325b7db392
GCC generates a series of 64-bit MOV instructions for the memcpy() into the submission queue. We can do better with 128-bit SSE2 instructions. DPDK already has a memcpy implementation that is optimized for small inline copies, so use it instead of memcpy. Change-Id: I5f09259b4d5cb089ace4a8ea6d2078c03fee84f3 Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
883 lines
25 KiB
C
883 lines
25 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "nvme_internal.h"
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
*/
|
|
|
|
static inline bool nvme_qpair_is_admin_queue(struct nvme_qpair *qpair)
|
|
{
|
|
return qpair->id == 0;
|
|
}
|
|
|
|
static inline bool nvme_qpair_is_io_queue(struct nvme_qpair *qpair)
|
|
{
|
|
return qpair->id != 0;
|
|
}
|
|
|
|
struct nvme_string {
|
|
uint16_t value;
|
|
const char *str;
|
|
};
|
|
|
|
static const struct nvme_string admin_opcode[] = {
|
|
{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
|
|
{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
|
|
{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
|
|
{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
|
|
{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
|
|
{ NVME_OPC_IDENTIFY, "IDENTIFY" },
|
|
{ NVME_OPC_ABORT, "ABORT" },
|
|
{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
|
|
{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
|
|
{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
|
|
{ NVME_OPC_NAMESPACE_MANAGEMENT, "NAMESPACE MANAGEMENT" },
|
|
{ NVME_OPC_FIRMWARE_COMMIT, "FIRMWARE COMMIT" },
|
|
{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
|
|
{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
|
|
{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
|
|
{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
|
|
{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
|
|
{ 0xFFFF, "ADMIN COMMAND" }
|
|
};
|
|
|
|
static const struct nvme_string io_opcode[] = {
|
|
{ NVME_OPC_FLUSH, "FLUSH" },
|
|
{ NVME_OPC_WRITE, "WRITE" },
|
|
{ NVME_OPC_READ, "READ" },
|
|
{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
|
|
{ NVME_OPC_COMPARE, "COMPARE" },
|
|
{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
|
|
{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
|
|
{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
|
|
{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
|
|
{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
|
|
{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
|
|
{ 0xFFFF, "IO COMMAND" }
|
|
};
|
|
|
|
static const char *
|
|
nvme_get_string(const struct nvme_string *strings, uint16_t value)
|
|
{
|
|
const struct nvme_string *entry;
|
|
|
|
entry = strings;
|
|
|
|
while (entry->value != 0xFFFF) {
|
|
if (entry->value == value) {
|
|
return entry->str;
|
|
}
|
|
entry++;
|
|
}
|
|
return entry->str;
|
|
}
|
|
|
|
static void
|
|
nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
|
|
struct nvme_command *cmd)
|
|
{
|
|
|
|
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
|
|
"cdw10:%08x cdw11:%08x\n",
|
|
nvme_get_string(admin_opcode, cmd->opc), cmd->opc, qpair->id, cmd->cid,
|
|
cmd->nsid, cmd->cdw10, cmd->cdw11);
|
|
}
|
|
|
|
static void
|
|
nvme_io_qpair_print_command(struct nvme_qpair *qpair,
|
|
struct nvme_command *cmd)
|
|
{
|
|
|
|
switch ((int)cmd->opc) {
|
|
case NVME_OPC_WRITE:
|
|
case NVME_OPC_READ:
|
|
case NVME_OPC_WRITE_UNCORRECTABLE:
|
|
case NVME_OPC_COMPARE:
|
|
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
|
|
"lba:%llu len:%d\n",
|
|
nvme_get_string(io_opcode, cmd->opc), qpair->id, cmd->cid,
|
|
cmd->nsid,
|
|
((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
|
|
(cmd->cdw12 & 0xFFFF) + 1);
|
|
break;
|
|
case NVME_OPC_FLUSH:
|
|
case NVME_OPC_DATASET_MANAGEMENT:
|
|
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
|
|
nvme_get_string(io_opcode, cmd->opc), qpair->id, cmd->cid,
|
|
cmd->nsid);
|
|
break;
|
|
default:
|
|
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
|
|
nvme_get_string(io_opcode, cmd->opc), cmd->opc, qpair->id,
|
