numam-spdk/lib/ftl/ftl_init.c
Wojciech Malikowski fcd2364c6a lib/ftl: Metadata read/write interfaces refactor
Extended ftl_band_read_lba_map() interface to provide
range of lba map to read.

Added ftl_xfer_offset_from_ppa() function for
calculating offset of read portion of lba map
based on ppa address from IO. This offset is
used for coping read lba map portion  to internal
ftl buffer.

Change-Id: I1c72a18c79eda8c33cd0b20ea36a5d9521a09d06
Signed-off-by: Wojciech Malikowski <wojciech.malikowski@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/449435
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-06-06 07:26:35 +00:00

1125 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/io_channel.h"
#include "spdk/bdev_module.h"
#include "spdk_internal/log.h"
#include "spdk/ftl.h"
#include "ftl_core.h"
#include "ftl_anm.h"
#include "ftl_io.h"
#include "ftl_reloc.h"
#include "ftl_rwb.h"
#include "ftl_band.h"
#include "ftl_debug.h"
#define FTL_CORE_RING_SIZE 4096
#define FTL_INIT_TIMEOUT 30
#define FTL_NSID 1
#define ftl_range_intersect(s1, e1, s2, e2) \
((s1) <= (e2) && (s2) <= (e1))
struct ftl_admin_cmpl {
struct spdk_nvme_cpl status;
int complete;
};
static STAILQ_HEAD(, spdk_ftl_dev) g_ftl_queue = STAILQ_HEAD_INITIALIZER(g_ftl_queue);
static pthread_mutex_t g_ftl_queue_lock = PTHREAD_MUTEX_INITIALIZER;
static const struct spdk_ftl_conf g_default_conf = {
.defrag = {
.limits = {
/* 5 free bands / 0 % host writes */
[SPDK_FTL_LIMIT_CRIT] = { .thld = 5, .limit = 0 },
/* 10 free bands / 5 % host writes */
[SPDK_FTL_LIMIT_HIGH] = { .thld = 10, .limit = 5 },
/* 20 free bands / 40 % host writes */
[SPDK_FTL_LIMIT_LOW] = { .thld = 20, .limit = 40 },
/* 40 free bands / 100 % host writes - defrag starts running */
[SPDK_FTL_LIMIT_START] = { .thld = 40, .limit = 100 },
},
/* 10 percent valid lbks */
.invalid_thld = 10,
},
/* 20% spare lbks */
.lba_rsvd = 20,
/* 6M write buffer */
.rwb_size = 6 * 1024 * 1024,
/* 90% band fill threshold */
.band_thld = 90,
/* Max 32 IO depth per band relocate */
.max_reloc_qdepth = 32,
/* Max 3 active band relocates */
.max_active_relocs = 3,
/* IO pool size per user thread (this should be adjusted to thread IO qdepth) */
.user_io_pool_size = 2048,
/* Number of interleaving units per ws_opt */
/* 1 for default and 3 for 3D TLC NAND */
.num_interleave_units = 1,
};
static void ftl_dev_free_sync(struct spdk_ftl_dev *dev);
static void
ftl_admin_cb(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct ftl_admin_cmpl *cmpl = ctx;
cmpl->complete = 1;
cmpl->status = *cpl;
}
static int
ftl_band_init_md(struct ftl_band *band)
{
struct ftl_md *md = &band->md;
md->vld_map = spdk_bit_array_create(ftl_num_band_lbks(band->dev));
if (!md->vld_map) {
return -ENOMEM;
}
pthread_spin_init(&md->lock, PTHREAD_PROCESS_PRIVATE);
ftl_band_md_clear(&band->md);
return 0;
}
static int
ftl_check_conf(const struct spdk_ftl_conf *conf,
const struct spdk_ocssd_geometry_data *geo)
{
size_t i;
if (conf->defrag.invalid_thld >= 100) {
return -1;
}
if (conf->lba_rsvd >= 100) {
