freebsd-dev/sys/dev/bxe/bxe_elink.c

15119 lines
471 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "bxe.h"
#include "bxe_elink.h"
#include "ecore_mfw_req.h"
#include "ecore_fw_defs.h"
#include "ecore_hsi.h"
#include "ecore_reg.h"
#define MDIO_REG_BANK_CL73_IEEEB0 0x0
#define MDIO_CL73_IEEEB0_CL73_AN_CONTROL 0x0
#define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_RESTART_AN 0x0200
#define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN 0x1000
#define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_MAIN_RST 0x8000
#define MDIO_REG_BANK_CL73_IEEEB1 0x10
#define MDIO_CL73_IEEEB1_AN_ADV1 0x00
#define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE 0x0400
#define MDIO_CL73_IEEEB1_AN_ADV1_ASYMMETRIC 0x0800
#define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_BOTH 0x0C00
#define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK 0x0C00
#define MDIO_CL73_IEEEB1_AN_ADV2 0x01
#define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M 0x0000
#define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX 0x0020
#define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 0x0040
#define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR 0x0080
#define MDIO_CL73_IEEEB1_AN_LP_ADV1 0x03
#define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE 0x0400
#define MDIO_CL73_IEEEB1_AN_LP_ADV1_ASYMMETRIC 0x0800
#define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_BOTH 0x0C00
#define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_MASK 0x0C00
#define MDIO_CL73_IEEEB1_AN_LP_ADV2 0x04
#define MDIO_REG_BANK_RX0 0x80b0
#define MDIO_RX0_RX_STATUS 0x10
#define MDIO_RX0_RX_STATUS_SIGDET 0x8000
#define MDIO_RX0_RX_STATUS_RX_SEQ_DONE 0x1000
#define MDIO_RX0_RX_EQ_BOOST 0x1c
#define MDIO_RX0_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7
#define MDIO_RX0_RX_EQ_BOOST_OFFSET_CTRL 0x10
#define MDIO_REG_BANK_RX1 0x80c0
#define MDIO_RX1_RX_EQ_BOOST 0x1c
#define MDIO_RX1_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7
#define MDIO_RX1_RX_EQ_BOOST_OFFSET_CTRL 0x10
#define MDIO_REG_BANK_RX2 0x80d0
#define MDIO_RX2_RX_EQ_BOOST 0x1c
#define MDIO_RX2_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7
#define MDIO_RX2_RX_EQ_BOOST_OFFSET_CTRL 0x10
#define MDIO_REG_BANK_RX3 0x80e0
#define MDIO_RX3_RX_EQ_BOOST 0x1c
#define MDIO_RX3_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7
#define MDIO_RX3_RX_EQ_BOOST_OFFSET_CTRL 0x10
#define MDIO_REG_BANK_RX_ALL 0x80f0
#define MDIO_RX_ALL_RX_EQ_BOOST 0x1c
#define MDIO_RX_ALL_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7
#define MDIO_RX_ALL_RX_EQ_BOOST_OFFSET_CTRL 0x10
#define MDIO_REG_BANK_TX0 0x8060
#define MDIO_TX0_TX_DRIVER 0x17
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12
#define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00
#define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4
#define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e
#define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1
#define MDIO_TX0_TX_DRIVER_ICBUF1T 1
#define MDIO_REG_BANK_TX1 0x8070
#define MDIO_TX1_TX_DRIVER 0x17
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12
#define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00
#define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4
#define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e
#define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1
#define MDIO_TX0_TX_DRIVER_ICBUF1T 1
#define MDIO_REG_BANK_TX2 0x8080
#define MDIO_TX2_TX_DRIVER 0x17
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12
#define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00
#define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4
#define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e
#define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1
#define MDIO_TX0_TX_DRIVER_ICBUF1T 1
#define MDIO_REG_BANK_TX3 0x8090
#define MDIO_TX3_TX_DRIVER 0x17
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000
#define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12
#define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00
#define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0
#define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4
#define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e
#define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1
#define MDIO_TX0_TX_DRIVER_ICBUF1T 1
#define MDIO_REG_BANK_XGXS_BLOCK0 0x8000
#define MDIO_BLOCK0_XGXS_CONTROL 0x10
#define MDIO_REG_BANK_XGXS_BLOCK1 0x8010
#define MDIO_BLOCK1_LANE_CTRL0 0x15
#define MDIO_BLOCK1_LANE_CTRL1 0x16
#define MDIO_BLOCK1_LANE_CTRL2 0x17
#define MDIO_BLOCK1_LANE_PRBS 0x19
#define MDIO_REG_BANK_XGXS_BLOCK2 0x8100
#define MDIO_XGXS_BLOCK2_RX_LN_SWAP 0x10
#define MDIO_XGXS_BLOCK2_RX_LN_SWAP_ENABLE 0x8000
#define MDIO_XGXS_BLOCK2_RX_LN_SWAP_FORCE_ENABLE 0x4000
#define MDIO_XGXS_BLOCK2_TX_LN_SWAP 0x11
#define MDIO_XGXS_BLOCK2_TX_LN_SWAP_ENABLE 0x8000
#define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G 0x14
#define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_CX4_XGXS 0x0001
#define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_HIGIG_XGXS 0x0010
#define MDIO_XGXS_BLOCK2_TEST_MODE_LANE 0x15
#define MDIO_REG_BANK_GP_STATUS 0x8120
#define MDIO_GP_STATUS_TOP_AN_STATUS1 0x1B
#define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE 0x0001
#define MDIO_GP_STATUS_TOP_AN_STATUS1_CL37_AUTONEG_COMPLETE 0x0002
#define MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS 0x0004
#define MDIO_GP_STATUS_TOP_AN_STATUS1_DUPLEX_STATUS 0x0008
#define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE 0x0010
#define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_LP_NP_BAM_ABLE 0x0020
#define MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_TXSIDE 0x0040
#define MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_RXSIDE 0x0080
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_MASK 0x3f00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10M 0x0000
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_100M 0x0100
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G 0x0200
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_2_5G 0x0300
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_5G 0x0400
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_6G 0x0500
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_HIG 0x0600
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_CX4 0x0700
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12G_HIG 0x0800
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12_5G 0x0900
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_13G 0x0A00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_15G 0x0B00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_16G 0x0C00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G_KX 0x0D00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KX4 0x0E00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KR 0x0F00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_XFI 0x1B00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_DXGXS 0x1E00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_SFI 0x1F00
#define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_KR2 0x3900
#define MDIO_REG_BANK_10G_PARALLEL_DETECT 0x8130
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS 0x10
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS_PD_LINK 0x8000
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL 0x11
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL_PARDET10G_EN 0x1
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK 0x13
#define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK_CNT (0xb71<<1)
#define MDIO_REG_BANK_SERDES_DIGITAL 0x8300
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1 0x10
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE 0x0001
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_TBI_IF 0x0002
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_SIGNAL_DETECT_EN 0x0004
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT 0x0008
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET 0x0010
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_MSTR_MODE 0x0020
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2 0x11
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN 0x0001
#define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_AN_FST_TMR 0x0040
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1 0x14
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SGMII 0x0001
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_LINK 0x0002
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_DUPLEX 0x0004
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_MASK 0x0018
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_SHIFT 3
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_2_5G 0x0018
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_1G 0x0010
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_100M 0x0008
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_10M 0x0000
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS2 0x15
#define MDIO_SERDES_DIGITAL_A_1000X_STATUS2_AN_DISABLED 0x0002
#define MDIO_SERDES_DIGITAL_MISC1 0x18
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_MASK 0xE000
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_25M 0x0000
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_100M 0x2000
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_125M 0x4000
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_156_25M 0x6000
#define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_187_5M 0x8000
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL 0x0010
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_MASK 0x000f
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_2_5G 0x0000
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_5G 0x0001
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_6G 0x0002
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_HIG 0x0003
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_CX4 0x0004
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_12G 0x0005
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_12_5G 0x0006
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_13G 0x0007
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_15G 0x0008
#define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_16G 0x0009
#define MDIO_REG_BANK_OVER_1G 0x8320
#define MDIO_OVER_1G_DIGCTL_3_4 0x14
#define MDIO_OVER_1G_DIGCTL_3_4_MP_ID_MASK 0xffe0
#define MDIO_OVER_1G_DIGCTL_3_4_MP_ID_SHIFT 5
#define MDIO_OVER_1G_UP1 0x19
#define MDIO_OVER_1G_UP1_2_5G 0x0001
#define MDIO_OVER_1G_UP1_5G 0x0002
#define MDIO_OVER_1G_UP1_6G 0x0004
#define MDIO_OVER_1G_UP1_10G 0x0010
#define MDIO_OVER_1G_UP1_10GH 0x0008
#define MDIO_OVER_1G_UP1_12G 0x0020
#define MDIO_OVER_1G_UP1_12_5G 0x0040
#define MDIO_OVER_1G_UP1_13G 0x0080
#define MDIO_OVER_1G_UP1_15G 0x0100
#define MDIO_OVER_1G_UP1_16G 0x0200
#define MDIO_OVER_1G_UP2 0x1A
#define MDIO_OVER_1G_UP2_IPREDRIVER_MASK 0x0007
#define MDIO_OVER_1G_UP2_IDRIVER_MASK 0x0038
#define MDIO_OVER_1G_UP2_PREEMPHASIS_MASK 0x03C0
#define MDIO_OVER_1G_UP3 0x1B
#define MDIO_OVER_1G_UP3_HIGIG2 0x0001
#define MDIO_OVER_1G_LP_UP1 0x1C
#define MDIO_OVER_1G_LP_UP2 0x1D
#define MDIO_OVER_1G_LP_UP2_MR_ADV_OVER_1G_MASK 0x03ff
#define MDIO_OVER_1G_LP_UP2_PREEMPHASIS_MASK 0x0780
#define MDIO_OVER_1G_LP_UP2_PREEMPHASIS_SHIFT 7
#define MDIO_OVER_1G_LP_UP3 0x1E
#define MDIO_REG_BANK_REMOTE_PHY 0x8330
#define MDIO_REMOTE_PHY_MISC_RX_STATUS 0x10
#define MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG 0x0010
#define MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG 0x0600
#define MDIO_REG_BANK_BAM_NEXT_PAGE 0x8350
#define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL 0x10
#define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE 0x0001
#define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN 0x0002
#define MDIO_REG_BANK_CL73_USERB0 0x8370
#define MDIO_CL73_USERB0_CL73_UCTRL 0x10
#define MDIO_CL73_USERB0_CL73_UCTRL_USTAT1_MUXSEL 0x0002
#define MDIO_CL73_USERB0_CL73_USTAT1 0x11
#define MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK 0x0100
#define MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37 0x0400
#define MDIO_CL73_USERB0_CL73_BAM_CTRL1 0x12
#define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_EN 0x8000
#define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_STATION_MNGR_EN 0x4000
#define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_NP_AFTER_BP_EN 0x2000
#define MDIO_CL73_USERB0_CL73_BAM_CTRL3 0x14
#define MDIO_CL73_USERB0_CL73_BAM_CTRL3_USE_CL73_HCD_MR 0x0001
#define MDIO_REG_BANK_AER_BLOCK 0xFFD0
#define MDIO_AER_BLOCK_AER_REG 0x1E
#define MDIO_REG_BANK_COMBO_IEEE0 0xFFE0
#define MDIO_COMBO_IEEE0_MII_CONTROL 0x10
#define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK 0x2040
#define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_10 0x0000
#define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_100 0x2000
#define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_1000 0x0040
#define MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX 0x0100
#define MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN 0x0200
#define MDIO_COMBO_IEEO_MII_CONTROL_AN_EN 0x1000
#define MDIO_COMBO_IEEO_MII_CONTROL_LOOPBACK 0x4000
#define MDIO_COMBO_IEEO_MII_CONTROL_RESET 0x8000
#define MDIO_COMBO_IEEE0_MII_STATUS 0x11
#define MDIO_COMBO_IEEE0_MII_STATUS_LINK_PASS 0x0004
#define MDIO_COMBO_IEEE0_MII_STATUS_AUTONEG_COMPLETE 0x0020
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV 0x14
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_FULL_DUPLEX 0x0020
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_HALF_DUPLEX 0x0040
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK 0x0180
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE 0x0000
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC 0x0080
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC 0x0100
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH 0x0180
#define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_NEXT_PAGE 0x8000
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1 0x15
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_NEXT_PAGE 0x8000
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_ACK 0x4000
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_MASK 0x0180
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_NONE 0x0000
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_BOTH 0x0180
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_HALF_DUP_CAP 0x0040
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_FULL_DUP_CAP 0x0020
/*WhenthelinkpartnerisinSGMIImode(bit0=1),then
bit15=link,bit12=duplex,bits11:10=speed,bit14=acknowledge.