|
cmd->cid, cmd->nsid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
|
|
{
|
|
nvme_assert(qpair != NULL, ("qpair can not be NULL"));
|
|
nvme_assert(cmd != NULL, ("cmd can not be NULL"));
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
nvme_admin_qpair_print_command(qpair, cmd);
|
|
} else {
|
|
nvme_io_qpair_print_command(qpair, cmd);
|
|
}
|
|
}
|
|
|
|
static const struct nvme_string generic_status[] = {
|
|
{ NVME_SC_SUCCESS, "SUCCESS" },
|
|
{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
|
|
{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
|
|
{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
|
|
{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
|
|
{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
|
|
{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
|
|
{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
|
|
{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
|
|
{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
|
|
{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
|
|
{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
|
|
{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
|
|
{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
|
|
{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
|
|
{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
|
|
{ 0xFFFF, "GENERIC" }
|
|
};
|
|
|
|
static const struct nvme_string command_specific_status[] = {
|
|
{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
|
|
{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
|
|
{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
|
|
{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
|
|
{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
|
|
{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
|
|
{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
|
|
{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
|
|
{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
|
|
{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
|
|
{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
|
|
{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
|
|
{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
|
|
{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
|
|
{ 0xFFFF, "COMMAND SPECIFIC" }
|
|
};
|
|
|
|
static const struct nvme_string media_error_status[] = {
|
|
{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
|
|
{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
|
|
{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
|
|
{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
|
|
{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
|
|
{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
|
|
{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
|
|
{ 0xFFFF, "MEDIA ERROR" }
|
|
};
|
|
|
|
static const char *
|
|
get_status_string(uint16_t sct, uint16_t sc)
|
|
{
|
|
const struct nvme_string *entry;
|
|
|
|
switch (sct) {
|
|
case NVME_SCT_GENERIC:
|
|
entry = generic_status;
|
|
break;
|
|
case NVME_SCT_COMMAND_SPECIFIC:
|
|
entry = command_specific_status;
|
|
break;
|
|
case NVME_SCT_MEDIA_ERROR:
|
|
entry = media_error_status;
|
|
break;
|
|
case NVME_SCT_VENDOR_SPECIFIC:
|
|
return "VENDOR SPECIFIC";
|
|
default:
|
|
return "RESERVED";
|
|
}
|
|
|
|
return nvme_get_string(entry, sc);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_print_completion(struct nvme_qpair *qpair,
|
|
struct nvme_completion *cpl)
|
|
{
|
|
nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x sqhd:%04x p:%x m:%x dnr:%x\n",
|
|
get_status_string(cpl->status.sct, cpl->status.sc),
|
|
cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0,
|
|
cpl->sqhd, cpl->status.p, cpl->status.m, cpl->status.dnr);
|
|
}
|
|
|
|
static bool
|
|
nvme_completion_is_retry(const struct nvme_completion *cpl)
|
|
{
|
|
/*
|
|
* TODO: spec is not clear how commands that are aborted due
|
|
* to TLER will be marked. So for now, it seems
|
|
* NAMESPACE_NOT_READY is the only case where we should
|
|
* look at the DNR bit.