return -1;
}
if (conf->lba_rsvd == 0) {
return -1;
}
if (conf->rwb_size == 0) {
return -1;
}
if (conf->rwb_size % FTL_BLOCK_SIZE != 0) {
return -1;
}
if (geo->ws_opt % conf->num_interleave_units != 0) {
return -1;
}
for (i = 0; i < SPDK_FTL_LIMIT_MAX; ++i) {
if (conf->defrag.limits[i].limit > 100) {
return -1;
}
}
return 0;
}
static int
ftl_check_init_opts(const struct spdk_ftl_dev_init_opts *opts,
const struct spdk_ocssd_geometry_data *geo)
{
struct spdk_ftl_dev *dev;
size_t num_punits = geo->num_pu * geo->num_grp;
int rc = 0;
if (opts->range.begin > opts->range.end || opts->range.end >= num_punits) {
return -1;
}
if (ftl_check_conf(opts->conf, geo)) {
return -1;
}
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_FOREACH(dev, &g_ftl_queue, stailq) {
if (spdk_nvme_transport_id_compare(&dev->trid, &opts->trid)) {
continue;
}
if (ftl_range_intersect(opts->range.begin, opts->range.end,
dev->range.begin, dev->range.end)) {
rc = -1;
goto out;
}
}
out:
pthread_mutex_unlock(&g_ftl_queue_lock);
return rc;
}
static int
ftl_retrieve_bbt_page(struct spdk_ftl_dev *dev, uint64_t offset,
struct spdk_ocssd_chunk_information_entry *info,
unsigned int num_entries)
{
volatile struct ftl_admin_cmpl cmpl = {};
uint32_t nsid = spdk_nvme_ns_get_id(dev->ns);
if (spdk_nvme_ctrlr_cmd_get_log_page(dev->ctrlr, SPDK_OCSSD_LOG_CHUNK_INFO, nsid,
info, num_entries * sizeof(*info),
offset * sizeof(*info),
ftl_admin_cb, (void *)&cmpl)) {
return -1;
}
while (!cmpl.complete) {
spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr);
}
if (spdk_nvme_cpl_is_error(&cmpl.status)) {
SPDK_ERRLOG("Unexpected status code: [%d], status code type: [%d]\n",
cmpl.status.status.sc, cmpl.status.status.sct);
return -1;
}
return 0;
}
static int
ftl_retrieve_bbt(struct spdk_ftl_dev *dev, const struct ftl_punit *punit,
struct spdk_ocssd_chunk_information_entry *info)
{
uint32_t i = 0;
unsigned int num_entries = PAGE_SIZE / sizeof(*info);
uint64_t off = (punit->start_ppa.grp * dev->geo.num_pu + punit->start_ppa.pu) *
dev->geo.num_chk;
for (i = 0; i < dev->geo.num_chk; i += num_entries) {
if (num_entries > dev->geo.num_chk - i) {
num_entries = dev->geo.num_chk - i;
}
if (ftl_retrieve_bbt_page(dev, off + i, &info[i], num_entries)) {
return -1;
}
}
return 0;
}
static unsigned char
ftl_get_chunk_state(const struct spdk_ocssd_chunk_information_entry *info)
{
if (info->cs.free) {
return FTL_CHUNK_STATE_FREE;
}
if (info->cs.open) {
return FTL_CHUNK_STATE_OPEN;
}
if (info->cs.closed) {
return FTL_CHUNK_STATE_CLOSED;
}
if (info->cs.offline) {
return FTL_CHUNK_STATE_BAD;
}
assert(0 && "Invalid block state");
return FTL_CHUNK_STATE_BAD;
}
static void
ftl_remove_empty_bands(struct spdk_ftl_dev *dev)
{
struct ftl_band *band, *temp_band;
/* Remove band from shut_bands list to prevent further processing */
/* if all blocks on this band are bad */
LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) {
if (!band->num_chunks) {
dev->num_bands--;
LIST_REMOVE(band, list_entry);
}
}
}
static int
ftl_dev_init_bands(struct spdk_ftl_dev *dev)