Theotherbitsarereservedandshouldbezero*/
#define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_SGMII_MODE 0x0001
#define MDIO_PMA_DEVAD 0x1
/*ieee*/
#define MDIO_PMA_REG_CTRL 0x0
#define MDIO_PMA_REG_STATUS 0x1
#define MDIO_PMA_REG_10G_CTRL2 0x7
#define MDIO_PMA_REG_TX_DISABLE 0x0009
#define MDIO_PMA_REG_RX_SD 0xa
/*bcm*/
#define MDIO_PMA_REG_BCM_CTRL 0x0096
#define MDIO_PMA_REG_FEC_CTRL 0x00ab
#define MDIO_PMA_LASI_RXCTRL 0x9000
#define MDIO_PMA_LASI_TXCTRL 0x9001
#define MDIO_PMA_LASI_CTRL 0x9002
#define MDIO_PMA_LASI_RXSTAT 0x9003
#define MDIO_PMA_LASI_TXSTAT 0x9004
#define MDIO_PMA_LASI_STAT 0x9005
#define MDIO_PMA_REG_PHY_IDENTIFIER 0xc800
#define MDIO_PMA_REG_DIGITAL_CTRL 0xc808
#define MDIO_PMA_REG_DIGITAL_STATUS 0xc809
#define MDIO_PMA_REG_TX_POWER_DOWN 0xca02
#define MDIO_PMA_REG_CMU_PLL_BYPASS 0xca09
#define MDIO_PMA_REG_MISC_CTRL 0xca0a
#define MDIO_PMA_REG_GEN_CTRL 0xca10
#define MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP 0x0188
#define MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET 0x018a
#define MDIO_PMA_REG_M8051_MSGIN_REG 0xca12
#define MDIO_PMA_REG_M8051_MSGOUT_REG 0xca13
#define MDIO_PMA_REG_ROM_VER1 0xca19
#define MDIO_PMA_REG_ROM_VER2 0xca1a
#define MDIO_PMA_REG_EDC_FFE_MAIN 0xca1b
#define MDIO_PMA_REG_PLL_BANDWIDTH 0xca1d
#define MDIO_PMA_REG_PLL_CTRL 0xca1e
#define MDIO_PMA_REG_MISC_CTRL0 0xca23
#define MDIO_PMA_REG_LRM_MODE 0xca3f
#define MDIO_PMA_REG_CDR_BANDWIDTH 0xca46
#define MDIO_PMA_REG_MISC_CTRL1 0xca85
#define MDIO_PMA_REG_SFP_TWO_WIRE_CTRL 0x8000
#define MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK 0x000c
#define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE 0x0000
#define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE 0x0004
#define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IN_PROGRESS 0x0008
#define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_FAILED 0x000c
#define MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT 0x8002
#define MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR 0x8003
#define MDIO_PMA_REG_8726_TWO_WIRE_DATA_BUF 0xc820
#define MDIO_PMA_REG_8726_TWO_WIRE_DATA_MASK 0xff
#define MDIO_PMA_REG_8726_TX_CTRL1 0xca01
#define MDIO_PMA_REG_8726_TX_CTRL2 0xca05
#define MDIO_PMA_REG_8727_TWO_WIRE_SLAVE_ADDR 0x8005
#define MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF 0x8007
#define MDIO_PMA_REG_8727_TWO_WIRE_DATA_MASK 0xff
#define MDIO_PMA_REG_8727_MISC_CTRL 0x8309
#define MDIO_PMA_REG_8727_TX_CTRL1 0xca02
#define MDIO_PMA_REG_8727_TX_CTRL2 0xca05
#define MDIO_PMA_REG_8727_PCS_OPT_CTRL 0xc808
#define MDIO_PMA_REG_8727_GPIO_CTRL 0xc80e
#define MDIO_PMA_REG_8727_PCS_GP 0xc842
#define MDIO_PMA_REG_8727_OPT_CFG_REG 0xc8e4
#define MDIO_AN_REG_8727_MISC_CTRL 0x8309
#define MDIO_PMA_REG_8073_CHIP_REV 0xc801
#define MDIO_PMA_REG_8073_SPEED_LINK_STATUS 0xc820
#define MDIO_PMA_REG_8073_XAUI_WA 0xc841
#define MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL 0xcd08
#define MDIO_PMA_REG_7101_RESET 0xc000
#define MDIO_PMA_REG_7107_LED_CNTL 0xc007
#define MDIO_PMA_REG_7107_LINK_LED_CNTL 0xc009
#define MDIO_PMA_REG_7101_VER1 0xc026
#define MDIO_PMA_REG_7101_VER2 0xc027
#define MDIO_PMA_REG_8481_PMD_SIGNAL 0xa811
#define MDIO_PMA_REG_8481_LED1_MASK 0xa82c
#define MDIO_PMA_REG_8481_LED2_MASK 0xa82f
#define MDIO_PMA_REG_8481_LED3_MASK 0xa832
#define MDIO_PMA_REG_8481_LED3_BLINK 0xa834
#define MDIO_PMA_REG_8481_LED5_MASK 0xa838
#define MDIO_PMA_REG_8481_SIGNAL_MASK 0xa835
#define MDIO_PMA_REG_8481_LINK_SIGNAL 0xa83b
#define MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_MASK 0x800
#define MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_SHIFT 11
#define MDIO_WIS_DEVAD 0x2
/*bcm*/
#define MDIO_WIS_REG_LASI_CNTL 0x9002
#define MDIO_WIS_REG_LASI_STATUS 0x9005
#define MDIO_PCS_DEVAD 0x3
#define MDIO_PCS_REG_STATUS 0x0020
#define MDIO_PCS_REG_LASI_STATUS 0x9005
#define MDIO_PCS_REG_7101_DSP_ACCESS 0xD000
#define MDIO_PCS_REG_7101_SPI_MUX 0xD008
#define MDIO_PCS_REG_7101_SPI_CTRL_ADDR 0xE12A
#define MDIO_PCS_REG_7101_SPI_RESET_BIT (5)
#define MDIO_PCS_REG_7101_SPI_FIFO_ADDR 0xE02A
#define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_WRITE_ENABLE_CMD (6)
#define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_BULK_ERASE_CMD (0xC7)
#define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_PAGE_PROGRAM_CMD (2)
#define MDIO_PCS_REG_7101_SPI_BYTES_TO_TRANSFER_ADDR 0xE028
#define MDIO_XS_DEVAD 0x4
#define MDIO_XS_REG_STATUS 0x0001
#define MDIO_XS_PLL_SEQUENCER 0x8000
#define MDIO_XS_SFX7101_XGXS_TEST1 0xc00a
#define MDIO_XS_8706_REG_BANK_RX0 0x80bc
#define MDIO_XS_8706_REG_BANK_RX1 0x80cc
#define MDIO_XS_8706_REG_BANK_RX2 0x80dc
#define MDIO_XS_8706_REG_BANK_RX3 0x80ec
#define MDIO_XS_8706_REG_BANK_RXA 0x80fc
#define MDIO_XS_REG_8073_RX_CTRL_PCIE 0x80FA
#define MDIO_AN_DEVAD 0x7
/*ieee*/
#define MDIO_AN_REG_CTRL 0x0000
#define MDIO_AN_REG_STATUS 0x0001
#define MDIO_AN_REG_STATUS_AN_COMPLETE 0x0020
#define MDIO_AN_REG_ADV_PAUSE 0x0010
#define MDIO_AN_REG_ADV_PAUSE_PAUSE 0x0400
#define MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC 0x0800
#define MDIO_AN_REG_ADV_PAUSE_BOTH 0x0C00
#define MDIO_AN_REG_ADV_PAUSE_MASK 0x0C00
#define MDIO_AN_REG_ADV 0x0011
#define MDIO_AN_REG_ADV2 0x0012
#define MDIO_AN_REG_LP_AUTO_NEG 0x0013
#define MDIO_AN_REG_LP_AUTO_NEG2 0x0014
#define MDIO_AN_REG_MASTER_STATUS 0x0021
#define MDIO_AN_REG_EEE_ADV 0x003c
#define MDIO_AN_REG_LP_EEE_ADV 0x003d
/*bcm*/
#define MDIO_AN_REG_LINK_STATUS 0x8304
#define MDIO_AN_REG_CL37_CL73 0x8370
#define MDIO_AN_REG_CL37_AN 0xffe0
#define MDIO_AN_REG_CL37_FC_LD 0xffe4
#define MDIO_AN_REG_CL37_FC_LP 0xffe5
#define MDIO_AN_REG_1000T_STATUS 0xffea
#define MDIO_AN_REG_8073_2_5G 0x8329
#define MDIO_AN_REG_8073_BAM 0x8350
#define MDIO_AN_REG_8481_10GBASE_T_AN_CTRL 0x0020
#define MDIO_AN_REG_8481_LEGACY_MII_CTRL 0xffe0
#define MDIO_AN_REG_8481_MII_CTRL_FORCE_1G 0x40
#define MDIO_AN_REG_8481_LEGACY_MII_STATUS 0xffe1
#define MDIO_AN_REG_848xx_ID_MSB 0xffe2
#define BCM84858_PHY_ID 0x600d
#define MDIO_AN_REG_848xx_ID_LSB 0xffe3
#define MDIO_AN_REG_8481_LEGACY_AN_ADV 0xffe4
#define MDIO_AN_REG_8481_LEGACY_AN_EXPANSION 0xffe6
#define MDIO_AN_REG_8481_1000T_CTRL 0xffe9
#define MDIO_AN_REG_8481_1G_100T_EXT_CTRL 0xfff0
#define MIDO_AN_REG_8481_EXT_CTRL_FORCE_LEDS_OFF 0x0008
#define MDIO_AN_REG_8481_EXPANSION_REG_RD_RW 0xfff5
#define MDIO_AN_REG_8481_EXPANSION_REG_ACCESS 0xfff7
#define MDIO_AN_REG_8481_AUX_CTRL 0xfff8
#define MDIO_AN_REG_8481_LEGACY_SHADOW 0xfffc
/* BCM84823 only */
#define MDIO_CTL_DEVAD 0x1e
#define MDIO_CTL_REG_84823_MEDIA 0x401a
#define MDIO_CTL_REG_84823_MEDIA_MAC_MASK 0x0018
/* These pins configure the BCM84823 interface to MAC after reset. */
#define MDIO_CTL_REG_84823_CTRL_MAC_XFI 0x0008
#define MDIO_CTL_REG_84823_MEDIA_MAC_XAUI_M 0x0010
/* These pins configure the BCM84823 interface to Line after reset. */
#define MDIO_CTL_REG_84823_MEDIA_LINE_MASK 0x0060
#define MDIO_CTL_REG_84823_MEDIA_LINE_XAUI_L 0x0020
#define MDIO_CTL_REG_84823_MEDIA_LINE_XFI 0x0040
/* When this pin is active high during reset, 10GBASE-T core is power
* down, When it is active low the 10GBASE-T is power up
*/
#define MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN 0x0080
#define MDIO_CTL_REG_84823_MEDIA_PRIORITY_MASK 0x0100
#define MDIO_CTL_REG_84823_MEDIA_PRIORITY_COPPER 0x0000
#define MDIO_CTL_REG_84823_MEDIA_PRIORITY_FIBER 0x0100
#define MDIO_CTL_REG_84823_MEDIA_FIBER_1G 0x1000
#define MDIO_CTL_REG_84823_USER_CTRL_REG 0x4005
#define MDIO_CTL_REG_84823_USER_CTRL_CMS 0x0080
#define MDIO_PMA_REG_84823_CTL_SLOW_CLK_CNT_HIGH 0xa82b
#define MDIO_PMA_REG_84823_BLINK_RATE_VAL_15P9HZ 0x2f
#define MDIO_PMA_REG_84823_CTL_LED_CTL_1 0xa8e3
#define MDIO_PMA_REG_84833_CTL_LED_CTL_1 0xa8ec
#define MDIO_PMA_REG_84823_LED3_STRETCH_EN 0x0080
/* BCM84833 only */
#define MDIO_84833_TOP_CFG_FW_REV 0x400f
#define MDIO_84833_TOP_CFG_FW_EEE 0x10b1
#define MDIO_84833_TOP_CFG_FW_NO_EEE 0x1f81
#define MDIO_84833_TOP_CFG_XGPHY_STRAP1 0x401a
#define MDIO_84833_SUPER_ISOLATE 0x8000
/* These are mailbox register set used by 84833/84858. */
#define MDIO_848xx_TOP_CFG_SCRATCH_REG0 0x4005
#define MDIO_848xx_TOP_CFG_SCRATCH_REG1 0x4006
#define MDIO_848xx_TOP_CFG_SCRATCH_REG2 0x4007
#define MDIO_848xx_TOP_CFG_SCRATCH_REG3 0x4008
#define MDIO_848xx_TOP_CFG_SCRATCH_REG4 0x4009
#define MDIO_848xx_TOP_CFG_SCRATCH_REG26 0x4037
#define MDIO_848xx_TOP_CFG_SCRATCH_REG27 0x4038
#define MDIO_848xx_TOP_CFG_SCRATCH_REG28 0x4039
#define MDIO_848xx_TOP_CFG_SCRATCH_REG29 0x403a
#define MDIO_848xx_TOP_CFG_SCRATCH_REG30 0x403b
#define MDIO_848xx_TOP_CFG_SCRATCH_REG31 0x403c
#define MDIO_848xx_CMD_HDLR_COMMAND (MDIO_848xx_TOP_CFG_SCRATCH_REG0)
#define MDIO_848xx_CMD_HDLR_STATUS (MDIO_848xx_TOP_CFG_SCRATCH_REG26)
#define MDIO_848xx_CMD_HDLR_DATA1 (MDIO_848xx_TOP_CFG_SCRATCH_REG27)
#define MDIO_848xx_CMD_HDLR_DATA2 (MDIO_848xx_TOP_CFG_SCRATCH_REG28)
#define MDIO_848xx_CMD_HDLR_DATA3 (MDIO_848xx_TOP_CFG_SCRATCH_REG29)
#define MDIO_848xx_CMD_HDLR_DATA4 (MDIO_848xx_TOP_CFG_SCRATCH_REG30)
#define MDIO_848xx_CMD_HDLR_DATA5 (MDIO_848xx_TOP_CFG_SCRATCH_REG31)
/* Mailbox command set used by 84833/84858 */
#define PHY848xx_CMD_SET_PAIR_SWAP 0x8001
#define PHY848xx_CMD_GET_EEE_MODE 0x8008