|
|
*/
|
|
switch ((int)cpl->status.sct) {
|
|
case NVME_SCT_GENERIC:
|
|
switch ((int)cpl->status.sc) {
|
|
case NVME_SC_ABORTED_BY_REQUEST:
|
|
case NVME_SC_NAMESPACE_NOT_READY:
|
|
if (cpl->status.dnr) {
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
case NVME_SC_INVALID_OPCODE:
|
|
case NVME_SC_INVALID_FIELD:
|
|
case NVME_SC_COMMAND_ID_CONFLICT:
|
|
case NVME_SC_DATA_TRANSFER_ERROR:
|
|
case NVME_SC_ABORTED_POWER_LOSS:
|
|
case NVME_SC_INTERNAL_DEVICE_ERROR:
|
|
case NVME_SC_ABORTED_SQ_DELETION:
|
|
case NVME_SC_ABORTED_FAILED_FUSED:
|
|
case NVME_SC_ABORTED_MISSING_FUSED:
|
|
case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
|
|
case NVME_SC_COMMAND_SEQUENCE_ERROR:
|
|
case NVME_SC_LBA_OUT_OF_RANGE:
|
|
case NVME_SC_CAPACITY_EXCEEDED:
|
|
default:
|
|
return false;
|
|
}
|
|
case NVME_SCT_COMMAND_SPECIFIC:
|
|
case NVME_SCT_MEDIA_ERROR:
|
|
case NVME_SCT_VENDOR_SPECIFIC:
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
|
|
{
|
|
tr->prp_bus_addr = phys_addr + offsetof(struct nvme_tracker, prp);
|
|
tr->cid = cid;
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
struct nvme_completion *cpl, bool print_on_error)
|
|
{
|
|
struct nvme_request *req;
|
|
bool retry, error;
|
|
|
|
req = tr->req;
|
|
|
|
nvme_assert(req != NULL, ("tr has NULL req\n"));
|
|
|
|
error = nvme_completion_is_error(cpl);
|
|
retry = error && nvme_completion_is_retry(cpl) &&
|
|
req->retries < nvme_retry_count;
|
|
|
|
if (error && print_on_error) {
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_print_completion(qpair, cpl);
|
|
}
|
|
|
|
qpair->act_tr[cpl->cid] = NULL;
|
|
|
|
nvme_assert(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
|
|
|
|
if (retry) {
|
|
req->retries++;
|
|
nvme_qpair_submit_tracker(qpair, tr);
|
|
} else {
|
|
if (req->cb_fn) {
|
|
req->cb_fn(req->cb_arg, cpl);
|
|
}
|
|
|
|
nvme_free_request(req);
|
|
tr->req = NULL;
|
|
|
|
LIST_REMOVE(tr, list);
|
|
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
|
|
|
|
/*
|
|
* If the controller is in the middle of resetting, don't
|
|
* try to submit queued requests here - let the reset logic
|
|
* handle that instead.
|
|
*/
|
|
if (!STAILQ_EMPTY(&qpair->queued_req) &&
|
|
!qpair->ctrlr->is_resetting) {
|
|
req = STAILQ_FIRST(&qpair->queued_req);
|
|
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
|
|
nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
|
|
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
|
|
bool print_on_error)
|
|
{
|
|
struct nvme_completion cpl;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.cid = tr->cid;
|
|
cpl.status.sct = sct;
|
|
cpl.status.sc = sc;
|
|
cpl.status.dnr = dnr;
|
|
nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
|
|
}
|
|
|
|
void
|
|
nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
|
|
struct nvme_request *req, uint32_t sct, uint32_t sc,
|
|
bool print_on_error)
|
|
{
|
|
struct nvme_completion cpl;
|
|
bool error;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.status.sct = sct;
|
|
cpl.status.sc = sc;
|
|
|
|
error = nvme_completion_is_error(&cpl);
|
|
|
|
if (error && print_on_error) {
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_print_completion(qpair, &cpl);
|
|
}
|
|
|
|
if (req->cb_fn) {
|
|
req->cb_fn(req->cb_arg, &cpl);
|
|
}
|
|
|
|
nvme_free_request(req);
|
|
}
|
|
|
|
static inline bool
|
|
nvme_qpair_check_enabled(struct nvme_qpair *qpair)
|
|
{
|
|
if (!qpair->is_enabled &&
|
|
!qpair->ctrlr->is_resetting) {
|
|
nvme_qpair_enable(qpair);
|
|
}
|
|
return qpair->is_enabled;
|
|
}
|
|
|
|
/**
|
|
* \page nvme_async_completion NVMe Asynchronous Completion
|
|
*
|
|
* The userspace NVMe driver follows an asynchronous polled model for
|
|
* I/O completion.
