numam-spdk/lib/nvme/nvme_pcie_common.c
Changpeng Liu 97277e1459 nvme: use transport internal queue state when deleting unfinished IO queue pair
The NVMe bdev module enables asynchronous IO QP creation by default, after
calling `spdk_nvme_ctrlr_alloc_io_qpair` and `spdk_nvme_ctrlr_connect_io_qpair`,
the queue pair is in connecting state at the beginning, then users may call
`spdk_nvme_ctrlr_free_io_qpair` immediately, and the common layer will
change queue state to NVME_QPAIR_DISCONNECTING and NVME_QPAIR_DESTROYING,
so in function `nvme_pcie_ctrlr_delete_io_qpair` the workaround to wait
for create cq/sq callbacks will not be called, instead of using the common
layer queue state here, we should use the internal `pcie_state`.

Fix #2245.

Change-Id: I801caf26563464b135035bf7fa2f63def13de9f4
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10445
Reviewed-by: Dong Yi <dongx.yi@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Monica Kenguva <monica.kenguva@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2021-12-09 06:06:02 +00:00

1801 lines
51 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2021 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over PCIe common library
*/
#include "spdk/stdinc.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "nvme_internal.h"
#include "nvme_pcie_internal.h"
#include "spdk/trace.h"
#include "spdk_internal/trace_defs.h"
__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr);
static inline uint64_t
nvme_pcie_vtophys(struct spdk_nvme_ctrlr *ctrlr, const void *buf, uint64_t *size)
{
if (spdk_likely(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
return spdk_vtophys(buf, size);
} else {
/* vfio-user address translation with IOVA=VA mode */
return (uint64_t)(uintptr_t)buf;
}
}
int
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
uint32_t i;
/* all head/tail vals are set to 0 */
pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
pqpair->flags.phase = 1;
for (i = 0; i < pqpair->num_entries; i++) {
pqpair->cpl[i].status.p = 0;
}
return 0;
}
static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
tr->cid = cid;
tr->req = NULL;
}
static void *
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
uint64_t *phys_addr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uintptr_t addr;
if (pctrlr->cmb.mem_register_addr != NULL) {
/* BAR is mapped for data */
return NULL;
}
addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
addr = (addr + (alignment - 1)) & ~(alignment - 1);
/* CMB may only consume part of the BAR, calculate accordingly */
if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
return NULL;
}
*phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
return (void *)addr;
}
int
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
uint16_t i;
uint16_t num_trackers;
size_t page_align = sysconf(_SC_PAGESIZE);
size_t queue_align, queue_len;
uint32_t flags = SPDK_MALLOC_DMA;
uint64_t sq_paddr = 0;
uint64_t cq_paddr = 0;
if (opts) {
pqpair->sq_vaddr = opts->sq.vaddr;
pqpair->cq_vaddr = opts->cq.vaddr;
sq_paddr = opts->sq.paddr;
cq_paddr = opts->cq.paddr;
}
pqpair->retry_count = ctrlr->opts.transport_retry_count;
/*
* Limit the maximum number of completions to return per call to prevent wraparound,
* and calculate how many trackers can be submitted at once without overflowing the
* completion queue.
