freebsd-dev/sys/ufs/ffs/ffs_subr.c

618 lines
16 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1994-05-24 10:09:53 +00:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95
1994-05-24 10:09:53 +00:00
*/
2003-06-11 06:34:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/errno.h>
#include <ufs/ufs/dinode.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ffs/fs.h>
uint32_t calculate_crc32c(uint32_t, const void *, size_t);
uint32_t ffs_calc_sbhash(struct fs *);
struct malloc_type;
#define UFS_MALLOC(size, type, flags) malloc(size)
#define UFS_FREE(ptr, type) free(ptr)
#define UFS_TIME time(NULL)
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
/*
* Request standard superblock location in ffs_sbget
*/
#define STDSB -1 /* Fail if check-hash is bad */
#define STDSB_NOHASHFAIL -2 /* Ignore check-hash failure */
#else /* _KERNEL */
1994-05-24 10:09:53 +00:00
#include <sys/systm.h>
#include <sys/gsb_crc32.h>
#include <sys/lock.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <sys/malloc.h>
#include <sys/mount.h>
1994-05-24 10:09:53 +00:00
#include <sys/vnode.h>
#include <sys/bio.h>
1994-05-24 10:09:53 +00:00
#include <sys/buf.h>
#include <sys/ucred.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/ffs_extern.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ffs/fs.h>
1994-05-24 10:09:53 +00:00
#define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
#define UFS_FREE(ptr, type) free(ptr, type)
#define UFS_TIME time_second
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
#endif /* _KERNEL */
1994-05-24 10:09:53 +00:00
/*
* Verify an inode check-hash.
*/
int
ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
uint32_t ckhash, save_ckhash;
/*
* Return success if unallocated or we are not doing inode check-hash.
*/
if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
return (0);
/*
* Exclude di_ckhash from the crc32 calculation, e.g., always use
* a check-hash value of zero when calculating the check-hash.
*/
save_ckhash = dip->di_ckhash;
dip->di_ckhash = 0;
ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
dip->di_ckhash = save_ckhash;
if (save_ckhash == ckhash)
return (0);
return (EINVAL);
}
/*
* Update an inode check-hash.
*/
void
ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
return;
/*
* Exclude old di_ckhash from the crc32 calculation, e.g., always use
* a check-hash value of zero when calculating the new check-hash.
*/
dip->di_ckhash = 0;
dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
}
/*
* These are the low-level functions that actually read and write
* the superblock and its associated data.
*/
static off_t sblock_try[] = SBLOCKSEARCH;
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
static int readsuper(void *, struct fs **, off_t, int, int,
int (*)(void *, off_t, void **, int));
/*
* Read a superblock from the devfd device.
*
* If an alternate superblock is specified, it is read. Otherwise the
* set of locations given in the SBLOCKSEARCH list is searched for a
* superblock. Memory is allocated for the superblock by the readfunc and
* is returned. If filltype is non-NULL, additional memory is allocated
* of type filltype and filled in with the superblock summary information.
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
* All memory is freed when any error is returned.
*
* If a superblock is found, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: non-existent or truncated superblock.
* EIO: error reading summary information.
* ENOENT: no usable known superblock found.
* ENOSPC: failed to allocate space for the superblock.
* EINVAL: The previous newfs operation on this volume did not complete.
* The administrator must complete newfs before using this volume.
*/
int
ffs_sbget(void *devfd, struct fs **fsp, off_t altsblock,
struct malloc_type *filltype,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
int i, error, size, blks;
uint8_t *space;
int32_t *lp;
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
int chkhash;
char *buf;
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
fs = NULL;
*fsp = NULL;
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
chkhash = 1;
if (altsblock >= 0) {
if ((error = readsuper(devfd, &fs, altsblock, 1, chkhash,
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
readfunc)) != 0) {
if (fs != NULL)
UFS_FREE(fs, filltype);
return (error);
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
}
} else {
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
if (altsblock == STDSB_NOHASHFAIL)
chkhash = 0;
for (i = 0; sblock_try[i] != -1; i++) {
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
if ((error = readsuper(devfd, &fs, sblock_try[i], 0,
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
chkhash, readfunc)) == 0)
break;
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
if (fs != NULL) {
UFS_FREE(fs, filltype);
fs = NULL;
}
if (error == ENOENT)
continue;
return (error);
}
if (sblock_try[i] == -1)
return (ENOENT);
}
/*
* Read in the superblock summary information.