|
|
*
|
|
* \section async_io I/O commands
|
|
*
|
|
* The application may submit I/O from one or more threads
|
|
* and must call nvme_ctrlr_process_io_completions()
|
|
* from each thread that submitted I/O.
|
|
*
|
|
* When the application calls nvme_ctrlr_process_io_completions(),
|
|
* if the NVMe driver detects completed I/Os that were submitted on that thread,
|
|
* it will invoke the registered callback function
|
|
* for each I/O within the context of nvme_ctrlr_process_io_completions().
|
|
*
|
|
* \section async_admin Admin commands
|
|
*
|
|
* The application may submit admin commands from one or more threads
|
|
* and must call nvme_ctrlr_process_admin_completions()
|
|
* from at least one thread to receive admin command completions.
|
|
* The thread that processes admin completions need not be the same thread that submitted the
|
|
* admin commands.
|
|
*
|
|
* When the application calls nvme_ctrlr_process_admin_completions(),
|
|
* if the NVMe driver detects completed admin commands submitted from any thread,
|
|
* it will invote the registered callback function
|
|
* for each command within the context of nvme_ctrlr_process_admin_completions().
|
|
*
|
|
* It is the application's responsibility to manage the order of submitted admin commands.
|
|
* If certain admin commands must be submitted while no other commands are outstanding,
|
|
* it is the application's responsibility to enforce this rule
|
|
* using its own synchronization method.
|
|
*/
|
|
|
|
/**
|
|
* \brief Checks for and processes completions on the specified qpair.
|
|
*
|
|
* For each completed command, the request's callback function will
|
|
* be called if specified as non-NULL when the request was submitted.
|
|
*
|
|
* \sa nvme_cb_fn_t
|
|
*/
|
|
void
|
|
nvme_qpair_process_completions(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_completion *cpl;
|
|
|
|
if (!nvme_qpair_check_enabled(qpair)) {
|
|
/*
|
|
* qpair is not enabled, likely because a controller reset is
|
|
* is in progress. Ignore the interrupt - any I/O that was
|
|
* associated with this interrupt will get retried when the
|
|
* reset is complete.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
while (1) {
|
|
cpl = &qpair->cpl[qpair->cq_head];
|
|
|
|
if (cpl->status.p != qpair->phase)
|
|
break;
|
|
|
|
tr = qpair->act_tr[cpl->cid];
|
|
|
|
if (tr != NULL) {
|
|
nvme_qpair_complete_tracker(qpair, tr, cpl, true);
|
|
} else {
|
|
nvme_printf(qpair->ctrlr,
|
|
"cpl does not map to outstanding cmd\n");
|
|
nvme_qpair_print_completion(qpair, cpl);
|
|
nvme_assert(0, ("received completion for unknown cmd\n"));
|
|
}
|
|
|
|
if (++qpair->cq_head == qpair->num_entries) {
|
|
qpair->cq_head = 0;
|
|
qpair->phase = !qpair->phase;
|
|
}
|
|
|
|
_nvme_mmio_write_4(qpair->cq_hdbl, qpair->cq_head);
|
|
}
|
|
}
|
|
|
|
int
|
|
nvme_qpair_construct(struct nvme_qpair *qpair, uint16_t id,
|
|
uint16_t num_entries, uint16_t num_trackers,
|
|
struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
uint16_t i;
|
|
volatile uint32_t *doorbell_base;
|
|
uint64_t phys_addr = 0;
|
|
|
|
nvme_assert(num_entries != 0, ("invalid num_entries\n"));
|
|