#define PHY848xx_CMD_SET_EEE_MODE 0x8009
#define PHY848xx_CMD_GET_CURRENT_TEMP 0x8031
/* Mailbox status set used by 84833 only */
#define PHY84833_STATUS_CMD_RECEIVED 0x0001
#define PHY84833_STATUS_CMD_IN_PROGRESS 0x0002
#define PHY84833_STATUS_CMD_COMPLETE_PASS 0x0004
#define PHY84833_STATUS_CMD_COMPLETE_ERROR 0x0008
#define PHY84833_STATUS_CMD_OPEN_FOR_CMDS 0x0010
#define PHY84833_STATUS_CMD_SYSTEM_BOOT 0x0020
#define PHY84833_STATUS_CMD_NOT_OPEN_FOR_CMDS 0x0040
#define PHY84833_STATUS_CMD_CLEAR_COMPLETE 0x0080
#define PHY84833_STATUS_CMD_OPEN_OVERRIDE 0xa5a5
/* Mailbox Process */
#define PHY84833_MB_PROCESS1 1
#define PHY84833_MB_PROCESS2 2
#define PHY84833_MB_PROCESS3 3
/* Mailbox status set used by 84858 only */
#define PHY84858_STATUS_CMD_RECEIVED 0x0001
#define PHY84858_STATUS_CMD_IN_PROGRESS 0x0002
#define PHY84858_STATUS_CMD_COMPLETE_PASS 0x0004
#define PHY84858_STATUS_CMD_COMPLETE_ERROR 0x0008
#define PHY84858_STATUS_CMD_SYSTEM_BUSY 0xbbbb
/* Warpcore clause 45 addressing */
#define MDIO_WC_DEVAD 0x3
#define MDIO_WC_REG_IEEE0BLK_MIICNTL 0x0
#define MDIO_WC_REG_IEEE0BLK_AUTONEGNP 0x7
#define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT0 0x10
#define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1 0x11
#define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT2 0x12
#define MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_ABILITY 0x4000
#define MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_REQ 0x8000
#define MDIO_WC_REG_PCS_STATUS2 0x0021
#define MDIO_WC_REG_PMD_KR_CONTROL 0x0096
#define MDIO_WC_REG_XGXSBLK0_XGXSCONTROL 0x8000
#define MDIO_WC_REG_XGXSBLK0_MISCCONTROL1 0x800e
#define MDIO_WC_REG_XGXSBLK1_DESKEW 0x8010
#define MDIO_WC_REG_XGXSBLK1_LANECTRL0 0x8015
#define MDIO_WC_REG_XGXSBLK1_LANECTRL1 0x8016
#define MDIO_WC_REG_XGXSBLK1_LANECTRL2 0x8017
#define MDIO_WC_REG_XGXSBLK1_LANECTRL3 0x8018
#define MDIO_WC_REG_XGXSBLK1_LANETEST0 0x801a
#define MDIO_WC_REG_TX0_ANA_CTRL0 0x8061
#define MDIO_WC_REG_TX1_ANA_CTRL0 0x8071
#define MDIO_WC_REG_TX2_ANA_CTRL0 0x8081
#define MDIO_WC_REG_TX3_ANA_CTRL0 0x8091
#define MDIO_WC_REG_TX0_TX_DRIVER 0x8067
#define MDIO_WC_REG_TX0_TX_DRIVER_IFIR_OFFSET 0x01
#define MDIO_WC_REG_TX0_TX_DRIVER_IFIR_MASK 0x000e
#define MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_OFFSET 0x04
#define MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_MASK 0x00f0
#define MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_OFFSET 0x08
#define MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00
#define MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_OFFSET 0x0c
#define MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_MASK 0x7000
#define MDIO_WC_REG_TX1_TX_DRIVER 0x8077
#define MDIO_WC_REG_TX2_TX_DRIVER 0x8087
#define MDIO_WC_REG_TX3_TX_DRIVER 0x8097
#define MDIO_WC_REG_RX0_ANARXCONTROL1G 0x80b9
#define MDIO_WC_REG_RX2_ANARXCONTROL1G 0x80d9
#define MDIO_WC_REG_RX0_PCI_CTRL 0x80ba
#define MDIO_WC_REG_RX1_PCI_CTRL 0x80ca
#define MDIO_WC_REG_RX2_PCI_CTRL 0x80da
#define MDIO_WC_REG_RX3_PCI_CTRL 0x80ea
#define MDIO_WC_REG_RXB_ANA_RX_CONTROL_PCI 0x80fa
#define MDIO_WC_REG_XGXSBLK2_UNICORE_MODE_10G 0x8104
#define MDIO_WC_REG_XGXSBLK2_LANE_RESET 0x810a
#define MDIO_WC_REG_XGXS_STATUS3 0x8129
#define MDIO_WC_REG_PAR_DET_10G_STATUS 0x8130
#define MDIO_WC_REG_PAR_DET_10G_CTRL 0x8131
#define MDIO_WC_REG_XGXS_STATUS4 0x813c
#define MDIO_WC_REG_XGXS_X2_CONTROL2 0x8141
#define MDIO_WC_REG_XGXS_X2_CONTROL3 0x8142
#define MDIO_WC_REG_XGXS_RX_LN_SWAP1 0x816B
#define MDIO_WC_REG_XGXS_TX_LN_SWAP1 0x8169
#define MDIO_WC_REG_GP2_STATUS_GP_2_0 0x81d0
#define MDIO_WC_REG_GP2_STATUS_GP_2_1 0x81d1
#define MDIO_WC_REG_GP2_STATUS_GP_2_2 0x81d2
#define MDIO_WC_REG_GP2_STATUS_GP_2_3 0x81d3
#define MDIO_WC_REG_GP2_STATUS_GP_2_4 0x81d4
#define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL73_AN_CMPL 0x1000
#define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_AN_CMPL 0x0100
#define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_LP_AN_CAP 0x0010
#define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_AN_CAP 0x1
#define MDIO_WC_REG_UC_INFO_B0_DEAD_TRAP 0x81EE
#define MDIO_WC_REG_UC_INFO_B1_VERSION 0x81F0
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE 0x81F2
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE0_OFFSET 0x0
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT 0x0
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_OPT_LR 0x1
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_DAC 0x2
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_XLAUI 0x3
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_LONG_CH_6G 0x4
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE1_OFFSET 0x4
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE2_OFFSET 0x8
#define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE3_OFFSET 0xc
#define MDIO_WC_REG_UC_INFO_B1_CRC 0x81FE
#define MDIO_WC_REG_DSC1B0_UC_CTRL 0x820e
#define MDIO_WC_REG_DSC1B0_UC_CTRL_RDY4CMD (1<<7)
#define MDIO_WC_REG_DSC_SMC 0x8213
#define MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0 0x821e
#define MDIO_WC_REG_TX_FIR_TAP 0x82e2
#define MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_OFFSET 0x00
#define MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_MASK 0x000f
#define MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_OFFSET 0x04
#define MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_MASK 0x03f0
#define MDIO_WC_REG_TX_FIR_TAP_POST_TAP_OFFSET 0x0a
#define MDIO_WC_REG_TX_FIR_TAP_POST_TAP_MASK 0x7c00
#define MDIO_WC_REG_TX_FIR_TAP_ENABLE 0x8000
#define MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP 0x82e2
#define MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL 0x82e3
#define MDIO_WC_REG_CL72_USERB0_CL72_OS_DEF_CTRL 0x82e6
#define MDIO_WC_REG_CL72_USERB0_CL72_BR_DEF_CTRL 0x82e7
#define MDIO_WC_REG_CL72_USERB0_CL72_2P5_DEF_CTRL 0x82e8
#define MDIO_WC_REG_CL72_USERB0_CL72_MISC4_CONTROL 0x82ec
#define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1 0x8300
#define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2 0x8301
#define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3 0x8302
#define MDIO_WC_REG_SERDESDIGITAL_STATUS1000X1 0x8304
#define MDIO_WC_REG_SERDESDIGITAL_MISC1 0x8308
#define MDIO_WC_REG_SERDESDIGITAL_MISC2 0x8309
#define MDIO_WC_REG_DIGITAL3_UP1 0x8329
#define MDIO_WC_REG_DIGITAL3_LP_UP1 0x832c
#define MDIO_WC_REG_DIGITAL4_MISC3 0x833c
#define MDIO_WC_REG_DIGITAL4_MISC5 0x833e
#define MDIO_WC_REG_DIGITAL5_MISC6 0x8345
#define MDIO_WC_REG_DIGITAL5_MISC7 0x8349
#define MDIO_WC_REG_DIGITAL5_LINK_STATUS 0x834d
#define MDIO_WC_REG_DIGITAL5_ACTUAL_SPEED 0x834e
#define MDIO_WC_REG_DIGITAL6_MP5_NEXTPAGECTRL 0x8350
#define MDIO_WC_REG_CL49_USERB0_CTRL 0x8368
#define MDIO_WC_REG_CL73_USERB0_CTRL 0x8370
#define MDIO_WC_REG_CL73_USERB0_USTAT 0x8371
#define MDIO_WC_REG_CL73_BAM_CTRL1 0x8372
#define MDIO_WC_REG_CL73_BAM_CTRL2 0x8373
#define MDIO_WC_REG_CL73_BAM_CTRL3 0x8374
#define MDIO_WC_REG_CL73_BAM_CODE_FIELD 0x837b
#define MDIO_WC_REG_EEE_COMBO_CONTROL0 0x8390
#define MDIO_WC_REG_TX66_CONTROL 0x83b0
#define MDIO_WC_REG_RX66_CONTROL 0x83c0
#define MDIO_WC_REG_RX66_SCW0 0x83c2
#define MDIO_WC_REG_RX66_SCW1 0x83c3
#define MDIO_WC_REG_RX66_SCW2 0x83c4
#define MDIO_WC_REG_RX66_SCW3 0x83c5
#define MDIO_WC_REG_RX66_SCW0_MASK 0x83c6
#define MDIO_WC_REG_RX66_SCW1_MASK 0x83c7
#define MDIO_WC_REG_RX66_SCW2_MASK 0x83c8
#define MDIO_WC_REG_RX66_SCW3_MASK 0x83c9
#define MDIO_WC_REG_FX100_CTRL1 0x8400
#define MDIO_WC_REG_FX100_CTRL3 0x8402
#define MDIO_WC_REG_CL82_USERB1_TX_CTRL5 0x8436
#define MDIO_WC_REG_CL82_USERB1_TX_CTRL6 0x8437
#define MDIO_WC_REG_CL82_USERB1_TX_CTRL7 0x8438
#define MDIO_WC_REG_CL82_USERB1_TX_CTRL9 0x8439
#define MDIO_WC_REG_CL82_USERB1_RX_CTRL10 0x843a
#define MDIO_WC_REG_CL82_USERB1_RX_CTRL11 0x843b
#define MDIO_WC_REG_ETA_CL73_OUI1 0x8453
#define MDIO_WC_REG_ETA_CL73_OUI2 0x8454
#define MDIO_WC_REG_ETA_CL73_OUI3 0x8455
#define MDIO_WC_REG_ETA_CL73_LD_BAM_CODE 0x8456
#define MDIO_WC_REG_ETA_CL73_LD_UD_CODE 0x8457
#define MDIO_WC_REG_MICROBLK_CMD 0xffc2
#define MDIO_WC_REG_MICROBLK_DL_STATUS 0xffc5
#define MDIO_WC_REG_MICROBLK_CMD3 0xffcc
#define MDIO_WC_REG_AERBLK_AER 0xffde
#define MDIO_WC_REG_COMBO_IEEE0_MIICTRL 0xffe0
#define MDIO_WC_REG_COMBO_IEEE0_MIIISTAT 0xffe1
#define MDIO_WC0_XGXS_BLK2_LANE_RESET 0x810A
#define MDIO_WC0_XGXS_BLK2_LANE_RESET_RX_BITSHIFT 0
#define MDIO_WC0_XGXS_BLK2_LANE_RESET_TX_BITSHIFT 4
#define MDIO_WC0_XGXS_BLK6_XGXS_X2_CONTROL2 0x8141
#define DIGITAL5_ACTUAL_SPEED_TX_MASK 0x003f
/* 54618se */
#define MDIO_REG_GPHY_MII_STATUS 0x1
#define MDIO_REG_GPHY_PHYID_LSB 0x3
#define MDIO_REG_GPHY_CL45_ADDR_REG 0xd
#define MDIO_REG_GPHY_CL45_REG_WRITE 0x4000
#define MDIO_REG_GPHY_CL45_REG_READ 0xc000
#define MDIO_REG_GPHY_CL45_DATA_REG 0xe
#define MDIO_REG_GPHY_EEE_RESOLVED 0x803e
#define MDIO_REG_GPHY_EXP_ACCESS_GATE 0x15
#define MDIO_REG_GPHY_EXP_ACCESS 0x17
#define MDIO_REG_GPHY_EXP_ACCESS_TOP 0xd00
#define MDIO_REG_GPHY_EXP_TOP_2K_BUF 0x40
#define MDIO_REG_GPHY_AUX_STATUS 0x19
#define MDIO_REG_INTR_STATUS 0x1a
#define MDIO_REG_INTR_MASK 0x1b
#define MDIO_REG_INTR_MASK_LINK_STATUS (0x1 << 1)
#define MDIO_REG_GPHY_SHADOW 0x1c
#define MDIO_REG_GPHY_SHADOW_LED_SEL1 (0x0d << 10)