{
struct spdk_ocssd_chunk_information_entry *info;
struct ftl_band *band, *pband;
struct ftl_punit *punit;
struct ftl_chunk *chunk;
unsigned int i, j;
char buf[128];
int rc = 0;
LIST_INIT(&dev->free_bands);
LIST_INIT(&dev->shut_bands);
dev->num_free = 0;
dev->num_bands = ftl_dev_num_bands(dev);
dev->bands = calloc(ftl_dev_num_bands(dev), sizeof(*dev->bands));
if (!dev->bands) {
return -1;
}
info = calloc(dev->geo.num_chk, sizeof(*info));
if (!info) {
return -1;
}
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
band = &dev->bands[i];
band->id = i;
band->dev = dev;
band->state = FTL_BAND_STATE_CLOSED;
if (LIST_EMPTY(&dev->shut_bands)) {
LIST_INSERT_HEAD(&dev->shut_bands, band, list_entry);
} else {
LIST_INSERT_AFTER(pband, band, list_entry);
}
pband = band;
CIRCLEQ_INIT(&band->chunks);
band->chunk_buf = calloc(ftl_dev_num_punits(dev), sizeof(*band->chunk_buf));
if (!band->chunk_buf) {
SPDK_ERRLOG("Failed to allocate block state table for band: [%u]\n", i);
rc = -1;
goto out;
}
rc = ftl_band_init_md(band);
if (rc) {
SPDK_ERRLOG("Failed to initialize metadata structures for band [%u]\n", i);
goto out;
}
}
for (i = 0; i < ftl_dev_num_punits(dev); ++i) {
punit = &dev->punits[i];
rc = ftl_retrieve_bbt(dev, punit, info);
if (rc) {
SPDK_ERRLOG("Failed to retrieve bbt for @ppa: %s [%lu]\n",
ftl_ppa2str(punit->start_ppa, buf, sizeof(buf)),
ftl_ppa_addr_pack(dev, punit->start_ppa));
goto out;
}
for (j = 0; j < ftl_dev_num_bands(dev); ++j) {
band = &dev->bands[j];
chunk = &band->chunk_buf[i];
chunk->pos = i;
chunk->state = ftl_get_chunk_state(&info[j]);
chunk->punit = punit;
chunk->start_ppa = punit->start_ppa;
chunk->start_ppa.chk = band->id;
if (chunk->state != FTL_CHUNK_STATE_BAD) {
band->num_chunks++;
CIRCLEQ_INSERT_TAIL(&band->chunks, chunk, circleq);
}
}
}
ftl_remove_empty_bands(dev);
out:
free(info);
return rc;
}
static int
ftl_dev_init_punits(struct spdk_ftl_dev *dev)
{
unsigned int i, punit;
dev->punits = calloc(ftl_dev_num_punits(dev), sizeof(*dev->punits));
if (!dev->punits) {
return -1;
}
for (i = 0; i < ftl_dev_num_punits(dev); ++i) {
dev->punits[i].dev = dev;
punit = dev->range.begin + i;
dev->punits[i].start_ppa.ppa = 0;
dev->punits[i].start_ppa.grp = punit % dev->geo.num_grp;
dev->punits[i].start_ppa.pu = punit / dev->geo.num_grp;
}
return 0;
}
static int
ftl_dev_retrieve_geo(struct spdk_ftl_dev *dev)
{
volatile struct ftl_admin_cmpl cmpl = {};
uint32_t nsid = spdk_nvme_ns_get_id(dev->ns);
if (spdk_nvme_ocssd_ctrlr_cmd_geometry(dev->ctrlr, nsid, &dev->geo, sizeof(dev->geo),
ftl_admin_cb, (void *)&cmpl)) {
SPDK_ERRLOG("Unable to retrieve geometry\n");
return -1;
}
/* TODO: add a timeout */
while (!cmpl.complete) {
spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr);
}
if (spdk_nvme_cpl_is_error(&cmpl.status)) {
SPDK_ERRLOG("Unexpected status code: [%d], status code type: [%d]\n",
cmpl.status.status.sc, cmpl.status.status.sct);
return -1;
}
/* TODO: add sanity checks for the geo */
dev->ppa_len = dev->geo.lbaf.grp_len +
dev->geo.lbaf.pu_len +
dev->geo.lbaf.chk_len +