*/
pqpair->max_completions_cap = pqpair->num_entries / 4;
pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
SPDK_INFOLOG(nvme, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
pqpair->max_completions_cap, num_trackers);
assert(num_trackers != 0);
pqpair->sq_in_cmb = false;
if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
flags |= SPDK_MALLOC_SHARE;
}
/* cmd and cpl rings must be aligned on page size boundaries. */
if (ctrlr->opts.use_cmb_sqs) {
pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
page_align, &pqpair->cmd_bus_addr);
if (pqpair->cmd != NULL) {
pqpair->sq_in_cmb = true;
}
}
if (pqpair->sq_in_cmb == false) {
if (pqpair->sq_vaddr) {
pqpair->cmd = pqpair->sq_vaddr;
} else {
/* To ensure physical address contiguity we make each ring occupy
* a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
*/
queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
if (pqpair->cmd == NULL) {
SPDK_ERRLOG("alloc qpair_cmd failed\n");
return -ENOMEM;
}
}
if (sq_paddr) {
assert(pqpair->sq_vaddr != NULL);
pqpair->cmd_bus_addr = sq_paddr;
} else {
pqpair->cmd_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cmd, NULL);
if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
return -EFAULT;
}
}
}
if (pqpair->cq_vaddr) {
pqpair->cpl = pqpair->cq_vaddr;
} else {
queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
if (pqpair->cpl == NULL) {
SPDK_ERRLOG("alloc qpair_cpl failed\n");
return -ENOMEM;
}
}
if (cq_paddr) {
assert(pqpair->cq_vaddr != NULL);
pqpair->cpl_bus_addr = cq_paddr;
} else {
pqpair->cpl_bus_addr = nvme_pcie_vtophys(ctrlr, pqpair->cpl, NULL);
if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
return -EFAULT;
}
}
pqpair->sq_tdbl = pctrlr->doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_hdbl = pctrlr->doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
/*
* Reserve space for all of the trackers in a single allocation.
* struct nvme_tracker must be padded so that its size is already a power of 2.
* This ensures the PRP list embedded in the nvme_tracker object will not span a
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
*/
pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair->tr == NULL) {
SPDK_ERRLOG("nvme_tr failed\n");
return -ENOMEM;
}
TAILQ_INIT(&pqpair->free_tr);
TAILQ_INIT(&pqpair->outstanding_tr);
for (i = 0; i < num_trackers; i++) {
tr = &pqpair->tr[i];
nvme_qpair_construct_tracker(tr, i, nvme_pcie_vtophys(ctrlr, tr, NULL));
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
int
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
{
struct nvme_pcie_qpair *pqpair;
int rc;
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair == NULL) {
return -ENOMEM;
}
pqpair->num_entries = num_entries;
pqpair->flags.delay_cmd_submit = 0;
pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
ctrlr->adminq = &pqpair->qpair;
rc = nvme_qpair_init(ctrlr->adminq,
0, /* qpair ID */
ctrlr,
SPDK_NVME_QPRIO_URGENT,
num_entries,
false);
if (rc != 0) {
return rc;
}
pqpair->stat = spdk_zmalloc(sizeof(*pqpair->stat), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
SPDK_MALLOC_SHARE);
if (!pqpair->stat) {
SPDK_ERRLOG("Failed to allocate admin qpair statistics\n");
return -ENOMEM;
}
return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
void
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *active_req = req;
struct spdk_nvme_ctrlr_process *active_proc;
/*
* The admin request is from another process. Move to the per
* process list for that process to handle it later.
*/
assert(nvme_qpair_is_admin_queue(qpair));
assert(active_req->pid != getpid());
active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
if (active_proc) {
/* Save the original completion information */
memcpy(&active_req->cpl, cpl, sizeof(*cpl));
STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
} else {
SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
active_req->pid);
nvme_free_request(active_req);
}
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
void
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *req, *tmp_req;
pid_t pid = getpid();
struct spdk_nvme_ctrlr_process *proc;
/*
* Check whether there is any pending admin request from
* other active processes.
*/
assert(nvme_qpair_is_admin_queue(qpair));
proc = nvme_ctrlr_get_current_process(ctrlr);
if (!proc) {
SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
assert(proc);
return;
}
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
assert(req->pid == pid);
nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
nvme_free_request(req);
}
}
int
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
cmd->cdw10_bits.create_io_q.qid = io_que->id;
cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
cmd->cdw11_bits.create_io_cq.pc = 1;
cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
int
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
cmd->cdw10_bits.create_io_q.qid = io_que->id;
cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
cmd->cdw11_bits.create_io_sq.pc = 1;
cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
int
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
cmd->cdw10_bits.delete_io_q.qid = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
int
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
cmd->cdw10_bits.delete_io_q.qid = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static void
nvme_completion_sq_error_delete_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_qpair *qpair = arg;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("delete_io_cq failed!\n");
}
pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
}
static void
nvme_completion_create_sq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_qpair *qpair = arg;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
int rc;
if (pqpair->flags.defer_destruction) {
/* This qpair was deleted by the application while the
* connection was still in progress. We had to wait
* to free the qpair resources until this outstanding
* command was completed. Now that we have the completion
* free it now.