#define MDIO_REG_GPHY_SHADOW_LED_SEL2 (0x0e << 10)
#define MDIO_REG_GPHY_SHADOW_WR_ENA (0x1 << 15)
#define MDIO_REG_GPHY_SHADOW_AUTO_DET_MED (0x1e << 10)
#define MDIO_REG_GPHY_SHADOW_INVERT_FIB_SD (0x1 << 8)
typedef elink_status_t (*read_sfp_module_eeprom_func_p)(struct elink_phy *phy,
struct elink_params *params,
uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt,
uint8_t *o_buf, uint8_t);
/********************************************************/
#define ELINK_ETH_HLEN 14
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ELINK_ETH_OVREHEAD (ELINK_ETH_HLEN + 8 + 8)
#define ELINK_ETH_MIN_PACKET_SIZE 60
#define ELINK_ETH_MAX_PACKET_SIZE 1500
#define ELINK_ETH_MAX_JUMBO_PACKET_SIZE 9600
#define ELINK_MDIO_ACCESS_TIMEOUT 1000
#define WC_LANE_MAX 4
#define I2C_SWITCH_WIDTH 2
#define I2C_BSC0 0
#define I2C_BSC1 1
#define I2C_WA_RETRY_CNT 3
#define I2C_WA_PWR_ITER (I2C_WA_RETRY_CNT - 1)
#define MCPR_IMC_COMMAND_READ_OP 1
#define MCPR_IMC_COMMAND_WRITE_OP 2
/* LED Blink rate that will achieve ~15.9Hz */
#define LED_BLINK_RATE_VAL_E3 354
#define LED_BLINK_RATE_VAL_E1X_E2 480
/***********************************************************/
/* Shortcut definitions */
/***********************************************************/
#define ELINK_NIG_LATCH_BC_ENABLE_MI_INT 0
#define ELINK_NIG_STATUS_EMAC0_MI_INT \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_EMAC0_MISC_MI_INT
#define ELINK_NIG_STATUS_XGXS0_LINK10G \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK10G
#define ELINK_NIG_STATUS_XGXS0_LINK_STATUS \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS
#define ELINK_NIG_STATUS_XGXS0_LINK_STATUS_SIZE \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS_SIZE
#define ELINK_NIG_STATUS_SERDES0_LINK_STATUS \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_SERDES0_LINK_STATUS
#define ELINK_NIG_MASK_MI_INT \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_EMAC0_MISC_MI_INT
#define ELINK_NIG_MASK_XGXS0_LINK10G \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK10G
#define ELINK_NIG_MASK_XGXS0_LINK_STATUS \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK_STATUS
#define ELINK_NIG_MASK_SERDES0_LINK_STATUS \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_SERDES0_LINK_STATUS
#define ELINK_MDIO_AN_CL73_OR_37_COMPLETE \
(MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE | \
MDIO_GP_STATUS_TOP_AN_STATUS1_CL37_AUTONEG_COMPLETE)
#define ELINK_XGXS_RESET_BITS \
(MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_RSTB_HW | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_IDDQ | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN_SD | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_TXD_FIFO_RSTB)
#define ELINK_SERDES_RESET_BITS \
(MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_RSTB_HW | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_IDDQ | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN_SD)
#define ELINK_AUTONEG_CL37 SHARED_HW_CFG_AN_ENABLE_CL37
#define ELINK_AUTONEG_CL73 SHARED_HW_CFG_AN_ENABLE_CL73
#define ELINK_AUTONEG_BAM SHARED_HW_CFG_AN_ENABLE_BAM
#define ELINK_AUTONEG_PARALLEL \
SHARED_HW_CFG_AN_ENABLE_PARALLEL_DETECTION
#define ELINK_AUTONEG_SGMII_FIBER_AUTODET \
SHARED_HW_CFG_AN_EN_SGMII_FIBER_AUTO_DETECT
#define ELINK_AUTONEG_REMOTE_PHY SHARED_HW_CFG_AN_ENABLE_REMOTE_PHY
#define ELINK_GP_STATUS_PAUSE_RSOLUTION_TXSIDE \
MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_TXSIDE
#define ELINK_GP_STATUS_PAUSE_RSOLUTION_RXSIDE \
MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_RXSIDE
#define ELINK_GP_STATUS_SPEED_MASK \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_MASK
#define ELINK_GP_STATUS_10M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10M
#define ELINK_GP_STATUS_100M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_100M
#define ELINK_GP_STATUS_1G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G
#define ELINK_GP_STATUS_2_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_2_5G
#define ELINK_GP_STATUS_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_5G
#define ELINK_GP_STATUS_6G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_6G
#define ELINK_GP_STATUS_10G_HIG \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_HIG
#define ELINK_GP_STATUS_10G_CX4 \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_CX4
#define ELINK_GP_STATUS_1G_KX MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G_KX
#define ELINK_GP_STATUS_10G_KX4 \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KX4
#define ELINK_GP_STATUS_10G_KR MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KR
#define ELINK_GP_STATUS_10G_XFI MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_XFI
#define ELINK_GP_STATUS_20G_DXGXS MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_DXGXS
#define ELINK_GP_STATUS_10G_SFI MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_SFI
#define ELINK_GP_STATUS_20G_KR2 MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_KR2
#define ELINK_LINK_10THD LINK_STATUS_SPEED_AND_DUPLEX_10THD
#define ELINK_LINK_10TFD LINK_STATUS_SPEED_AND_DUPLEX_10TFD
#define ELINK_LINK_100TXHD LINK_STATUS_SPEED_AND_DUPLEX_100TXHD
#define ELINK_LINK_100T4 LINK_STATUS_SPEED_AND_DUPLEX_100T4
#define ELINK_LINK_100TXFD LINK_STATUS_SPEED_AND_DUPLEX_100TXFD
#define ELINK_LINK_1000THD LINK_STATUS_SPEED_AND_DUPLEX_1000THD
#define ELINK_LINK_1000TFD LINK_STATUS_SPEED_AND_DUPLEX_1000TFD
#define ELINK_LINK_1000XFD LINK_STATUS_SPEED_AND_DUPLEX_1000XFD
#define ELINK_LINK_2500THD LINK_STATUS_SPEED_AND_DUPLEX_2500THD
#define ELINK_LINK_2500TFD LINK_STATUS_SPEED_AND_DUPLEX_2500TFD
#define ELINK_LINK_2500XFD LINK_STATUS_SPEED_AND_DUPLEX_2500XFD
#define ELINK_LINK_10GTFD LINK_STATUS_SPEED_AND_DUPLEX_10GTFD
#define ELINK_LINK_10GXFD LINK_STATUS_SPEED_AND_DUPLEX_10GXFD
#define ELINK_LINK_20GTFD LINK_STATUS_SPEED_AND_DUPLEX_20GTFD
#define ELINK_LINK_20GXFD LINK_STATUS_SPEED_AND_DUPLEX_20GXFD
#define ELINK_LINK_UPDATE_MASK \
(LINK_STATUS_SPEED_AND_DUPLEX_MASK | \
LINK_STATUS_LINK_UP | \
LINK_STATUS_PHYSICAL_LINK_FLAG | \
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE | \
LINK_STATUS_RX_FLOW_CONTROL_FLAG_MASK | \
LINK_STATUS_TX_FLOW_CONTROL_FLAG_MASK | \
LINK_STATUS_PARALLEL_DETECTION_FLAG_MASK | \
LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE | \
LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE)
#define ELINK_SFP_EEPROM_CON_TYPE_ADDR 0x2
#define ELINK_SFP_EEPROM_CON_TYPE_VAL_UNKNOWN 0x0
#define ELINK_SFP_EEPROM_CON_TYPE_VAL_LC 0x7
#define ELINK_SFP_EEPROM_CON_TYPE_VAL_COPPER 0x21
#define ELINK_SFP_EEPROM_CON_TYPE_VAL_RJ45 0x22
#define ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR 0x3
#define ELINK_SFP_EEPROM_10G_COMP_CODE_SR_MASK (1<<4)
#define ELINK_SFP_EEPROM_10G_COMP_CODE_LR_MASK (1<<5)
#define ELINK_SFP_EEPROM_10G_COMP_CODE_LRM_MASK (1<<6)
#define ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR 0x6
#define ELINK_SFP_EEPROM_1G_COMP_CODE_SX (1<<0)
#define ELINK_SFP_EEPROM_1G_COMP_CODE_LX (1<<1)
#define ELINK_SFP_EEPROM_1G_COMP_CODE_CX (1<<2)
#define ELINK_SFP_EEPROM_1G_COMP_CODE_BASE_T (1<<3)
#define ELINK_SFP_EEPROM_FC_TX_TECH_ADDR 0x8
#define ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE 0x4
#define ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE 0x8
#define ELINK_SFP_EEPROM_OPTIONS_ADDR 0x40
#define ELINK_SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK 0x1
#define ELINK_SFP_EEPROM_OPTIONS_SIZE 2
#define ELINK_EDC_MODE_LINEAR 0x0022
#define ELINK_EDC_MODE_LIMITING 0x0044
#define ELINK_EDC_MODE_PASSIVE_DAC 0x0055
#define ELINK_EDC_MODE_ACTIVE_DAC 0x0066
/* ETS defines*/
#define DCBX_INVALID_COS (0xFF)
#define ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND (0x5000)
#define ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT (0x5000)
#define ELINK_ETS_E3B0_NIG_MIN_W_VAL_UP_TO_10GBPS (1360)
#define ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS (2720)
#define ELINK_ETS_E3B0_PBF_MIN_W_VAL (10000)
#define ELINK_MAX_PACKET_SIZE (9700)
#define MAX_KR_LINK_RETRY 4
#define DEFAULT_TX_DRV_BRDCT 2
#define DEFAULT_TX_DRV_IFIR 0
#define DEFAULT_TX_DRV_POST2 3
#define DEFAULT_TX_DRV_IPRE_DRIVER 6
/**********************************************************/
/* INTERFACE */
/**********************************************************/
#define CL22_WR_OVER_CL45(_sc, _phy, _bank, _addr, _val) \
elink_cl45_write(_sc, _phy, \
(_phy)->def_md_devad, \
(_bank + (_addr & 0xf)), \
_val)
#define CL22_RD_OVER_CL45(_sc, _phy, _bank, _addr, _val) \
elink_cl45_read(_sc, _phy, \
(_phy)->def_md_devad, \
(_bank + (_addr & 0xf)), \
_val)
static elink_status_t elink_check_half_open_conn(struct elink_params *params,
struct elink_vars *vars, uint8_t notify);
static elink_status_t elink_sfp_module_detection(struct elink_phy *phy,
struct elink_params *params);
static uint32_t elink_bits_en(struct bxe_softc *sc, uint32_t reg, uint32_t bits)
{
uint32_t val = REG_RD(sc, reg);
val |= bits;
REG_WR(sc, reg, val);
return val;
}
static uint32_t elink_bits_dis(struct bxe_softc *sc, uint32_t reg, uint32_t bits)
{
uint32_t val = REG_RD(sc, reg);
val &= ~bits;
REG_WR(sc, reg, val);
return val;
}
/*
* elink_check_lfa - This function checks if link reinitialization is required,
* or link flap can be avoided.