dev->geo.lbaf.lbk_len;
dev->ppaf.lbk_offset = 0;
dev->ppaf.lbk_mask = (1 << dev->geo.lbaf.lbk_len) - 1;
dev->ppaf.chk_offset = dev->ppaf.lbk_offset + dev->geo.lbaf.lbk_len;
dev->ppaf.chk_mask = (1 << dev->geo.lbaf.chk_len) - 1;
dev->ppaf.pu_offset = dev->ppaf.chk_offset + dev->geo.lbaf.chk_len;
dev->ppaf.pu_mask = (1 << dev->geo.lbaf.pu_len) - 1;
dev->ppaf.grp_offset = dev->ppaf.pu_offset + dev->geo.lbaf.pu_len;
dev->ppaf.grp_mask = (1 << dev->geo.lbaf.grp_len) - 1;
/* We're using optimal write size as our xfer size */
dev->xfer_size = dev->geo.ws_opt;
return 0;
}
static int
ftl_dev_nvme_init(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
uint32_t block_size;
dev->ctrlr = opts->ctrlr;
if (spdk_nvme_ctrlr_get_num_ns(dev->ctrlr) != 1) {
SPDK_ERRLOG("Unsupported number of namespaces\n");
return -1;
}
dev->ns = spdk_nvme_ctrlr_get_ns(dev->ctrlr, FTL_NSID);
dev->trid = opts->trid;
dev->md_size = spdk_nvme_ns_get_md_size(dev->ns);
block_size = spdk_nvme_ns_get_extended_sector_size(dev->ns);
if (block_size != FTL_BLOCK_SIZE) {
SPDK_ERRLOG("Unsupported block size (%"PRIu32")\n", block_size);
return -1;
}
if (dev->md_size % sizeof(uint32_t) != 0) {
/* Metadata pointer must be dword aligned */
SPDK_ERRLOG("Unsupported metadata size (%zu)\n", dev->md_size);
return -1;
}
return 0;
}
static int
ftl_dev_init_nv_cache(struct spdk_ftl_dev *dev, struct spdk_bdev_desc *bdev_desc)
{
struct spdk_bdev *bdev;
if (!bdev_desc) {
return 0;
}
bdev = spdk_bdev_desc_get_bdev(bdev_desc);
SPDK_INFOLOG(SPDK_LOG_FTL_INIT, "Using %s as write buffer cache\n",
spdk_bdev_get_name(bdev));
if (spdk_bdev_get_block_size(bdev) != FTL_BLOCK_SIZE) {
SPDK_ERRLOG("Unsupported block size (%d)\n", spdk_bdev_get_block_size(bdev));
return -1;
}
/* The cache needs to be capable of storing at least two full bands. This requirement comes
* from the fact that cache works as a protection against power loss, so before the data
* inside the cache can be overwritten, the band it's stored on has to be closed.
*/
if (spdk_bdev_get_num_blocks(bdev) < ftl_num_band_lbks(dev) * 2) {
SPDK_ERRLOG("Insufficient number of blocks for write buffer cache(%"PRIu64"\n",
spdk_bdev_get_num_blocks(bdev));
return -1;
}
if (pthread_spin_init(&dev->nv_cache.lock, PTHREAD_PROCESS_PRIVATE)) {
SPDK_ERRLOG("Failed to initialize cache lock\n");
return -1;
}
dev->nv_cache.bdev_desc = bdev_desc;
dev->nv_cache.current_addr = 0;
dev->nv_cache.num_available = spdk_bdev_get_num_blocks(bdev);
return 0;
}
void
spdk_ftl_conf_init_defaults(struct spdk_ftl_conf *conf)
{
*conf = g_default_conf;
}
static int
ftl_init_wptr_list(struct spdk_ftl_dev *dev)
{
#define POOL_NAME_LEN 128
char pool_name[POOL_NAME_LEN];
int rc;
LIST_INIT(&dev->wptr_list);
LIST_INIT(&dev->flush_list);
rc = snprintf(pool_name, sizeof(pool_name), "%s-%s", dev->name, "ocssd-lba-pool");
if (rc < 0 || rc >= POOL_NAME_LEN) {
return -ENAMETOOLONG;
}
/* We need to reserve at least 2 buffers for band close / open sequence
* alone, plus additional (8) buffers for handling write errors.