*/
nvme_pcie_qpair_destroy(qpair);
return;
}
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("nvme_create_io_sq failed, deleting cq!\n");
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
qpair);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
}
return;
}
pqpair->pcie_state = NVME_PCIE_QPAIR_READY;
if (ctrlr->shadow_doorbell) {
pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
pctrlr->doorbell_stride_u32;
pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
pctrlr->doorbell_stride_u32;
pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
pctrlr->doorbell_stride_u32;
pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
pctrlr->doorbell_stride_u32;
pqpair->flags.has_shadow_doorbell = 1;
} else {
pqpair->flags.has_shadow_doorbell = 0;
}
nvme_pcie_qpair_reset(qpair);
}
static void
nvme_completion_create_cq_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_qpair *qpair = arg;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
int rc;
if (pqpair->flags.defer_destruction) {
/* This qpair was deleted by the application while the
* connection was still in progress. We had to wait
* to free the qpair resources until this outstanding
* command was completed. Now that we have the completion
* free it now.
*/
nvme_pcie_qpair_destroy(qpair);
return;
}
if (spdk_nvme_cpl_is_error(cpl)) {
pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
return;
}
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_create_sq_cb, qpair);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to create_io_sq, deleting cq!\n");
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_sq_error_delete_cq_cb,
qpair);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
pqpair->pcie_state = NVME_PCIE_QPAIR_FAILED;
}
return;
}
pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_SQ;
}
static int
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
uint16_t qid)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
int rc;
/* Statistics may already be allocated in the case of controller reset */
if (!pqpair->stat) {
if (qpair->poll_group) {
struct nvme_pcie_poll_group *group = SPDK_CONTAINEROF(qpair->poll_group,
struct nvme_pcie_poll_group, group);
pqpair->stat = &group->stats;
pqpair->shared_stats = true;
} else {
pqpair->stat = calloc(1, sizeof(*pqpair->stat));
if (!pqpair->stat) {
SPDK_ERRLOG("Failed to allocate qpair statistics\n");
nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
return -ENOMEM;
}
}
}
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_create_cq_cb, qpair);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to create_io_cq\n");
nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
return rc;
}
pqpair->pcie_state = NVME_PCIE_QPAIR_WAIT_FOR_CQ;
return 0;
}
int
nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
int rc = 0;
if (!nvme_qpair_is_admin_queue(qpair)) {
rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
} else {
nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
}
return rc;
}
void
nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
}
/* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
* not use wide instructions because QEMU will not emulate such instructions to MMIO space.
* So this function ensures we only copy 8 bytes at a time.
*/
static inline void
nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
uint64_t *dst64 = (uint64_t *)dst;
const uint64_t *src64 = (const uint64_t *)src;
uint32_t i;
for (i = 0; i < sizeof(*dst) / 8; i++) {
dst64[i] = src64[i];
}
}
static inline void
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__SSE2__)
__m128i *d128 = (__m128i *)dst;
const __m128i *s128 = (const __m128i *)src;
_mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
_mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
_mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
_mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
*dst = *src;
#endif
}
void
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
req = tr->req;
assert(req != NULL);
spdk_trace_record(TRACE_NVME_PCIE_SUBMIT, qpair->id, 0, (uintptr_t)req,
req->cmd.cid, req->cmd.opc, req->cmd.cdw10, req->cmd.cdw11, req->cmd.cdw12);
if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
/* This is first cmd of two fused commands - don't ring doorbell */
qpair->first_fused_submitted = 1;
}
/* Don't use wide instructions to copy NVMe command, this is limited by QEMU
* virtual NVMe controller, the maximum access width is 8 Bytes for one time.