*
* @params: link parameters
* Returns 0 if Link Flap Avoidance conditions are met otherwise, the failed
* condition code.
*/
static int elink_check_lfa(struct elink_params *params)
{
uint32_t link_status, cfg_idx, lfa_mask, cfg_size;
uint32_t cur_speed_cap_mask, cur_req_fc_auto_adv, additional_config;
uint32_t saved_val, req_val, eee_status;
struct bxe_softc *sc = params->sc;
additional_config =
REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, additional_config));
/* NOTE: must be first condition checked -
* to verify DCC bit is cleared in any case!
*/
if (additional_config & NO_LFA_DUE_TO_DCC_MASK) {
ELINK_DEBUG_P0(sc, "No LFA due to DCC flap after clp exit\n");
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, additional_config),
additional_config & ~NO_LFA_DUE_TO_DCC_MASK);
return LFA_DCC_LFA_DISABLED;
}
/* Verify that link is up */
link_status = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
port_mb[params->port].link_status));
if (!(link_status & LINK_STATUS_LINK_UP))
return LFA_LINK_DOWN;
/* if loaded after BOOT from SAN, don't flap the link in any case and
* rely on link set by preboot driver
*/
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BOOT_FROM_SAN)
return 0;
/* Verify that loopback mode is not set */
if (params->loopback_mode)
return LFA_LOOPBACK_ENABLED;
/* Verify that MFW supports LFA */
if (!params->lfa_base)
return LFA_MFW_IS_TOO_OLD;
if (params->num_phys == 3) {
cfg_size = 2;
lfa_mask = 0xffffffff;
} else {
cfg_size = 1;
lfa_mask = 0xffff;
}
/* Compare Duplex */
saved_val = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_duplex));
req_val = params->req_duplex[0] | (params->req_duplex[1] << 16);
if ((saved_val & lfa_mask) != (req_val & lfa_mask)) {
ELINK_DEBUG_P2(sc, "Duplex mismatch %x vs. %x\n",
(saved_val & lfa_mask), (req_val & lfa_mask));
return LFA_DUPLEX_MISMATCH;
}
/* Compare Flow Control */
saved_val = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_flow_ctrl));
req_val = params->req_flow_ctrl[0] | (params->req_flow_ctrl[1] << 16);
if ((saved_val & lfa_mask) != (req_val & lfa_mask)) {
ELINK_DEBUG_P2(sc, "Flow control mismatch %x vs. %x\n",
(saved_val & lfa_mask), (req_val & lfa_mask));
return LFA_FLOW_CTRL_MISMATCH;
}
/* Compare Link Speed */
saved_val = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_line_speed));
req_val = params->req_line_speed[0] | (params->req_line_speed[1] << 16);
if ((saved_val & lfa_mask) != (req_val & lfa_mask)) {
ELINK_DEBUG_P2(sc, "Link speed mismatch %x vs. %x\n",
(saved_val & lfa_mask), (req_val & lfa_mask));
return LFA_LINK_SPEED_MISMATCH;
}
for (cfg_idx = 0; cfg_idx < cfg_size; cfg_idx++) {
cur_speed_cap_mask = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa,
speed_cap_mask[cfg_idx]));
if (cur_speed_cap_mask != params->speed_cap_mask[cfg_idx]) {
ELINK_DEBUG_P2(sc, "Speed Cap mismatch %x vs. %x\n",
cur_speed_cap_mask,
params->speed_cap_mask[cfg_idx]);
return LFA_SPEED_CAP_MISMATCH;
}
}
cur_req_fc_auto_adv =
REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, additional_config)) &
REQ_FC_AUTO_ADV_MASK;
if ((uint16_t)cur_req_fc_auto_adv != params->req_fc_auto_adv) {
ELINK_DEBUG_P2(sc, "Flow Ctrl AN mismatch %x vs. %x\n",
cur_req_fc_auto_adv, params->req_fc_auto_adv);
return LFA_FLOW_CTRL_MISMATCH;
}
eee_status = REG_RD(sc, params->shmem2_base +
offsetof(struct shmem2_region,
eee_status[params->port]));
if (((eee_status & SHMEM_EEE_LPI_REQUESTED_BIT) ^
(params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI)) ||
((eee_status & SHMEM_EEE_REQUESTED_BIT) ^
(params->eee_mode & ELINK_EEE_MODE_ADV_LPI))) {
ELINK_DEBUG_P2(sc, "EEE mismatch %x vs. %x\n", params->eee_mode,
eee_status);
return LFA_EEE_MISMATCH;
}
/* LFA conditions are met */
return 0;
}
/******************************************************************/
/* EPIO/GPIO section */
/******************************************************************/
static void elink_get_epio(struct bxe_softc *sc, uint32_t epio_pin, uint32_t *en)
{
uint32_t epio_mask, gp_oenable;
*en = 0;
/* Sanity check */
if (epio_pin > 31) {
ELINK_DEBUG_P1(sc, "Invalid EPIO pin %d to get\n", epio_pin);
return;
}
epio_mask = 1 << epio_pin;
/* Set this EPIO to output */
gp_oenable = REG_RD(sc, MCP_REG_MCPR_GP_OENABLE);
REG_WR(sc, MCP_REG_MCPR_GP_OENABLE, gp_oenable & ~epio_mask);
*en = (REG_RD(sc, MCP_REG_MCPR_GP_INPUTS) & epio_mask) >> epio_pin;
}
static void elink_set_epio(struct bxe_softc *sc, uint32_t epio_pin, uint32_t en)
{
uint32_t epio_mask, gp_output, gp_oenable;
/* Sanity check */
if (epio_pin > 31) {
ELINK_DEBUG_P1(sc, "Invalid EPIO pin %d to set\n", epio_pin);
return;
}
ELINK_DEBUG_P2(sc, "Setting EPIO pin %d to %d\n", epio_pin, en);
epio_mask = 1 << epio_pin;
/* Set this EPIO to output */
gp_output = REG_RD(sc, MCP_REG_MCPR_GP_OUTPUTS);
if (en)
gp_output |= epio_mask;
else
gp_output &= ~epio_mask;
REG_WR(sc, MCP_REG_MCPR_GP_OUTPUTS, gp_output);
/* Set the value for this EPIO */
gp_oenable = REG_RD(sc, MCP_REG_MCPR_GP_OENABLE);
REG_WR(sc, MCP_REG_MCPR_GP_OENABLE, gp_oenable | epio_mask);
}
static void elink_set_cfg_pin(struct bxe_softc *sc, uint32_t pin_cfg, uint32_t val)
{
if (pin_cfg == PIN_CFG_NA)
return;
if (pin_cfg >= PIN_CFG_EPIO0) {
elink_set_epio(sc, pin_cfg - PIN_CFG_EPIO0, val);
} else {
uint8_t gpio_num = (pin_cfg - PIN_CFG_GPIO0_P0) & 0x3;
uint8_t gpio_port = (pin_cfg - PIN_CFG_GPIO0_P0) >> 2;
elink_cb_gpio_write(sc, gpio_num, (uint8_t)val, gpio_port);
}
}
static uint32_t elink_get_cfg_pin(struct bxe_softc *sc, uint32_t pin_cfg, uint32_t *val)
{
if (pin_cfg == PIN_CFG_NA)
return ELINK_STATUS_ERROR;
if (pin_cfg >= PIN_CFG_EPIO0) {
elink_get_epio(sc, pin_cfg - PIN_CFG_EPIO0, val);
} else {
uint8_t gpio_num = (pin_cfg - PIN_CFG_GPIO0_P0) & 0x3;
uint8_t gpio_port = (pin_cfg - PIN_CFG_GPIO0_P0) >> 2;
*val = elink_cb_gpio_read(sc, gpio_num, gpio_port);
}
return ELINK_STATUS_OK;
}
/******************************************************************/
/* ETS section */
/******************************************************************/
static void elink_ets_e2e3a0_disabled(struct elink_params *params)
{
/* ETS disabled configuration*/
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "ETS E2E3 disabled configuration\n");
/* mapping between entry priority to client number (0,1,2 -debug and
* management clients, 3 - COS0 client, 4 - COS client)(HIGHEST)
* 3bits client num.
* PRI4 | PRI3 | PRI2 | PRI1 | PRI0
* cos1-100 cos0-011 dbg1-010 dbg0-001 MCP-000
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT, 0x4688);
/* Bitmap of 5bits length. Each bit specifies whether the entry behaves
* as strict. Bits 0,1,2 - debug and management entries, 3 -
* COS0 entry, 4 - COS1 entry.
* COS1 | COS0 | DEBUG1 | DEBUG0 | MGMT
* bit4 bit3 bit2 bit1 bit0
* MCP and debug are strict
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x7);
/* defines which entries (clients) are subjected to WFQ arbitration */
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0);
/* For strict priority entries defines the number of consecutive
* slots for the highest priority.