* TODO: This memory pool is utilized only by core thread - it introduce
* unnecessary overhead and should be replaced by different data structure.
*/
dev->lba_pool = spdk_mempool_create(pool_name, 2 + 8,
ftl_lba_map_num_lbks(dev) * FTL_BLOCK_SIZE,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!dev->lba_pool) {
return -ENOMEM;
}
return 0;
}
static size_t
ftl_dev_band_max_seq(struct spdk_ftl_dev *dev)
{
struct ftl_band *band;
size_t seq = 0;
LIST_FOREACH(band, &dev->shut_bands, list_entry) {
if (band->md.seq > seq) {
seq = band->md.seq;
}
}
return seq;
}
static void
_ftl_init_bands_state(void *ctx)
{
struct ftl_band *band, *temp_band;
struct spdk_ftl_dev *dev = ctx;
dev->seq = ftl_dev_band_max_seq(dev);
LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) {
if (!band->md.num_vld) {
ftl_band_set_state(band, FTL_BAND_STATE_FREE);
}
}
ftl_reloc_resume(dev->reloc);
/* Clear the limit applications as they're incremented incorrectly by */
/* the initialization code */
memset(dev->stats.limits, 0, sizeof(dev->stats.limits));
}
static int
ftl_init_num_free_bands(struct spdk_ftl_dev *dev)
{
struct ftl_band *band;
int cnt = 0;
LIST_FOREACH(band, &dev->shut_bands, list_entry) {
if (band->num_chunks && !band->md.num_vld) {
cnt++;
}
}
return cnt;
}
static int
ftl_init_bands_state(struct spdk_ftl_dev *dev)
{
/* TODO: Should we abort initialization or expose read only device */
/* if there is no free bands? */
/* If we abort initialization should we depend on condition that */
/* we have no free bands or should we have some minimal number of */
/* free bands? */
if (!ftl_init_num_free_bands(dev)) {
return -1;
}
spdk_thread_send_msg(ftl_get_core_thread(dev), _ftl_init_bands_state, dev);
return 0;
}
static void
_ftl_dev_init_thread(void *ctx)
{
struct ftl_thread *thread = ctx;
struct spdk_ftl_dev *dev = thread->dev;
thread->poller = spdk_poller_register(thread->poller_fn, thread, thread->period_us);
if (!thread->poller) {
SPDK_ERRLOG("Unable to register poller\n");
assert(0);
}
if (spdk_get_thread() == ftl_get_core_thread(dev)) {
ftl_anm_register_device(dev, ftl_process_anm_event);
}
}
static int
ftl_dev_init_thread(struct spdk_ftl_dev *dev, struct ftl_thread *thread,
struct spdk_thread *spdk_thread, spdk_poller_fn fn, uint64_t period_us)
{
thread->dev = dev;
thread->poller_fn = fn;
thread->thread = spdk_thread;
thread->period_us = period_us;
thread->qpair = spdk_nvme_ctrlr_alloc_io_qpair(dev->ctrlr, NULL, 0);
if (!thread->qpair) {
SPDK_ERRLOG("Unable to initialize qpair\n");
return -1;
}
spdk_thread_send_msg(spdk_thread, _ftl_dev_init_thread, thread);
return 0;
}
static int
ftl_dev_init_threads(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
if (!opts->core_thread || !opts->read_thread) {
return -1;
}
if (ftl_dev_init_thread(dev, &dev->core_thread, opts->core_thread, ftl_task_core, 0)) {
SPDK_ERRLOG("Unable to initialize core thread\n");
return -1;
}
if (ftl_dev_init_thread(dev, &dev->read_thread, opts->read_thread, ftl_task_read, 0)) {
SPDK_ERRLOG("Unable to initialize read thread\n");
return -1;
}
return 0;
}
static void