*/
if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
} else {
/* Copy the command from the tracker to the submission queue. */
nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
}
if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
pqpair->sq_tail = 0;
}
if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
}
if (!pqpair->flags.delay_cmd_submit) {
nvme_pcie_qpair_ring_sq_doorbell(qpair);
}
}
void
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_request *req;
bool retry, error;
bool req_from_current_proc = true;
bool print_error;
req = tr->req;
spdk_trace_record(TRACE_NVME_PCIE_COMPLETE, qpair->id, 0, (uintptr_t)req, req->cmd.cid);
assert(req != NULL);
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < pqpair->retry_count;
print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
if (print_error) {
spdk_nvme_qpair_print_command(qpair, &req->cmd);
}
if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
spdk_nvme_qpair_print_completion(qpair, cpl);
}
assert(cpl->cid == req->cmd.cid);
if (retry) {
req->retries++;
nvme_pcie_qpair_submit_tracker(qpair, tr);
} else {
TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
/* Only check admin requests from different processes. */
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
req_from_current_proc = false;
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
} else {
nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
}
if (req_from_current_proc == true) {
nvme_qpair_free_request(qpair, req);
}
tr->req = NULL;
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
}
}
void
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
void
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr, *temp, *last;
last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
/* Abort previously submitted (outstanding) trs */
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
if (!qpair->ctrlr->opts.disable_error_logging) {
SPDK_ERRLOG("aborting outstanding command\n");
}
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
if (tr == last) {
break;
}
}
}
void
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
while (tr != NULL) {
assert(tr->req != NULL);
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
} else {
tr = TAILQ_NEXT(tr, tq_list);
}
}
}
void
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
void
nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
nvme_pcie_qpair_abort_trackers(qpair, dnr);
}
static void
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct nvme_tracker *tr, *tmp;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
assert(tr->req != NULL);
if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
int32_t
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl, *next_cpl;
uint32_t num_completions = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
uint16_t next_cq_head;
uint8_t next_phase;
bool next_is_valid = false;
int rc;
if (spdk_unlikely(pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED)) {
return -ENXIO;
}
if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) {
if (pqpair->pcie_state == NVME_PCIE_QPAIR_READY) {
/* It is possible that another thread set the pcie_state to
* QPAIR_READY, if it polled the adminq and processed the SQ
* completion for this qpair. So check for that condition
* here and then update the qpair's state to CONNECTED, since
* we can only set the qpair state from the qpair's thread.
* (Note: this fixed issue #2157.)
*/
nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
} else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) {
nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
return -ENXIO;
} else {
rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
if (rc < 0) {
return rc;
} else if (pqpair->pcie_state == NVME_PCIE_QPAIR_FAILED) {
nvme_qpair_set_state(qpair, NVME_QPAIR_DISCONNECTED);
return -ENXIO;
}
}
return 0;
}
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
/*
* max_completions == 0 means unlimited, but complete at most
* max_completions_cap batch of I/O at a time so that the completion
* queue doorbells don't wrap around.
*/
max_completions = pqpair->max_completions_cap;
}
pqpair->stat->polls++;
while (1) {
cpl = &pqpair->cpl[pqpair->cq_head];
if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
break;
}
if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
next_cq_head = pqpair->cq_head + 1;
next_phase = pqpair->flags.phase;
} else {
next_cq_head = 0;
next_phase = !pqpair->flags.phase;
}
next_cpl = &pqpair->cpl[next_cq_head];
next_is_valid = (next_cpl->status.p == next_phase);
if (next_is_valid) {
__builtin_prefetch(&pqpair->tr[next_cpl->cid]);
}
#ifdef __PPC64__
/*
* This memory barrier prevents reordering of:
* - load after store from/to tr
* - load after load cpl phase and cpl cid
*/
spdk_mb();
#elif defined(__aarch64__)
__asm volatile("dmb oshld" ::: "memory");
#endif
if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
pqpair->cq_head = 0;
pqpair->flags.phase = !pqpair->flags.phase;
}
tr = &pqpair->tr[cpl->cid];
/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
* as part of putting the req back on the qpair's free list.