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100);
/* mapping between the CREDIT_WEIGHT registers and actual client
* numbers
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP, 0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, 0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, 0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0, 0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1, 0);
REG_WR(sc, PBF_REG_HIGH_PRIORITY_COS_NUM, 0);
/* ETS mode disable */
REG_WR(sc, PBF_REG_ETS_ENABLED, 0);
/* If ETS mode is enabled (there is no strict priority) defines a WFQ
* weight for COS0/COS1.
*/
REG_WR(sc, PBF_REG_COS0_WEIGHT, 0x2710);
REG_WR(sc, PBF_REG_COS1_WEIGHT, 0x2710);
/* Upper bound that COS0_WEIGHT can reach in the WFQ arbiter */
REG_WR(sc, PBF_REG_COS0_UPPER_BOUND, 0x989680);
REG_WR(sc, PBF_REG_COS1_UPPER_BOUND, 0x989680);
/* Defines the number of consecutive slots for the strict priority */
REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0);
}
/******************************************************************************
* Description:
* Getting min_w_val will be set according to line speed .
*.
******************************************************************************/
static uint32_t elink_ets_get_min_w_val_nig(const struct elink_vars *vars)
{
uint32_t min_w_val = 0;
/* Calculate min_w_val.*/
if (vars->link_up) {
if (vars->line_speed == ELINK_SPEED_20000)
min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS;
else
min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_UP_TO_10GBPS;
} else
min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS;
/* If the link isn't up (static configuration for example ) The
* link will be according to 20GBPS.
*/
return min_w_val;
}
/******************************************************************************
* Description:
* Getting credit upper bound form min_w_val.
*.
******************************************************************************/
static uint32_t elink_ets_get_credit_upper_bound(const uint32_t min_w_val)
{
const uint32_t credit_upper_bound = (uint32_t)ELINK_MAXVAL((150 * min_w_val),
ELINK_MAX_PACKET_SIZE);
return credit_upper_bound;
}
/******************************************************************************
* Description:
* Set credit upper bound for NIG.
*.
******************************************************************************/
static void elink_ets_e3b0_set_credit_upper_bound_nig(
const struct elink_params *params,
const uint32_t min_w_val)
{
struct bxe_softc *sc = params->sc;
const uint8_t port = params->port;
const uint32_t credit_upper_bound =
elink_ets_get_credit_upper_bound(min_w_val);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_0 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0, credit_upper_bound);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_1 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1, credit_upper_bound);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_2 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_2, credit_upper_bound);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_3 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_3, credit_upper_bound);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_4 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_4, credit_upper_bound);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_5 :
NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_5, credit_upper_bound);
if (!port) {
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_6,
credit_upper_bound);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_7,
credit_upper_bound);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_8,
credit_upper_bound);
}
}
/******************************************************************************
* Description:
* Will return the NIG ETS registers to init values.Except
* credit_upper_bound.
* That isn't used in this configuration (No WFQ is enabled) and will be
* configured according to spec.
*.
******************************************************************************/
static void elink_ets_e3b0_nig_disabled(const struct elink_params *params,
const struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
const uint8_t port = params->port;
const uint32_t min_w_val = elink_ets_get_min_w_val_nig(vars);
/* Mapping between entry priority to client number (0,1,2 -debug and
* management clients, 3 - COS0 client, 4 - COS1, ... 8 -
* COS5)(HIGHEST) 4bits client num.TODO_ETS - Should be done by
* reset value or init tool
*/
if (port) {
REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_LSB, 0x543210);
REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_MSB, 0x0);
} else {
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_LSB, 0x76543210);
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_MSB, 0x8);
}
/* For strict priority entries defines the number of consecutive
* slots for the highest priority.
*/
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_NUM_STRICT_ARB_SLOTS :
NIG_REG_P1_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100);
/* Mapping between the CREDIT_WEIGHT registers and actual client
* numbers
*/
if (port) {
/*Port 1 has 6 COS*/
REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_CREDIT_MAP2_LSB, 0x210543);
REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_CREDIT_MAP2_MSB, 0x0);
} else {
/*Port 0 has 9 COS*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP2_LSB,
0x43210876);
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP2_MSB, 0x5);
}
/* Bitmap of 5bits length. Each bit specifies whether the entry behaves
* as strict. Bits 0,1,2 - debug and management entries, 3 -
* COS0 entry, 4 - COS1 entry.
* COS1 | COS0 | DEBUG1 | DEBUG0 | MGMT
* bit4 bit3 bit2 bit1 bit0
* MCP and debug are strict
*/
if (port)
REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_IS_STRICT, 0x3f);
else
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x1ff);
/* defines which entries (clients) are subjected to WFQ arbitration */
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_SUBJECT2WFQ :
NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0);
/* Please notice the register address are note continuous and a
* for here is note appropriate.In 2 port mode port0 only COS0-5
* can be used. DEBUG1,DEBUG1,MGMT are never used for WFQ* In 4
* port mode port1 only COS0-2 can be used. DEBUG1,DEBUG1,MGMT
* are never used for WFQ
*/
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_0 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, 0x0);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_1 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, 0x0);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_2 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_2, 0x0);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_3 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_3, 0x0);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_4 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_4, 0x0);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_5 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_5, 0x0);
if (!port) {
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_6, 0x0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_7, 0x0);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_8, 0x0);
}
elink_ets_e3b0_set_credit_upper_bound_nig(params, min_w_val);
}
/******************************************************************************
* Description:
* Set credit upper bound for PBF.
*.
******************************************************************************/
static void elink_ets_e3b0_set_credit_upper_bound_pbf(
const struct elink_params *params,
const uint32_t min_w_val)
{
struct bxe_softc *sc = params->sc;
const uint32_t credit_upper_bound =
elink_ets_get_credit_upper_bound(min_w_val);
const uint8_t port = params->port;
uint32_t base_upper_bound = 0;
uint8_t max_cos = 0;
uint8_t i = 0;
/* In 2 port mode port0 has COS0-5 that can be used for WFQ.In 4
* port mode port1 has COS0-2 that can be used for WFQ.
*/
if (!port) {
base_upper_bound = PBF_REG_COS0_UPPER_BOUND_P0;
max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0;
} else {
base_upper_bound = PBF_REG_COS0_UPPER_BOUND_P1;
max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1;
}
for (i = 0; i < max_cos; i++)
REG_WR(sc, base_upper_bound + (i << 2), credit_upper_bound);
}
/******************************************************************************
* Description:
* Will return the PBF ETS registers to init values.Except
* credit_upper_bound.
* That isn't used in this configuration (No WFQ is enabled) and will be
* configured according to spec.
*.
******************************************************************************/
static void elink_ets_e3b0_pbf_disabled(const struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
const uint8_t port = params->port;
const uint32_t min_w_val_pbf = ELINK_ETS_E3B0_PBF_MIN_W_VAL;
uint8_t i = 0;
uint32_t base_weight = 0;
uint8_t max_cos = 0;
/* Mapping between entry priority to client number 0 - COS0
* client, 2 - COS1, ... 5 - COS5)(HIGHEST) 4bits client num.
* TODO_ETS - Should be done by reset value or init tool
*/
if (port)
/* 0x688 (|011|0 10|00 1|000) */
REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P1 , 0x688);
else
/* (10 1|100 |011|0 10|00 1|000) */
REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P0 , 0x2C688);
/* TODO_ETS - Should be done by reset value or init tool */
if (port)
/* 0x688 (|011|0 10|00 1|000)*/
REG_WR(sc, PBF_REG_ETS_ARB_CLIENT_CREDIT_MAP_P1, 0x688);
else
/* 0x2C688 (10 1|100 |011|0 10|00 1|000) */
REG_WR(sc, PBF_REG_ETS_ARB_CLIENT_CREDIT_MAP_P0, 0x2C688);
REG_WR(sc, (port) ? PBF_REG_ETS_ARB_NUM_STRICT_ARB_SLOTS_P1 :
PBF_REG_ETS_ARB_NUM_STRICT_ARB_SLOTS_P0 , 0x100);
REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P1 :
PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P0 , 0);
REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P1 :
PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P0 , 0);
/* In 2 port mode port0 has COS0-5 that can be used for WFQ.
* In 4 port mode port1 has COS0-2 that can be used for WFQ.
*/
if (!port) {
base_weight = PBF_REG_COS0_WEIGHT_P0;
max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0;
} else {
base_weight = PBF_REG_COS0_WEIGHT_P1;
max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1;
}
for (i = 0; i < max_cos; i++)
REG_WR(sc, base_weight + (0x4 * i), 0);
elink_ets_e3b0_set_credit_upper_bound_pbf(params, min_w_val_pbf);
}
/******************************************************************************
* Description:
* E3B0 disable will return basically the values to init values.
*.
******************************************************************************/
static elink_status_t elink_ets_e3b0_disabled(const struct elink_params *params,
const struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
if (!CHIP_IS_E3B0(sc)) {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_disabled the chip isn't E3B0\n");
return ELINK_STATUS_ERROR;
}
elink_ets_e3b0_nig_disabled(params, vars);
elink_ets_e3b0_pbf_disabled(params);
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* Disable will return basically the values to init values.
*
******************************************************************************/
elink_status_t elink_ets_disabled(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
elink_status_t elink_status = ELINK_STATUS_OK;
if ((CHIP_IS_E2(sc)) || (CHIP_IS_E3A0(sc)))
elink_ets_e2e3a0_disabled(params);
else if (CHIP_IS_E3B0(sc))
elink_status = elink_ets_e3b0_disabled(params, vars);
else {
ELINK_DEBUG_P0(sc, "elink_ets_disabled - chip not supported\n");
return ELINK_STATUS_ERROR;
}
return elink_status;
}
/******************************************************************************
* Description
* Set the COS mappimg to SP and BW until this point all the COS are not
* set as SP or BW.
******************************************************************************/
static elink_status_t elink_ets_e3b0_cli_map(const struct elink_params *params,
const struct elink_ets_params *ets_params,
const uint8_t cos_sp_bitmap,
const uint8_t cos_bw_bitmap)
{
struct bxe_softc *sc = params->sc;
const uint8_t port = params->port;
const uint8_t nig_cli_sp_bitmap = 0x7 | (cos_sp_bitmap << 3);
const uint8_t pbf_cli_sp_bitmap = cos_sp_bitmap;
const uint8_t nig_cli_subject2wfq_bitmap = cos_bw_bitmap << 3;
const uint8_t pbf_cli_subject2wfq_bitmap = cos_bw_bitmap;
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_STRICT :
NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, nig_cli_sp_bitmap);
REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P1 :
PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P0 , pbf_cli_sp_bitmap);
REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_SUBJECT2WFQ :
NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ,
nig_cli_subject2wfq_bitmap);
REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P1 :
PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P0,
pbf_cli_subject2wfq_bitmap);
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* This function is needed because NIG ARB_CREDIT_WEIGHT_X are
* not continues and ARB_CREDIT_WEIGHT_0 + offset is suitable.
******************************************************************************/
static elink_status_t elink_ets_e3b0_set_cos_bw(struct bxe_softc *sc,
const uint8_t cos_entry,
const uint32_t min_w_val_nig,
const uint32_t min_w_val_pbf,
const uint16_t total_bw,
const uint8_t bw,
const uint8_t port)
{
uint32_t nig_reg_adress_crd_weight = 0;
uint32_t pbf_reg_adress_crd_weight = 0;
/* Calculate and set BW for this COS - use 1 instead of 0 for BW */
const uint32_t cos_bw_nig = ((bw ? bw : 1) * min_w_val_nig) / total_bw;
const uint32_t cos_bw_pbf = ((bw ? bw : 1) * min_w_val_pbf) / total_bw;
switch (cos_entry) {
case 0:
nig_reg_adress_crd_weight =
(port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_0 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0;
pbf_reg_adress_crd_weight = (port) ?
PBF_REG_COS0_WEIGHT_P1 : PBF_REG_COS0_WEIGHT_P0;
break;
case 1:
nig_reg_adress_crd_weight = (port) ?
NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_1 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1;
pbf_reg_adress_crd_weight = (port) ?