ftl_dev_free_thread(struct spdk_ftl_dev *dev, struct ftl_thread *thread)
{
assert(thread->poller == NULL);
spdk_nvme_ctrlr_free_io_qpair(thread->qpair);
thread->thread = NULL;
thread->qpair = NULL;
}
static int
ftl_dev_l2p_alloc(struct spdk_ftl_dev *dev)
{
size_t addr_size;
uint64_t i;
if (dev->num_lbas == 0) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "Invalid l2p table size\n");
return -1;
}
if (dev->l2p) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "L2p table already allocated\n");
return -1;
}
addr_size = dev->ppa_len >= 32 ? 8 : 4;
dev->l2p = malloc(dev->num_lbas * addr_size);
if (!dev->l2p) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "Failed to allocate l2p table\n");
return -1;
}
for (i = 0; i < dev->num_lbas; ++i) {
ftl_l2p_set(dev, i, ftl_to_ppa(FTL_PPA_INVALID));
}
return 0;
}
static void
ftl_init_complete(struct spdk_ftl_dev *dev)
{
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_INSERT_HEAD(&g_ftl_queue, dev, stailq);
pthread_mutex_unlock(&g_ftl_queue_lock);
dev->initialized = 1;
if (dev->init_cb) {
dev->init_cb(dev, dev->init_arg, 0);
}
dev->init_cb = NULL;
dev->init_arg = NULL;
}
static int
ftl_setup_initial_state(struct spdk_ftl_dev *dev)
{
struct spdk_ftl_conf *conf = &dev->conf;
size_t i;
spdk_uuid_generate(&dev->uuid);
dev->num_lbas = 0;
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
dev->num_lbas += ftl_band_num_usable_lbks(&dev->bands[i]);
}
dev->num_lbas = (dev->num_lbas * (100 - conf->lba_rsvd)) / 100;
if (ftl_dev_l2p_alloc(dev)) {
SPDK_ERRLOG("Unable to init l2p table\n");
return -1;
}
if (ftl_init_bands_state(dev)) {
SPDK_ERRLOG("Unable to finish the initialization\n");
return -1;
}
ftl_init_complete(dev);
return 0;
}
struct ftl_init_fail_ctx {
spdk_ftl_init_fn cb;
void *arg;
};
static void
ftl_init_fail_cb(void *ctx, int status)
{
struct ftl_init_fail_ctx *fail_cb = ctx;
fail_cb->cb(NULL, fail_cb->arg, -ENODEV);
free(fail_cb);
}
static void
ftl_init_fail(struct spdk_ftl_dev *dev)
{
struct ftl_init_fail_ctx *fail_cb;
fail_cb = malloc(sizeof(*fail_cb));
if (!fail_cb) {
SPDK_ERRLOG("Unable to allocate context to free the device\n");
return;
}
fail_cb->cb = dev->init_cb;
fail_cb->arg = dev->init_arg;
dev->halt_cb = NULL;
if (spdk_ftl_dev_free(dev, ftl_init_fail_cb, fail_cb)) {
SPDK_ERRLOG("Unable to free the device\n");
assert(0);
}
}
static void
ftl_restore_device_cb(struct spdk_ftl_dev *dev, struct ftl_restore *restore, int status)
{
if (status) {
SPDK_ERRLOG("Failed to restore the device from the SSD\n");
goto error;
}
if (ftl_init_bands_state(dev)) {
SPDK_ERRLOG("Unable to finish the initialization\n");
goto error;
}
ftl_init_complete(dev);
return;
error:
ftl_init_fail(dev);
}
static void
ftl_restore_md_cb(struct spdk_ftl_dev *dev, struct ftl_restore *restore, int status)
{
if (status) {
SPDK_ERRLOG("Failed to restore the metadata from the SSD\n");
goto error;
}
/* After the metadata is read it should be possible to allocate the L2P */
if (ftl_dev_l2p_alloc(dev)) {
SPDK_ERRLOG("Failed to allocate the L2P\n");
goto error;
}
if (ftl_restore_device(restore, ftl_restore_device_cb)) {