nvme_assert(num_trackers != 0, ("invalid num_trackers\n"));
|
|
|
|
qpair->id = id;
|
|
qpair->num_entries = num_entries;
|
|
|
|
qpair->ctrlr = ctrlr;
|
|
|
|
/* cmd and cpl rings must be aligned on 4KB boundaries. */
|
|
qpair->cmd = nvme_malloc("qpair_cmd",
|
|
qpair->num_entries * sizeof(struct nvme_command),
|
|
0x1000,
|
|
&qpair->cmd_bus_addr);
|
|
if (qpair->cmd == NULL) {
|
|
nvme_printf(ctrlr, "alloc qpair_cmd failed\n");
|
|
goto fail;
|
|
}
|
|
qpair->cpl = nvme_malloc("qpair_cpl",
|
|
qpair->num_entries * sizeof(struct nvme_completion),
|
|
0x1000,
|
|
&qpair->cpl_bus_addr);
|
|
if (qpair->cpl == NULL) {
|
|
nvme_printf(ctrlr, "alloc qpair_cpl failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
doorbell_base = &ctrlr->regs->doorbell[0].sq_tdbl;
|
|
qpair->sq_tdbl = doorbell_base + (2 * id + 0) * ctrlr->doorbell_stride_u32;
|
|
qpair->cq_hdbl = doorbell_base + (2 * id + 1) * ctrlr->doorbell_stride_u32;
|
|
|
|
LIST_INIT(&qpair->free_tr);
|
|
LIST_INIT(&qpair->outstanding_tr);
|
|
STAILQ_INIT(&qpair->queued_req);
|
|
|
|
for (i = 0; i < num_trackers; i++) {
|
|
/*
|
|
* Round alignment up to next power of 2. This ensures the PRP
|
|
* list embedded in the nvme_tracker object will not span a
|
|
* 4KB boundary.
|
|
*/
|
|
tr = nvme_malloc("nvme_tr", sizeof(*tr), nvme_align32pow2(sizeof(*tr)), &phys_addr);
|
|
if (tr == NULL) {
|
|
nvme_printf(ctrlr, "nvme_tr failed\n");
|
|
goto fail;
|
|
}
|
|
nvme_qpair_construct_tracker(tr, i, phys_addr);
|
|
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
|
|
}
|
|
|
|
qpair->act_tr = calloc(num_trackers, sizeof(struct nvme_tracker *));
|
|
if (qpair->act_tr == NULL) {
|
|
nvme_printf(ctrlr, "alloc nvme_act_tr failed\n");
|
|
goto fail;
|
|
}
|
|
nvme_qpair_reset(qpair);
|
|
return 0;
|
|
fail:
|
|
nvme_qpair_destroy(qpair);
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
|
|
tr = LIST_FIRST(&qpair->outstanding_tr);
|
|
while (tr != NULL) {
|
|
if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
nvme_qpair_manual_complete_tracker(qpair, tr,
|
|
NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
|
|
false);
|
|
tr = LIST_FIRST(&qpair->outstanding_tr);
|
|
} else {
|
|
tr = LIST_NEXT(tr, list);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
_nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
|
|
{
|
|
nvme_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
|
|
void
|
|
nvme_qpair_destroy(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair)) {
|
|
_nvme_admin_qpair_destroy(qpair);
|
|
}
|
|
if (qpair->cmd)
|
|
nvme_free(qpair->cmd);
|
|
if (qpair->cpl)
|
|
nvme_free(qpair->cpl);
|
|
if (qpair->act_tr)
|
|
free(qpair->act_tr);
|
|
|
|
while (!LIST_EMPTY(&qpair->free_tr)) {
|
|
tr = LIST_FIRST(&qpair->free_tr);
|
|
LIST_REMOVE(tr, list);
|
|
nvme_free(tr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \page nvme_io_submission NVMe I/O Submission
|
|
*
|
|
* I/O is submitted to an NVMe namespace using nvme_ns_cmd_xxx functions
|
|
* defined in nvme_ns_cmd.c. The NVMe driver submits the I/O request
|
|
* as an NVMe submission queue entry on the nvme_qpair associated with
|
|
* the logical core that submits the I/O.