PBF_REG_COS1_WEIGHT_P1 : PBF_REG_COS1_WEIGHT_P0;
break;
case 2:
nig_reg_adress_crd_weight = (port) ?
NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_2 :
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_2;
pbf_reg_adress_crd_weight = (port) ?
PBF_REG_COS2_WEIGHT_P1 : PBF_REG_COS2_WEIGHT_P0;
break;
case 3:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_adress_crd_weight =
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_3;
pbf_reg_adress_crd_weight =
PBF_REG_COS3_WEIGHT_P0;
break;
case 4:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_adress_crd_weight =
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_4;
pbf_reg_adress_crd_weight = PBF_REG_COS4_WEIGHT_P0;
break;
case 5:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_adress_crd_weight =
NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_5;
pbf_reg_adress_crd_weight = PBF_REG_COS5_WEIGHT_P0;
break;
}
REG_WR(sc, nig_reg_adress_crd_weight, cos_bw_nig);
REG_WR(sc, pbf_reg_adress_crd_weight, cos_bw_pbf);
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* Calculate the total BW.A value of 0 isn't legal.
*
******************************************************************************/
static elink_status_t elink_ets_e3b0_get_total_bw(
const struct elink_params *params,
struct elink_ets_params *ets_params,
uint16_t *total_bw)
{
struct bxe_softc *sc = params->sc;
uint8_t cos_idx = 0;
uint8_t is_bw_cos_exist = 0;
*total_bw = 0 ;
/* Calculate total BW requested */
for (cos_idx = 0; cos_idx < ets_params->num_of_cos; cos_idx++) {
if (ets_params->cos[cos_idx].state == elink_cos_state_bw) {
is_bw_cos_exist = 1;
if (!ets_params->cos[cos_idx].params.bw_params.bw) {
ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config BW"
"was set to 0\n");
/* This is to prevent a state when ramrods
* can't be sent
*/
ets_params->cos[cos_idx].params.bw_params.bw
= 1;
}
*total_bw +=
ets_params->cos[cos_idx].params.bw_params.bw;
}
}
/* Check total BW is valid */
if ((is_bw_cos_exist == 1) && (*total_bw != 100)) {
if (*total_bw == 0) {
ELINK_DEBUG_P0(sc,
"elink_ets_E3B0_config total BW shouldn't be 0\n");
return ELINK_STATUS_ERROR;
}
ELINK_DEBUG_P0(sc,
"elink_ets_E3B0_config total BW should be 100\n");
/* We can handle a case whre the BW isn't 100 this can happen
* if the TC are joined.
*/
}
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* Invalidate all the sp_pri_to_cos.
*
******************************************************************************/
static void elink_ets_e3b0_sp_pri_to_cos_init(uint8_t *sp_pri_to_cos)
{
uint8_t pri = 0;
for (pri = 0; pri < ELINK_DCBX_MAX_NUM_COS; pri++)
sp_pri_to_cos[pri] = DCBX_INVALID_COS;
}
/******************************************************************************
* Description:
* Calculate and set the SP (ARB_PRIORITY_CLIENT) NIG and PBF registers
* according to sp_pri_to_cos.
*
******************************************************************************/
static elink_status_t elink_ets_e3b0_sp_pri_to_cos_set(const struct elink_params *params,
uint8_t *sp_pri_to_cos, const uint8_t pri,
const uint8_t cos_entry)
{
struct bxe_softc *sc = params->sc;
const uint8_t port = params->port;
const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 :
ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0;
if (pri >= max_num_of_cos) {
ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_pri_to_cos_set invalid "
"parameter Illegal strict priority\n");
return ELINK_STATUS_ERROR;
}
if (sp_pri_to_cos[pri] != DCBX_INVALID_COS) {
ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_pri_to_cos_set invalid "
"parameter There can't be two COS's with "
"the same strict pri\n");
return ELINK_STATUS_ERROR;
}
sp_pri_to_cos[pri] = cos_entry;
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* Returns the correct value according to COS and priority in
* the sp_pri_cli register.
*
******************************************************************************/
static uint64_t elink_e3b0_sp_get_pri_cli_reg(const uint8_t cos, const uint8_t cos_offset,
const uint8_t pri_set,
const uint8_t pri_offset,
const uint8_t entry_size)
{
uint64_t pri_cli_nig = 0;
pri_cli_nig = ((uint64_t)(cos + cos_offset)) << (entry_size *
(pri_set + pri_offset));
return pri_cli_nig;
}
/******************************************************************************
* Description:
* Returns the correct value according to COS and priority in the
* sp_pri_cli register for NIG.
*
******************************************************************************/
static uint64_t elink_e3b0_sp_get_pri_cli_reg_nig(const uint8_t cos, const uint8_t pri_set)
{
/* MCP Dbg0 and dbg1 are always with higher strict pri*/
const uint8_t nig_cos_offset = 3;
const uint8_t nig_pri_offset = 3;
return elink_e3b0_sp_get_pri_cli_reg(cos, nig_cos_offset, pri_set,
nig_pri_offset, 4);
}
/******************************************************************************
* Description:
* Returns the correct value according to COS and priority in the
* sp_pri_cli register for PBF.
*
******************************************************************************/
static uint64_t elink_e3b0_sp_get_pri_cli_reg_pbf(const uint8_t cos, const uint8_t pri_set)
{
const uint8_t pbf_cos_offset = 0;
const uint8_t pbf_pri_offset = 0;
return elink_e3b0_sp_get_pri_cli_reg(cos, pbf_cos_offset, pri_set,
pbf_pri_offset, 3);
}
/******************************************************************************
* Description:
* Calculate and set the SP (ARB_PRIORITY_CLIENT) NIG and PBF registers
* according to sp_pri_to_cos.(which COS has higher priority)
*
******************************************************************************/
static elink_status_t elink_ets_e3b0_sp_set_pri_cli_reg(const struct elink_params *params,
uint8_t *sp_pri_to_cos)
{
struct bxe_softc *sc = params->sc;
uint8_t i = 0;
const uint8_t port = params->port;
/* MCP Dbg0 and dbg1 are always with higher strict pri*/
uint64_t pri_cli_nig = 0x210;
uint32_t pri_cli_pbf = 0x0;
uint8_t pri_set = 0;
uint8_t pri_bitmask = 0;
const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 :
ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0;
uint8_t cos_bit_to_set = (1 << max_num_of_cos) - 1;
/* Set all the strict priority first */
for (i = 0; i < max_num_of_cos; i++) {
if (sp_pri_to_cos[i] != DCBX_INVALID_COS) {
if (sp_pri_to_cos[i] >= ELINK_DCBX_MAX_NUM_COS) {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_sp_set_pri_cli_reg "
"invalid cos entry\n");
return ELINK_STATUS_ERROR;
}
pri_cli_nig |= elink_e3b0_sp_get_pri_cli_reg_nig(
sp_pri_to_cos[i], pri_set);
pri_cli_pbf |= elink_e3b0_sp_get_pri_cli_reg_pbf(
sp_pri_to_cos[i], pri_set);
pri_bitmask = 1 << sp_pri_to_cos[i];
/* COS is used remove it from bitmap.*/
if (!(pri_bitmask & cos_bit_to_set)) {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_sp_set_pri_cli_reg "
"invalid There can't be two COS's with"
" the same strict pri\n");
return ELINK_STATUS_ERROR;
}
cos_bit_to_set &= ~pri_bitmask;
pri_set++;
}
}
/* Set all the Non strict priority i= COS*/
for (i = 0; i < max_num_of_cos; i++) {
pri_bitmask = 1 << i;
/* Check if COS was already used for SP */
if (pri_bitmask & cos_bit_to_set) {
/* COS wasn't used for SP */
pri_cli_nig |= elink_e3b0_sp_get_pri_cli_reg_nig(
i, pri_set);
pri_cli_pbf |= elink_e3b0_sp_get_pri_cli_reg_pbf(
i, pri_set);
/* COS is used remove it from bitmap.*/
cos_bit_to_set &= ~pri_bitmask;
pri_set++;
}
}
if (pri_set != max_num_of_cos) {
ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_set_pri_cli_reg not all "
"entries were set\n");
return ELINK_STATUS_ERROR;
}
if (port) {
/* Only 6 usable clients*/
REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_LSB,
(uint32_t)pri_cli_nig);
REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P1 , pri_cli_pbf);
} else {
/* Only 9 usable clients*/
const uint32_t pri_cli_nig_lsb = (uint32_t) (pri_cli_nig);
const uint32_t pri_cli_nig_msb = (uint32_t) ((pri_cli_nig >> 32) & 0xF);
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_LSB,
pri_cli_nig_lsb);
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_MSB,
pri_cli_nig_msb);
REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P0 , pri_cli_pbf);
}
return ELINK_STATUS_OK;
}
/******************************************************************************
* Description:
* Configure the COS to ETS according to BW and SP settings.
******************************************************************************/
elink_status_t elink_ets_e3b0_config(const struct elink_params *params,
const struct elink_vars *vars,
struct elink_ets_params *ets_params)
{
struct bxe_softc *sc = params->sc;
elink_status_t elink_status = ELINK_STATUS_OK;
const uint8_t port = params->port;
uint16_t total_bw = 0;
const uint32_t min_w_val_nig = elink_ets_get_min_w_val_nig(vars);
const uint32_t min_w_val_pbf = ELINK_ETS_E3B0_PBF_MIN_W_VAL;
uint8_t cos_bw_bitmap = 0;
uint8_t cos_sp_bitmap = 0;
uint8_t sp_pri_to_cos[ELINK_DCBX_MAX_NUM_COS] = {0};
const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 :
ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0;
uint8_t cos_entry = 0;
if (!CHIP_IS_E3B0(sc)) {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_disabled the chip isn't E3B0\n");
return ELINK_STATUS_ERROR;
}
if ((ets_params->num_of_cos > max_num_of_cos)) {
ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config the number of COS "
"isn't supported\n");
return ELINK_STATUS_ERROR;
}
/* Prepare sp strict priority parameters*/
elink_ets_e3b0_sp_pri_to_cos_init(sp_pri_to_cos);
/* Prepare BW parameters*/
elink_status = elink_ets_e3b0_get_total_bw(params, ets_params,
&total_bw);
if (elink_status != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc,
"elink_ets_E3B0_config get_total_bw failed\n");
return ELINK_STATUS_ERROR;
}
/* Upper bound is set according to current link speed (min_w_val
* should be the same for upper bound and COS credit val).
*/
elink_ets_e3b0_set_credit_upper_bound_nig(params, min_w_val_nig);
elink_ets_e3b0_set_credit_upper_bound_pbf(params, min_w_val_pbf);
for (cos_entry = 0; cos_entry < ets_params->num_of_cos; cos_entry++) {
if (elink_cos_state_bw == ets_params->cos[cos_entry].state) {
cos_bw_bitmap |= (1 << cos_entry);
/* The function also sets the BW in HW(not the mappin
* yet)
*/
elink_status = elink_ets_e3b0_set_cos_bw(
sc, cos_entry, min_w_val_nig, min_w_val_pbf,
total_bw,
ets_params->cos[cos_entry].params.bw_params.bw,
port);
} else if (elink_cos_state_strict ==
ets_params->cos[cos_entry].state){
cos_sp_bitmap |= (1 << cos_entry);
elink_status = elink_ets_e3b0_sp_pri_to_cos_set(
params,
sp_pri_to_cos,
ets_params->cos[cos_entry].params.sp_params.pri,
cos_entry);
} else {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_config cos state not valid\n");
return ELINK_STATUS_ERROR;
}
if (elink_status != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc,
"elink_ets_e3b0_config set cos bw failed\n");
return elink_status;
}
}
/* Set SP register (which COS has higher priority) */
elink_status = elink_ets_e3b0_sp_set_pri_cli_reg(params,
sp_pri_to_cos);
if (elink_status != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc,
"elink_ets_E3B0_config set_pri_cli_reg failed\n");
return elink_status;
}
/* Set client mapping of BW and strict */
elink_status = elink_ets_e3b0_cli_map(params, ets_params,
cos_sp_bitmap,
cos_bw_bitmap);
if (elink_status != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config SP failed\n");
return elink_status;
}
return ELINK_STATUS_OK;
}
static void elink_ets_bw_limit_common(const struct elink_params *params)
{
/* ETS disabled configuration */
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "ETS enabled BW limit configuration\n");
/* Defines which entries (clients) are subjected to WFQ arbitration
* COS0 0x8
* COS1 0x10
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0x18);
/* Mapping between the ARB_CREDIT_WEIGHT registers and actual
* client numbers (WEIGHT_0 does not actually have to represent
* client 0)
* PRI4 | PRI3 | PRI2 | PRI1 | PRI0
* cos1-001 cos0-000 dbg1-100 dbg0-011 MCP-010
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP, 0x111A);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0,
ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1,
ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND);
/* ETS mode enabled*/
REG_WR(sc, PBF_REG_ETS_ENABLED, 1);
/* Defines the number of consecutive slots for the strict priority */
REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0);
/* Bitmap of 5bits length. Each bit specifies whether the entry behaves
* as strict. Bits 0,1,2 - debug and management entries, 3 - COS0
* entry, 4 - COS1 entry.