SPDK_ERRLOG("Failed to start device restoration from the SSD\n");
goto error;
}
return;
error:
ftl_init_fail(dev);
}
static int
ftl_restore_state(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
dev->uuid = opts->uuid;
if (ftl_restore_md(dev, ftl_restore_md_cb)) {
SPDK_ERRLOG("Failed to start metadata restoration from the SSD\n");
return -1;
}
return 0;
}
static int
ftl_io_channel_create_cb(void *io_device, void *ctx)
{
struct spdk_ftl_dev *dev = io_device;
struct ftl_io_channel *ioch = ctx;
char mempool_name[32];
snprintf(mempool_name, sizeof(mempool_name), "ftl_io_%p", ioch);
ioch->cache_ioch = NULL;
ioch->dev = dev;
ioch->elem_size = sizeof(struct ftl_md_io);
ioch->io_pool = spdk_mempool_create(mempool_name,
dev->conf.user_io_pool_size,
ioch->elem_size,
0,
SPDK_ENV_SOCKET_ID_ANY);
if (!ioch->io_pool) {
SPDK_ERRLOG("Failed to create IO channel's IO pool\n");
return -1;
}
if (dev->nv_cache.bdev_desc) {
ioch->cache_ioch = spdk_bdev_get_io_channel(dev->nv_cache.bdev_desc);
if (!ioch->cache_ioch) {
SPDK_ERRLOG("Failed to create cache IO channel\n");
spdk_mempool_free(ioch->io_pool);
return -1;
}
}
return 0;
}
static void
ftl_io_channel_destroy_cb(void *io_device, void *ctx)
{
struct ftl_io_channel *ioch = ctx;
spdk_mempool_free(ioch->io_pool);
if (ioch->cache_ioch) {
spdk_put_io_channel(ioch->cache_ioch);
}
}
static int
ftl_dev_init_io_channel(struct spdk_ftl_dev *dev)
{
spdk_io_device_register(dev, ftl_io_channel_create_cb, ftl_io_channel_destroy_cb,
sizeof(struct ftl_io_channel),
NULL);
dev->ioch = spdk_get_io_channel(dev);
if (!dev->ioch) {
spdk_io_device_unregister(dev, NULL);
return -1;
}
return 0;
}
int
spdk_ftl_dev_init(const struct spdk_ftl_dev_init_opts *_opts, spdk_ftl_init_fn cb, void *cb_arg)
{
struct spdk_ftl_dev *dev;
struct spdk_ftl_dev_init_opts opts = *_opts;
dev = calloc(1, sizeof(*dev));
if (!dev) {
return -ENOMEM;
}
if (!opts.conf) {
opts.conf = &g_default_conf;
}
TAILQ_INIT(&dev->retry_queue);
dev->conf = *opts.conf;
dev->init_cb = cb;
dev->init_arg = cb_arg;
dev->range = opts.range;
dev->limit = SPDK_FTL_LIMIT_MAX;
dev->name = strdup(opts.name);
if (!dev->name) {
SPDK_ERRLOG("Unable to set device name\n");
goto fail_sync;
}
if (ftl_dev_nvme_init(dev, &opts)) {
SPDK_ERRLOG("Unable to initialize NVMe structures\n");
goto fail_sync;
}
/* In case of errors, we free all of the memory in ftl_dev_free_sync(), */
/* so we don't have to clean up in each of the init functions. */
if (ftl_dev_retrieve_geo(dev)) {
SPDK_ERRLOG("Unable to retrieve geometry\n");
goto fail_sync;
}
if (ftl_check_init_opts(&opts, &dev->geo)) {
SPDK_ERRLOG("Invalid device configuration\n");
goto fail_sync;
}
if (ftl_dev_init_punits(dev)) {
SPDK_ERRLOG("Unable to initialize LUNs\n");
goto fail_sync;
}
if (ftl_init_wptr_list(dev)) {
SPDK_ERRLOG("Unable to init wptr\n");
goto fail_sync;
}
if (ftl_dev_init_bands(dev)) {
SPDK_ERRLOG("Unable to initialize band array\n");
goto fail_sync;
}
if (ftl_dev_init_nv_cache(dev, opts.cache_bdev_desc)) {
SPDK_ERRLOG("Unable to initialize persistent cache\n");
goto fail_sync;
}