*/
__builtin_prefetch(&tr->req->stailq);
pqpair->sq_head = cpl->sqhd;
if (tr->req) {
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
spdk_nvme_qpair_print_completion(qpair, cpl);
assert(0);
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
pqpair->stat->completions += num_completions;
nvme_pcie_qpair_ring_cq_doorbell(qpair);
} else {
pqpair->stat->idle_polls++;
}
if (pqpair->flags.delay_cmd_submit) {
if (pqpair->last_sq_tail != pqpair->sq_tail) {
nvme_pcie_qpair_ring_sq_doorbell(qpair);
pqpair->last_sq_tail = pqpair->sq_tail;
}
}
if (spdk_unlikely(ctrlr->timeout_enabled)) {
/*
* User registered for timeout callback
*/
nvme_pcie_qpair_check_timeout(qpair);
}
/* Before returning, complete any pending admin request. */
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_pcie_qpair_complete_pending_admin_request(qpair);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
if (spdk_unlikely(pqpair->flags.has_pending_vtophys_failures)) {
struct nvme_tracker *tr, *tmp;
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
if (tr->bad_vtophys) {
tr->bad_vtophys = 0;
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
}
}
pqpair->flags.has_pending_vtophys_failures = 0;
}
return num_completions;
}
int
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_pcie_admin_qpair_destroy(qpair);
}
/*
* We check sq_vaddr and cq_vaddr to see if the user specified the memory
* buffers when creating the I/O queue.
* If the user specified them, we cannot free that memory.
* Nor do we free it if it's in the CMB.
*/
if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
spdk_free(pqpair->cmd);
}
if (!pqpair->cq_vaddr && pqpair->cpl) {
spdk_free(pqpair->cpl);
}
if (pqpair->tr) {
spdk_free(pqpair->tr);
}
nvme_qpair_deinit(qpair);
if (!pqpair->shared_stats) {
if (qpair->id) {
free(pqpair->stat);
} else {
/* statistics of admin qpair are allocates from huge pages because
* admin qpair is shared for multi-process */
spdk_free(pqpair->stat);
}
}
spdk_free(pqpair);
return 0;
}
struct spdk_nvme_qpair *
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct nvme_pcie_qpair *pqpair;
struct spdk_nvme_qpair *qpair;
int rc;
assert(ctrlr != NULL);
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair == NULL) {
return NULL;
}
pqpair->num_entries = opts->io_queue_size;
pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
qpair = &pqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests, opts->async_mode);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
rc = nvme_pcie_qpair_construct(qpair, opts);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
int
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_completion_poll_status *status;
int rc;
assert(ctrlr != NULL);
if (ctrlr->is_removed) {
goto free;
}
if (ctrlr->prepare_for_reset) {
if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING) {
pqpair->flags.defer_destruction = true;
}
goto clear_shadow_doorbells;
}
/* If attempting to delete a qpair that's still being connected, we have to wait until it's
* finished, so that we don't free it while it's waiting for the create cq/sq callbacks.