|
|
*
|
|
* \sa nvme_ns_cmd_read, nvme_ns_cmd_write, nvme_ns_cmd_deallocate,
|
|
* nvme_ns_cmd_flush, nvme_get_ioq_idx
|
|
*/
|
|
|
|
|
|
void
|
|
nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
req = tr->req;
|
|
qpair->act_tr[tr->cid] = tr;
|
|
|
|
/* Copy the command from the tracker to the submission queue. */
|
|
nvme_copy_command(&qpair->cmd[qpair->sq_tail], &req->cmd);
|
|
|
|
if (++qpair->sq_tail == qpair->num_entries) {
|
|
qpair->sq_tail = 0;
|
|
}
|
|
|
|
wmb();
|
|
_nvme_mmio_write_4(qpair->sq_tdbl, qpair->sq_tail);
|
|
}
|
|
|
|
static void
|
|
_nvme_fail_request_bad_vtophys(struct nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
/*
|
|
* Bad vtophys translation, so abort this request and return
|
|
* immediately.
|
|
*/
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_INVALID_FIELD,
|
|
1 /* do not retry */, true);
|
|
}
|
|
|
|
static void
|
|
_nvme_fail_request_ctrlr_failed(struct nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, true);
|
|
}
|
|
|
|
void
|
|
nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_request *child_req;
|
|
uint64_t phys_addr;
|
|
void *seg_addr;
|
|
uint32_t nseg, cur_nseg, modulo, unaligned;
|
|
|
|
nvme_qpair_check_enabled(qpair);
|
|
|
|
if (req->num_children) {
|
|
/*
|
|
* This is a split (parent) request. Submit all of the children but not the parent
|
|
* request itself, since the parent is the original unsplit request.
|
|
*/
|
|
TAILQ_FOREACH(child_req, &req->children, child_tailq) {
|
|
nvme_qpair_submit_request(qpair, child_req);
|
|
}
|
|
return;
|
|
}
|
|
|
|
tr = LIST_FIRST(&qpair->free_tr);
|
|
|
|
if (tr == NULL || !qpair->is_enabled) {
|
|
/*
|
|
* No tracker is available, or the qpair is disabled due to
|
|
* an in-progress controller-level reset or controller
|
|
* failure.
|
|
*/
|
|
|
|
if (qpair->ctrlr->is_failed) {
|
|
_nvme_fail_request_ctrlr_failed(qpair, req);
|
|
} else {
|
|
/*
|
|
* Put the request on the qpair's request queue to be
|
|
* processed when a tracker frees up via a command
|
|
* completion or when the controller reset is
|
|
* completed.
|
|
*/
|
|
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
|
|
}
|
|
return;
|
|
}
|
|
|
|
LIST_REMOVE(tr, list); /* remove tr from free_tr */
|
|
LIST_INSERT_HEAD(&qpair->outstanding_tr, tr, list);
|
|
tr->req = req;
|
|
req->cmd.cid = tr->cid;
|
|
|
|
if (req->payload_size) {
|
|
/*
|
|
* Build PRP list describing payload buffer.
|
|
*/
|
|
|
|
phys_addr = nvme_vtophys(req->u.payload);
|
|
if (phys_addr == -1) {
|
|
_nvme_fail_request_bad_vtophys(qpair, tr);
|
|
return;
|
|
}
|
|
nseg = req->payload_size >> nvme_u32log2(PAGE_SIZE);
|
|
modulo = req->payload_size & (PAGE_SIZE - 1);
|
|
unaligned = phys_addr & (PAGE_SIZE - 1);
|
|
if (modulo || unaligned) {
|
|
nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE));
|
|
}
|
|
|
|
tr->req->cmd.psdt = NVME_PSDT_PRP;
|
|
tr->req->cmd.dptr.prp.prp1 = phys_addr;
|
|
if (nseg == 2) {
|
|
seg_addr = req->u.payload + PAGE_SIZE - unaligned;
|
|
tr->req->cmd.dptr.prp.prp2 = nvme_vtophys(seg_addr);
|
|
} else if (nseg > 2) {
|
|
cur_nseg = 1;
|
|
tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_bus_addr;
|
|
while (cur_nseg < nseg) {
|
|
seg_addr = req->u.payload + cur_nseg * PAGE_SIZE - unaligned;
|
|
phys_addr = nvme_vtophys(seg_addr);
|
|
if (phys_addr == -1) {
|
|
_nvme_fail_request_bad_vtophys(qpair, tr);
|
|
return;
|
|
}
|
|
tr->prp[cur_nseg - 1] = phys_addr;
|
|
cur_nseg++;
|
|
}
|
|
}
|
|
}
|
|
|
|
nvme_qpair_submit_tracker(qpair, tr);
|
|
}
|
|
|
|
void
|
|
nvme_qpair_reset(struct nvme_qpair *qpair)
|
|
{
|
|
qpair->sq_tail = qpair->cq_head = 0;
|
|
|
|
/*
|
|
* First time through the completion queue, HW will set phase
|
|
* bit on completions to 1. So set this to 1 here, indicating
|
|
* we're looking for a 1 to know which entries have completed.