*/
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
/* When running in libufs or libsa, UFS_MALLOC may fail */
if ((space = UFS_MALLOC(size, filltype, M_WAITOK)) == NULL) {
UFS_FREE(fs, filltype);
return (ENOSPC);
}
fs->fs_csp = (struct csum *)space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
buf = NULL;
error = (*readfunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
if (error) {
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
if (buf != NULL)
UFS_FREE(buf, filltype);
UFS_FREE(fs->fs_csp, filltype);
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
UFS_FREE(fs, filltype);
return (error);
}
memcpy(space, buf, size);
UFS_FREE(buf, filltype);
space += size;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = (int32_t *)space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = (uint8_t *)lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
*fsp = fs;
return (0);
}
/*
* Try to read a superblock from the location specified by sblockloc.
* Return zero on success or an errno on failure.
*/
static int
readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int isaltsblk,
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
int chkhash, int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
int error, res;
uint32_t ckhash;
error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
if (error != 0)
return (error);
fs = *fsp;
if (fs->fs_magic == FS_BAD_MAGIC)
return (EINVAL);
if (((fs->fs_magic == FS_UFS1_MAGIC && (isaltsblk ||
sblockloc <= SBLOCK_UFS1)) ||
(fs->fs_magic == FS_UFS2_MAGIC && (isaltsblk ||
sblockloc == fs->fs_sblockloc))) &&
fs->fs_ncg >= 1 &&
fs->fs_bsize >= MINBSIZE &&
fs->fs_bsize <= MAXBSIZE &&
fs->fs_bsize >= roundup(sizeof(struct fs), DEV_BSIZE) &&
fs->fs_sbsize <= SBLOCKSIZE) {
/*
* If the filesystem has been run on a kernel without
* metadata check hashes, disable them.
*/
if ((fs->fs_flags & FS_METACKHASH) == 0)
fs->fs_metackhash = 0;
if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
#ifdef _KERNEL
res = uprintf("Superblock check-hash failed: recorded "
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
"check-hash 0x%x != computed check-hash 0x%x%s\n",
fs->fs_ckhash, ckhash,
chkhash == 0 ? " (Ignored)" : "");
#else
res = 0;
#endif
/*
* Print check-hash failure if no controlling terminal
* in kernel or always if in user-mode (libufs).
*/
if (res == 0)
printf("Superblock check-hash failed: recorded "
"check-hash 0x%x != computed check-hash "
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
"0x%x%s\n", fs->fs_ckhash, ckhash,
chkhash == 0 ? " (Ignored)" : "");
if (chkhash == 0) {
fs->fs_flags |= FS_NEEDSFSCK;
fs->fs_fmod = 1;
return (0);
}
fs->fs_fmod = 0;
return (EINTEGRITY);
}
/* Have to set for old filesystems that predate this field */
fs->fs_sblockactualloc = sblockloc;
This change is some refactoring of Mark Johnston's changes in r329375 to fix the memory leak that I introduced in r328426. Instead of trying to clear up the possible memory leak in all the clients, I ensure that it gets cleaned up in the source (e.g., ffs_sbget ensures that memory is always freed if it returns an error). The original change in r328426 was a bit sparse in its description. So I am expanding on its description here (thanks cem@ and rgrimes@ for your encouragement for my longer commit messages). In preparation for adding check hashing to superblocks, r328426 is a refactoring of the code to get the reading/writing of the superblock into one place. Unlike the cylinder group reading/writing which ends up in two places (ffs_getcg/ffs_geom_strategy in the kernel and cgget/cgput in libufs), I have the core superblock functions just in the kernel (ffs_sbfetch/ffs_sbput in ffs_subr.c which is already imported into utilities like fsck_ffs as well as libufs to implement sbget/sbput). The ffs_sbfetch and ffs_sbput functions take a function pointer to do the actual I/O for which there are four variants: ffs_use_bread / ffs_use_bwrite for the in-kernel filesystem g_use_g_read_data / g_use_g_write_data for kernel geom clients ufs_use_sa_read for the standalone code (stand/libsa/ufs.c but not stand/libsa/ufsread.c which is size constrained) use_pread / use_pwrite for libufs Uses of these interfaces are in the UFS filesystem, geoms journal & label, libsa changes, and libufs. They also permeate out into the filesystem utilities fsck_ffs, newfs, growfs, clri, dump, quotacheck, fsirand, fstyp, and quot. Some of these utilities should probably be converted to directly use libufs (like dumpfs was for example), but there does not seem to be much win in doing so. Tested by: Peter Holm (pho@)
2018-03-02 04:34:53 +00:00
/* Not yet any summary information */
fs->fs_csp = NULL;
return (0);
}
return (ENOENT);
}
/*
* Write a superblock to the devfd device from the memory pointed to by fs.
* Write out the superblock summary information if it is present.
*
* If the write is successful, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: failed to write superblock.
* EIO: failed to write superblock summary information.