*/
while (pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_CQ ||
pqpair->pcie_state == NVME_PCIE_QPAIR_WAIT_FOR_SQ) {
rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
if (rc < 0) {
break;
}
}
status = calloc(1, sizeof(*status));
if (!status) {
SPDK_ERRLOG("Failed to allocate status tracker\n");
goto free;
}
/* Delete the I/O submission queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
free(status);
goto free;
}
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
if (!status->timed_out) {
free(status);
}
goto free;
}
/* Now that the submission queue is deleted, the device is supposed to have
* completed any outstanding I/O. Try to complete them. If they don't complete,
* they'll be marked as aborted and completed below. */
nvme_pcie_qpair_process_completions(qpair, 0);
memset(status, 0, sizeof(*status));
/* Delete the completion queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
free(status);
goto free;
}
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
if (!status->timed_out) {
free(status);
}
goto free;
}
free(status);
clear_shadow_doorbells:
if (pqpair->flags.has_shadow_doorbell) {
*pqpair->shadow_doorbell.sq_tdbl = 0;
*pqpair->shadow_doorbell.cq_hdbl = 0;
*pqpair->shadow_doorbell.sq_eventidx = 0;
*pqpair->shadow_doorbell.cq_eventidx = 0;
}
free:
if (qpair->no_deletion_notification_needed == 0) {
/* Abort the rest of the I/O */
nvme_pcie_qpair_abort_trackers(qpair, 1);
}
if (!pqpair->flags.defer_destruction) {
nvme_pcie_qpair_destroy(qpair);
}
return 0;
}
static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
if (!qpair->in_completion_context) {
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
tr->bad_vtophys = 1;
pqpair->flags.has_pending_vtophys_failures = 1;
return;
}
/*
* Bad vtophys translation, so abort this request and return
* immediately.
*/
SPDK_ERRLOG("vtophys or other payload buffer related error\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
/*
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
*
* *prp_index will be updated to account for the number of PRP entries used.
*/
static inline int
nvme_pcie_prp_list_append(struct spdk_nvme_ctrlr *ctrlr, struct nvme_tracker *tr,
uint32_t *prp_index, void *virt_addr, size_t len,
uint32_t page_size)
{
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
uintptr_t page_mask = page_size - 1;
uint64_t phys_addr;
uint32_t i;
SPDK_DEBUGLOG(nvme, "prp_index:%u virt_addr:%p len:%u\n",
*prp_index, virt_addr, (uint32_t)len);
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
return -EFAULT;
}
i = *prp_index;
while (len) {
uint32_t seg_len;
/*
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
* so prp_index == count is valid.
*/
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
SPDK_ERRLOG("out of PRP entries\n");
return -EFAULT;
}
phys_addr = nvme_pcie_vtophys(ctrlr, virt_addr, NULL);
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
return -EFAULT;
}
if (i == 0) {
SPDK_DEBUGLOG(nvme, "prp1 = %p\n", (void *)phys_addr);
cmd->dptr.prp.prp1 = phys_addr;
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
} else {
if ((phys_addr & page_mask) != 0) {
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
return -EFAULT;
}
SPDK_DEBUGLOG(nvme, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
tr->u.prp[i - 1] = phys_addr;
seg_len = page_size;
}
seg_len = spdk_min(seg_len, len);
virt_addr += seg_len;
len -= seg_len;
i++;
}
cmd->psdt = SPDK_NVME_PSDT_PRP;
if (i <= 1) {
cmd->dptr.prp.prp2 = 0;
} else if (i == 2) {
cmd->dptr.prp.prp2 = tr->u.prp[0];
SPDK_DEBUGLOG(nvme, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
} else {
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
SPDK_DEBUGLOG(nvme, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
}
*prp_index = i;
return 0;
}
static int
nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
{
assert(0);
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EINVAL;
}
/**
* Build PRP list describing physically contiguous payload buffer.
*/
static int
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr, bool dword_aligned)
{
uint32_t prp_index = 0;
int rc;
rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index,
req->payload.contig_or_cb_arg + req->payload_offset,
req->payload_size, qpair->ctrlr->page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
}
return rc;
}
/**
* Build an SGL describing a physically contiguous payload buffer.
*
* This is more efficient than using PRP because large buffers can be
* described this way.
*/
static int
nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr, bool dword_aligned)
{
void *virt_addr;
uint64_t phys_addr, mapping_length;
uint32_t length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
length = req->payload_size;
virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
while (length > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
mapping_length = length;
phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
mapping_length = spdk_min(length, mapping_length);
length -= mapping_length;
virt_addr += mapping_length;
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = mapping_length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
}
/**
* Build SGL list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr, bool dword_aligned)
{
int rc;
void *virt_addr;
uint64_t phys_addr, mapping_length;
uint32_t remaining_transfer_len, remaining_user_sge_len, length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
/*
* Build scattered payloads.