|
|
* we'll toggle the bit each time when the completion queue
|
|
* rolls over.
|
|
*/
|
|
qpair->phase = 1;
|
|
|
|
memset(qpair->cmd, 0,
|
|
qpair->num_entries * sizeof(struct nvme_command));
|
|
memset(qpair->cpl, 0,
|
|
qpair->num_entries * sizeof(struct nvme_completion));
|
|
}
|
|
|
|
static void
|
|
_nvme_admin_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_tracker *tr_temp;
|
|
|
|
/*
|
|
* Manually abort each outstanding admin command. Do not retry
|
|
* admin commands found here, since they will be left over from
|
|
* a controller reset and its likely the context in which the
|
|
* command was issued no longer applies.
|
|
*/
|
|
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, tr_temp) {
|
|
nvme_printf(qpair->ctrlr,
|
|
"aborting outstanding admin command\n");
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
|
|
}
|
|
|
|
qpair->is_enabled = true;
|
|
}
|
|
|
|
static void
|
|
_nvme_io_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
STAILQ_HEAD(, nvme_request) temp;
|
|
struct nvme_tracker *tr;
|
|
struct nvme_tracker *tr_temp;
|
|
struct nvme_request *req;
|
|
|
|
/*
|
|
* Manually abort each outstanding I/O. This normally results in a
|
|
* retry, unless the retry count on the associated request has
|
|
* reached its limit.
|
|
*/
|
|
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, tr_temp) {
|
|
nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, 0, true);
|
|
}
|
|
|
|
qpair->is_enabled = true;
|
|
|
|
STAILQ_INIT(&temp);
|
|
STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
|
|
|
|
while (!STAILQ_EMPTY(&temp)) {
|
|
req = STAILQ_FIRST(&temp);
|
|
STAILQ_REMOVE_HEAD(&temp, stailq);
|
|
|
|
nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
if (nvme_qpair_is_io_queue(qpair)) {
|
|
_nvme_io_qpair_enable(qpair);
|
|
} else {
|
|
_nvme_admin_qpair_enable(qpair);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_nvme_admin_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
qpair->is_enabled = false;
|
|
nvme_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
static void
|
|
_nvme_io_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
qpair->is_enabled = false;
|
|
}
|
|
|
|
void
|
|
nvme_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
if (nvme_qpair_is_io_queue(qpair)) {
|
|
_nvme_io_qpair_disable(qpair);
|
|
} else {
|
|
_nvme_admin_qpair_disable(qpair);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_qpair_fail(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_request *req;
|
|
|
|
while (!STAILQ_EMPTY(&qpair->queued_req)) {
|
|
req = STAILQ_FIRST(&qpair->queued_req);
|
|
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
|
|
nvme_printf(qpair->ctrlr, "failing queued i/o\n");
|
|
nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, true);
|
|
}
|
|
|
|
/* Manually abort each outstanding I/O. */
|
|
while (!LIST_EMPTY(&qpair->outstanding_tr)) {
|
|
tr = LIST_FIRST(&qpair->outstanding_tr);
|
|
/*
|
|
* Do not remove the tracker. The abort_tracker path will
|
|
* do that for us.
|
|
*/
|
|
nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
|
|
}
|
|
}
|
|
|