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
|
|
struct spdk_nvme_transport_poll_group_stat *stats)
|
|
{
|
|
free(stats);
|
|
}
|
|
|
|
static struct spdk_pci_id nvme_pci_driver_id[] = {
|
|
{
|
|
.class_id = SPDK_PCI_CLASS_NVME,
|
|
.vendor_id = SPDK_PCI_ANY_ID,
|
|
.device_id = SPDK_PCI_ANY_ID,
|
|
.subvendor_id = SPDK_PCI_ANY_ID,
|
|
.subdevice_id = SPDK_PCI_ANY_ID,
|
|
},
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id,
|
|
SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);
|
|
|
|
const struct spdk_nvme_transport_ops pcie_ops = {
|
|
.name = "PCIE",
|
|
.type = SPDK_NVME_TRANSPORT_PCIE,
|
|
.ctrlr_construct = nvme_pcie_ctrlr_construct,
|
|
.ctrlr_scan = nvme_pcie_ctrlr_scan,
|
|
.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
|
|
.ctrlr_enable = nvme_pcie_ctrlr_enable,
|
|
|
|
.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
|
|
.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
|
|
.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
|
|
.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
|
|
|
|
.ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
|
|
.ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,
|
|
|
|
.ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
|
|
.ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
|
|
.ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,
|
|
|
|
.ctrlr_enable_pmr = nvme_pcie_ctrlr_enable_pmr,
|
|
.ctrlr_disable_pmr = nvme_pcie_ctrlr_disable_pmr,
|
|
.ctrlr_map_pmr = nvme_pcie_ctrlr_map_io_pmr,
|
|
.ctrlr_unmap_pmr = nvme_pcie_ctrlr_unmap_io_pmr,
|
|
|
|
.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
|
|
.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
|
|
.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
|
|
.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
|
|
|
|
.qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
|
|
.qpair_reset = nvme_pcie_qpair_reset,
|
|
.qpair_submit_request = nvme_pcie_qpair_submit_request,
|
|
.qpair_process_completions = nvme_pcie_qpair_process_completions,
|
|
.qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
|
|
.admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,
|
|
|
|
.poll_group_create = nvme_pcie_poll_group_create,
|
|
.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
|
|
.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
|
|
.poll_group_add = nvme_pcie_poll_group_add,
|
|
.poll_group_remove = nvme_pcie_poll_group_remove,
|
|
.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
|
|
.poll_group_destroy = nvme_pcie_poll_group_destroy,
|
|
.poll_group_get_stats = nvme_pcie_poll_group_get_stats,
|
|
.poll_group_free_stats = nvme_pcie_poll_group_free_stats
|
|
};
|
|
|
|
SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);
|