*/
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
&virt_addr, &remaining_user_sge_len);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
/* Bit Bucket SGL descriptor */
if ((uint64_t)virt_addr == UINT64_MAX) {
/* TODO: enable WRITE and COMPARE when necessary */
if (req->cmd.opc != SPDK_NVME_OPC_READ) {
SPDK_ERRLOG("Only READ command can be supported\n");
goto exit;
}
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
SPDK_ERRLOG("Too many SGL entries\n");
goto exit;
}
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
/* If the SGL describes a destination data buffer, the length of data
* buffer shall be discarded by controller, and the length is included
* in Number of Logical Blocks (NLB) parameter. Otherwise, the length
* is not included in the NLB parameter.
*/
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
remaining_transfer_len -= remaining_user_sge_len;
sgl->unkeyed.length = remaining_user_sge_len;
sgl->address = 0;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
continue;
}
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
remaining_transfer_len -= remaining_user_sge_len;
while (remaining_user_sge_len > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
SPDK_ERRLOG("Too many SGL entries\n");
goto exit;
}
if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
goto exit;
}
mapping_length = remaining_user_sge_len;
phys_addr = nvme_pcie_vtophys(qpair->ctrlr, virt_addr, &mapping_length);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
goto exit;
}
length = spdk_min(remaining_user_sge_len, mapping_length);
remaining_user_sge_len -= length;
virt_addr += length;
if (nseg > 0 && phys_addr ==
(*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
/* extend previous entry */
(*(sgl - 1)).unkeyed.length += length;
continue;
}
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
* NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
exit:
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
/**
* Build PRP list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr, bool dword_aligned)
{
int rc;
void *virt_addr;
uint32_t remaining_transfer_len, length;
uint32_t prp_index = 0;
uint32_t page_size = qpair->ctrlr->page_size;
/*
* Build scattered payloads.
*/
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
assert(req->payload.next_sge_fn != NULL);
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EFAULT;
}
length = spdk_min(remaining_transfer_len, length);
/*
* Any incompatible sges should have been handled up in the splitting routine,
* but assert here as an additional check.
*
* All SGEs except last must end on a page boundary.
*/
assert((length == remaining_transfer_len) ||
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
rc = nvme_pcie_prp_list_append(qpair->ctrlr, tr, &prp_index, virt_addr, length, page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return rc;
}
remaining_transfer_len -= length;
}
return 0;
}
typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
bool);
static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
[NVME_PAYLOAD_TYPE_INVALID] = {
nvme_pcie_qpair_build_request_invalid, /* PRP */
nvme_pcie_qpair_build_request_invalid /* SGL */
},
[NVME_PAYLOAD_TYPE_CONTIG] = {
nvme_pcie_qpair_build_contig_request, /* PRP */
nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */
},
[NVME_PAYLOAD_TYPE_SGL] = {
nvme_pcie_qpair_build_prps_sgl_request, /* PRP */
nvme_pcie_qpair_build_hw_sgl_request /* SGL */
}
};
static int
nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
bool sgl_supported, bool dword_aligned)
{
void *md_payload;
struct nvme_request *req = tr->req;
if (req->payload.md) {
md_payload = req->payload.md + req->md_offset;
if (dword_aligned && ((uintptr_t)md_payload & 3)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
goto exit;
}
if (sgl_supported && dword_aligned) {
assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
tr->meta_sgl.address = nvme_pcie_vtophys(qpair->ctrlr, md_payload, NULL);
if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
goto exit;
}
tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
tr->meta_sgl.unkeyed.length = req->md_size;
tr->meta_sgl.unkeyed.subtype = 0;
req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
} else {
req->cmd.mptr = nvme_pcie_vtophys(qpair->ctrlr, md_payload, NULL);
if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
goto exit;
}
}
}
return 0;
exit:
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -EINVAL;
}
int
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int rc = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
enum nvme_payload_type payload_type;
bool sgl_supported;
bool dword_aligned = true;
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
tr = TAILQ_FIRST(&pqpair->free_tr);
if (tr == NULL) {
pqpair->stat->queued_requests++;
/* Inform the upper layer to try again later. */
rc = -EAGAIN;
goto exit;
}
pqpair->stat->submitted_requests++;
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
tr->req = req;
tr->cb_fn = req->cb_fn;
tr->cb_arg = req->cb_arg;
req->cmd.cid = tr->cid;
if (req->payload_size != 0) {
payload_type = nvme_payload_type(&req->payload);
/* According to the specification, PRPs shall be used for all
* Admin commands for NVMe over PCIe implementations.