dev->rwb = ftl_rwb_init(&dev->conf, dev->geo.ws_opt, dev->md_size, ftl_dev_num_punits(dev));
if (!dev->rwb) {
SPDK_ERRLOG("Unable to initialize rwb structures\n");
goto fail_sync;
}
dev->reloc = ftl_reloc_init(dev);
if (!dev->reloc) {
SPDK_ERRLOG("Unable to initialize reloc structures\n");
goto fail_sync;
}
if (ftl_dev_init_io_channel(dev)) {
SPDK_ERRLOG("Unable to initialize IO channels\n");
goto fail_sync;
}
if (ftl_dev_init_threads(dev, &opts)) {
SPDK_ERRLOG("Unable to initialize device threads\n");
goto fail_sync;
}
if (opts.mode & SPDK_FTL_MODE_CREATE) {
if (ftl_setup_initial_state(dev)) {
SPDK_ERRLOG("Failed to setup initial state of the device\n");
goto fail_async;
}
} else {
if (ftl_restore_state(dev, &opts)) {
SPDK_ERRLOG("Unable to restore device's state from the SSD\n");
goto fail_async;
}
}
return 0;
fail_sync:
ftl_dev_free_sync(dev);
return -ENOMEM;
fail_async:
ftl_init_fail(dev);
return 0;
}
static void
_ftl_halt_defrag(void *arg)
{
ftl_reloc_halt(((struct spdk_ftl_dev *)arg)->reloc);
}
static void
ftl_dev_free_sync(struct spdk_ftl_dev *dev)
{
struct spdk_ftl_dev *iter;
size_t i;
if (!dev) {
return;
}
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_FOREACH(iter, &g_ftl_queue, stailq) {
if (iter == dev) {
STAILQ_REMOVE(&g_ftl_queue, dev, spdk_ftl_dev, stailq);
break;
}
}
pthread_mutex_unlock(&g_ftl_queue_lock);
assert(LIST_EMPTY(&dev->wptr_list));
ftl_dev_dump_bands(dev);
ftl_dev_dump_stats(dev);
if (dev->ioch) {
spdk_put_io_channel(dev->ioch);
spdk_io_device_unregister(dev, NULL);
}
if (dev->bands) {
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
free(dev->bands[i].chunk_buf);
spdk_bit_array_free(&dev->bands[i].md.vld_map);
}
}
spdk_mempool_free(dev->lba_pool);
ftl_rwb_free(dev->rwb);
ftl_reloc_free(dev->reloc);
free(dev->name);
free(dev->punits);
free(dev->bands);
free(dev->l2p);
free(dev);
}
static int
ftl_halt_poller(void *ctx)
{
struct spdk_ftl_dev *dev = ctx;
spdk_ftl_fn halt_cb = dev->halt_cb;
void *halt_arg = dev->halt_arg;
if (!dev->core_thread.poller && !dev->read_thread.poller) {
spdk_poller_unregister(&dev->halt_poller);
ftl_dev_free_thread(dev, &dev->read_thread);
ftl_dev_free_thread(dev, &dev->core_thread);
ftl_anm_unregister_device(dev);
ftl_dev_free_sync(dev);
if (halt_cb) {
halt_cb(halt_arg, 0);
}
}
return 0;
}
static void
ftl_add_halt_poller(void *ctx)
{
struct spdk_ftl_dev *dev = ctx;
_ftl_halt_defrag(dev);
assert(!dev->halt_poller);
dev->halt_poller = spdk_poller_register(ftl_halt_poller, dev, 100);
}
int
spdk_ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_fn cb, void *cb_arg)
{
if (dev->halt_cb) {
return -EBUSY;
}
dev->halt_cb = cb;
dev->halt_arg = cb_arg;
dev->halt = 1;
ftl_rwb_disable_interleaving(dev->rwb);
spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_add_halt_poller, dev);
return 0;
}
int
spdk_ftl_module_init(const struct ftl_module_init_opts *opts, spdk_ftl_fn cb, void *cb_arg)
{
return ftl_anm_init(opts->anm_thread, cb, cb_arg);
}
int
spdk_ftl_module_fini(spdk_ftl_fn cb, void *cb_arg)
{
return ftl_anm_free(cb, cb_arg);
}
SPDK_LOG_REGISTER_COMPONENT("ftl_init", SPDK_LOG_FTL_INIT)