*/
int
ffs_sbput(void *devfd, struct fs *fs, off_t loc,
int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
{
int i, error, blks, size;
uint8_t *space;
/*
* If there is summary information, write it first, so if there
* is an error, the superblock will not be marked as clean.
*/
if (fs->fs_csp != NULL) {
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = (uint8_t *)fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
if ((error = (*writefunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
space, size)) != 0)
return (error);
space += size;
}
}
fs->fs_fmod = 0;
fs->fs_time = UFS_TIME;
fs->fs_ckhash = ffs_calc_sbhash(fs);
if ((error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize)) != 0)
return (error);
return (0);
}
/*
* Calculate the check-hash for a superblock.
*/
uint32_t
ffs_calc_sbhash(struct fs *fs)
{
uint32_t ckhash, save_ckhash;
/*
* A filesystem that was using a superblock ckhash may be moved
* to an older kernel that does not support ckhashes. The
* older kernel will clear the FS_METACKHASH flag indicating
* that it does not update hashes. When the disk is moved back
* to a kernel capable of ckhashes it disables them on mount:
*
* if ((fs->fs_flags & FS_METACKHASH) == 0)
* fs->fs_metackhash = 0;
*
* This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
* old stale value in the fs->fs_ckhash field. Thus the need to
* just accept what is there.
*/
if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
return (fs->fs_ckhash);
save_ckhash = fs->fs_ckhash;
fs->fs_ckhash = 0;
/*
* If newly read from disk, the caller is responsible for
* verifying that fs->fs_sbsize <= SBLOCKSIZE.
*/
ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
fs->fs_ckhash = save_ckhash;
return (ckhash);
}
1994-05-24 10:09:53 +00:00
/*
1995-05-30 08:16:23 +00:00
* Update the frsum fields to reflect addition or deletion
1994-05-24 10:09:53 +00:00
* of some frags.
*/
void
ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
1994-05-24 10:09:53 +00:00
{
int inblk;
int field, subfield;
int siz, pos;
1994-05-24 10:09:53 +00:00
inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
fragmap <<= 1;
for (siz = 1; siz < fs->fs_frag; siz++) {
if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
continue;
field = around[siz];
subfield = inside[siz];
for (pos = siz; pos <= fs->fs_frag; pos++) {
if ((fragmap & field) == subfield) {
fraglist[siz] += cnt;
pos += siz;
field <<= siz;
subfield <<= siz;
}
field <<= 1;
subfield <<= 1;
}
}
}
/*
* block operations
*
* check if a block is available
*/
int
ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
unsigned char mask;
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_isblock");
#endif
break;
}
return (0);
}
/*
* check if a block is free
*/
int
ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0);
case 4:
return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
case 2:
return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
case 1:
return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
default:
#ifdef _KERNEL
panic("ffs_isfreeblock");
#endif
break;
1994-05-24 10:09:53 +00:00
}
return (0);
1994-05-24 10:09:53 +00:00
}
/*
* take a block out of the map
*/
void
ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_clrblock");
#endif
break;
1994-05-24 10:09:53 +00:00
}
}
/*
* put a block into the map
*/
void
ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_setblock");
#endif
break;
}
}
/*
* Update the cluster map because of an allocation or free.
*
* Cnt == 1 means free; cnt == -1 means allocating.
*/
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
{
int32_t *sump;
int32_t *lp;
u_char *freemapp, *mapp;
int i, start, end, forw, back, map;
u_int bit;
if (fs->fs_contigsumsize <= 0)
return;
freemapp = cg_clustersfree(cgp);
sump = cg_clustersum(cgp);
/*
* Allocate or clear the actual block.
*/
if (cnt > 0)
setbit(freemapp, blkno);
else
clrbit(freemapp, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + fs->fs_contigsumsize;
if (end >= cgp->cg_nclusterblks)
end = cgp->cg_nclusterblks;
mapp = &freemapp[start / NBBY];
map = *mapp++;
bit = 1U << (start % NBBY);
for (i = start; i < end; i++) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - fs->fs_contigsumsize;
if (end < 0)
end = -1;
mapp = &freemapp[start / NBBY];
map = *mapp--;
bit = 1U << (start % NBBY);
for (i = start; i > end; i--) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1U << (NBBY - 1);
}
1994-05-24 10:09:53 +00:00
}
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > fs->fs_contigsumsize)
i = fs->fs_contigsumsize;
sump[i] += cnt;
if (back > 0)
sump[back] -= cnt;
if (forw > 0)
sump[forw] -= cnt;
/*
* Update cluster summary information.
*/
lp = &sump[fs->fs_contigsumsize];
for (i = fs->fs_contigsumsize; i > 0; i--)
if (*lp-- > 0)
break;
fs->fs_maxcluster[cgp->cg_cgx] = i;
1994-05-24 10:09:53 +00:00
}