*/
sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
!nvme_qpair_is_admin_queue(qpair);
if (sgl_supported) {
/* Don't use SGL for DSM command */
if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_NO_SGL_FOR_DSM) &&
(req->cmd.opc == SPDK_NVME_OPC_DATASET_MANAGEMENT))) {
sgl_supported = false;
}
}
if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
dword_aligned = false;
}
/* If we fail to build the request or the metadata, do not return the -EFAULT back up
* the stack. This ensures that we always fail these types of requests via a
* completion callback, and never in the context of the submission.
*/
rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
if (rc < 0) {
assert(rc == -EFAULT);
rc = 0;
goto exit;
}
rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
if (rc < 0) {
assert(rc == -EFAULT);
rc = 0;
goto exit;
}
}
nvme_pcie_qpair_submit_tracker(qpair, tr);
exit:
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return rc;
}
struct spdk_nvme_transport_poll_group *
nvme_pcie_poll_group_create(void)
{
struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
if (group == NULL) {
SPDK_ERRLOG("Unable to allocate poll group.\n");
return NULL;
}
return &group->group;
}
int
nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
{
return 0;
}
int
nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
{
return 0;
}
int
nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
return 0;
}
int
nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_qpair *qpair)
{
return 0;
}
int64_t
nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
{
struct spdk_nvme_qpair *qpair, *tmp_qpair;
int32_t local_completions = 0;
int64_t total_completions = 0;
STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
disconnected_qpair_cb(qpair, tgroup->group->ctx);
}
STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
if (local_completions < 0) {
disconnected_qpair_cb(qpair, tgroup->group->ctx);
local_completions = 0;
}
total_completions += local_completions;
}
return total_completions;
}
int
nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
{
if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
return -EBUSY;
}
free(tgroup);
return 0;
}
SPDK_TRACE_REGISTER_FN(nvme_pcie, "nvme_pcie", TRACE_GROUP_NVME_PCIE)
{
struct spdk_trace_tpoint_opts opts[] = {
{
"NVME_PCIE_SUBMIT", TRACE_NVME_PCIE_SUBMIT,
OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_TR, 1,
{ { "cid", SPDK_TRACE_ARG_TYPE_INT, 8 },
{ "opc", SPDK_TRACE_ARG_TYPE_INT, 8 },
{ "dw10", SPDK_TRACE_ARG_TYPE_PTR, 8 },
{ "dw11", SPDK_TRACE_ARG_TYPE_PTR, 8 },
{ "dw12", SPDK_TRACE_ARG_TYPE_PTR, 8 }
}
},
{
"NVME_PCIE_COMPLETE", TRACE_NVME_PCIE_COMPLETE,
OWNER_NVME_PCIE_QP, OBJECT_NVME_PCIE_TR, 0,
{{ "cid", SPDK_TRACE_ARG_TYPE_INT, 8 }}
},
};
spdk_trace_register_object(OBJECT_NVME_PCIE_TR, 'p');
spdk_trace_register_owner(OWNER_NVME_PCIE_QP, 'q');
spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
}