* COS1 | COS0 | DEBUG21 | DEBUG0 | MGMT
* bit4 bit3 bit2 bit1 bit0
* MCP and debug are strict
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x7);
/* Upper bound that COS0_WEIGHT can reach in the WFQ arbiter.*/
REG_WR(sc, PBF_REG_COS0_UPPER_BOUND,
ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND);
REG_WR(sc, PBF_REG_COS1_UPPER_BOUND,
ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND);
}
void elink_ets_bw_limit(const struct elink_params *params, const uint32_t cos0_bw,
const uint32_t cos1_bw)
{
/* ETS disabled configuration*/
struct bxe_softc *sc = params->sc;
const uint32_t total_bw = cos0_bw + cos1_bw;
uint32_t cos0_credit_weight = 0;
uint32_t cos1_credit_weight = 0;
ELINK_DEBUG_P0(sc, "ETS enabled BW limit configuration\n");
if ((!total_bw) ||
(!cos0_bw) ||
(!cos1_bw)) {
ELINK_DEBUG_P0(sc, "Total BW can't be zero\n");
return;
}
cos0_credit_weight = (cos0_bw * ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT)/
total_bw;
cos1_credit_weight = (cos1_bw * ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT)/
total_bw;
elink_ets_bw_limit_common(params);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, cos0_credit_weight);
REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, cos1_credit_weight);
REG_WR(sc, PBF_REG_COS0_WEIGHT, cos0_credit_weight);
REG_WR(sc, PBF_REG_COS1_WEIGHT, cos1_credit_weight);
}
elink_status_t elink_ets_strict(const struct elink_params *params, const uint8_t strict_cos)
{
/* ETS disabled configuration*/
struct bxe_softc *sc = params->sc;
uint32_t val = 0;
ELINK_DEBUG_P0(sc, "ETS enabled strict configuration\n");
/* Bitmap of 5bits length. Each bit specifies whether the entry behaves
* as strict. Bits 0,1,2 - debug and management entries,
* 3 - COS0 entry, 4 - COS1 entry.
* COS1 | COS0 | DEBUG21 | DEBUG0 | MGMT
* bit4 bit3 bit2 bit1 bit0
* MCP and debug are strict
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x1F);
/* For strict priority entries defines the number of consecutive slots
* for the highest priority.
*/
REG_WR(sc, NIG_REG_P0_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100);
/* ETS mode disable */
REG_WR(sc, PBF_REG_ETS_ENABLED, 0);
/* Defines the number of consecutive slots for the strict priority */
REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0x100);
/* Defines the number of consecutive slots for the strict priority */
REG_WR(sc, PBF_REG_HIGH_PRIORITY_COS_NUM, strict_cos);
/* Mapping between entry priority to client number (0,1,2 -debug and
* management clients, 3 - COS0 client, 4 - COS client)(HIGHEST)
* 3bits client num.
* PRI4 | PRI3 | PRI2 | PRI1 | PRI0
* dbg0-010 dbg1-001 cos1-100 cos0-011 MCP-000
* dbg0-010 dbg1-001 cos0-011 cos1-100 MCP-000
*/
val = (!strict_cos) ? 0x2318 : 0x22E0;
REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT, val);
return ELINK_STATUS_OK;
}
/******************************************************************/
/* PFC section */
/******************************************************************/
static void elink_update_pfc_xmac(struct elink_params *params,
struct elink_vars *vars,
uint8_t is_lb)
{
struct bxe_softc *sc = params->sc;
uint32_t xmac_base;
uint32_t pause_val, pfc0_val, pfc1_val;
/* XMAC base adrr */
xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
/* Initialize pause and pfc registers */
pause_val = 0x18000;
pfc0_val = 0xFFFF8000;
pfc1_val = 0x2;
/* No PFC support */
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED)) {
/* RX flow control - Process pause frame in receive direction
*/
if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX)
pause_val |= XMAC_PAUSE_CTRL_REG_RX_PAUSE_EN;
/* TX flow control - Send pause packet when buffer is full */
if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)
pause_val |= XMAC_PAUSE_CTRL_REG_TX_PAUSE_EN;
} else {/* PFC support */
pfc1_val |= XMAC_PFC_CTRL_HI_REG_PFC_REFRESH_EN |
XMAC_PFC_CTRL_HI_REG_PFC_STATS_EN |
XMAC_PFC_CTRL_HI_REG_RX_PFC_EN |
XMAC_PFC_CTRL_HI_REG_TX_PFC_EN |
XMAC_PFC_CTRL_HI_REG_FORCE_PFC_XON;
/* Write pause and PFC registers */
REG_WR(sc, xmac_base + XMAC_REG_PAUSE_CTRL, pause_val);
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL, pfc0_val);
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, pfc1_val);
pfc1_val &= ~XMAC_PFC_CTRL_HI_REG_FORCE_PFC_XON;
}
/* Write pause and PFC registers */
REG_WR(sc, xmac_base + XMAC_REG_PAUSE_CTRL, pause_val);
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL, pfc0_val);
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, pfc1_val);
/* Set MAC address for source TX Pause/PFC frames */
REG_WR(sc, xmac_base + XMAC_REG_CTRL_SA_LO,
((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
(params->mac_addr[5])));
REG_WR(sc, xmac_base + XMAC_REG_CTRL_SA_HI,
((params->mac_addr[0] << 8) |
(params->mac_addr[1])));
DELAY(30);
}
static void elink_emac_get_pfc_stat(struct elink_params *params,
uint32_t pfc_frames_sent[2],
uint32_t pfc_frames_received[2])
{
/* Read pfc statistic */
struct bxe_softc *sc = params->sc;
uint32_t emac_base = params->port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
uint32_t val_xon = 0;
uint32_t val_xoff = 0;
ELINK_DEBUG_P0(sc, "pfc statistic read from EMAC\n");
/* PFC received frames */
val_xoff = REG_RD(sc, emac_base +
EMAC_REG_RX_PFC_STATS_XOFF_RCVD);
val_xoff &= EMAC_REG_RX_PFC_STATS_XOFF_RCVD_COUNT;
val_xon = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XON_RCVD);
val_xon &= EMAC_REG_RX_PFC_STATS_XON_RCVD_COUNT;
pfc_frames_received[0] = val_xon + val_xoff;
/* PFC received sent */
val_xoff = REG_RD(sc, emac_base +
EMAC_REG_RX_PFC_STATS_XOFF_SENT);
val_xoff &= EMAC_REG_RX_PFC_STATS_XOFF_SENT_COUNT;
val_xon = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XON_SENT);
val_xon &= EMAC_REG_RX_PFC_STATS_XON_SENT_COUNT;
pfc_frames_sent[0] = val_xon + val_xoff;
}
/* Read pfc statistic*/
void elink_pfc_statistic(struct elink_params *params, struct elink_vars *vars,
uint32_t pfc_frames_sent[2],
uint32_t pfc_frames_received[2])
{
/* Read pfc statistic */
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "pfc statistic\n");
if (!vars->link_up)
return;
if (vars->mac_type == ELINK_MAC_TYPE_EMAC) {
ELINK_DEBUG_P0(sc, "About to read PFC stats from EMAC\n");
elink_emac_get_pfc_stat(params, pfc_frames_sent,
pfc_frames_received);
}
}
/******************************************************************/
/* MAC/PBF section */
/******************************************************************/
static void elink_set_mdio_clk(struct bxe_softc *sc, uint32_t chip_id,
uint32_t emac_base)
{
uint32_t new_mode, cur_mode;
uint32_t clc_cnt;
/* Set clause 45 mode, slow down the MDIO clock to 2.5MHz
* (a value of 49==0x31) and make sure that the AUTO poll is off
*/
cur_mode = REG_RD(sc, emac_base + EMAC_REG_EMAC_MDIO_MODE);
if (USES_WARPCORE(sc))
clc_cnt = 74L << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT;
else
clc_cnt = 49L << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT;
if (((cur_mode & EMAC_MDIO_MODE_CLOCK_CNT) == clc_cnt) &&
(cur_mode & (EMAC_MDIO_MODE_CLAUSE_45)))
return;
new_mode = cur_mode &
~(EMAC_MDIO_MODE_AUTO_POLL | EMAC_MDIO_MODE_CLOCK_CNT);
new_mode |= clc_cnt;
new_mode |= (EMAC_MDIO_MODE_CLAUSE_45);
ELINK_DEBUG_P2(sc, "Changing emac_mode from 0x%x to 0x%x\n",
cur_mode, new_mode);
REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_MODE, new_mode);
DELAY(40);
}
static uint8_t elink_is_4_port_mode(struct bxe_softc *sc)
{
uint32_t port4mode_ovwr_val;
/* Check 4-port override enabled */
port4mode_ovwr_val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
if (port4mode_ovwr_val & (1<<0)) {
/* Return 4-port mode override value */
return ((port4mode_ovwr_val & (1<<1)) == (1<<1));
}
/* Return 4-port mode from input pin */
return (uint8_t)REG_RD(sc, MISC_REG_PORT4MODE_EN);
}
static void elink_set_mdio_emac_per_phy(struct bxe_softc *sc,
struct elink_params *params)
{
uint8_t phy_index;
/* Set mdio clock per phy */
for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys;
phy_index++)
elink_set_mdio_clk(sc, params->chip_id,
params->phy[phy_index].mdio_ctrl);
}
static void elink_emac_init(struct elink_params *params,
struct elink_vars *vars)
{
/* reset and unreset the emac core */
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
uint32_t val;
uint16_t timeout;
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port));
DELAY(5);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port));
/* init emac - use read-modify-write */
/* self clear reset */
val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, (val | EMAC_MODE_RESET));
timeout = 200;
do {
val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE);
ELINK_DEBUG_P1(sc, "EMAC reset reg is %u\n", val);
if (!timeout) {
ELINK_DEBUG_P0(sc, "EMAC timeout!\n");
return;
}
timeout--;
} while (val & EMAC_MODE_RESET);
elink_set_mdio_emac_per_phy(sc, params);
/* Set mac address */
val = ((params->mac_addr[0] << 8) |
params->mac_addr[1]);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MAC_MATCH, val);
val = ((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
params->mac_addr[5]);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MAC_MATCH + 4, val);
}
static void elink_set_xumac_nig(struct elink_params *params,
uint16_t tx_pause_en,
uint8_t enable)
{
struct bxe_softc *sc = params->sc;
REG_WR(sc, params->port ? NIG_REG_P1_MAC_IN_EN : NIG_REG_P0_MAC_IN_EN,
enable);
REG_WR(sc, params->port ? NIG_REG_P1_MAC_OUT_EN : NIG_REG_P0_MAC_OUT_EN,
enable);
REG_WR(sc, params->port ? NIG_REG_P1_MAC_PAUSE_OUT_EN :
NIG_REG_P0_MAC_PAUSE_OUT_EN, tx_pause_en);
}
static void elink_set_umac_rxtx(struct elink_params *params, uint8_t en)
{
uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
uint32_t val;
struct bxe_softc *sc = params->sc;
if (!(REG_RD(sc, MISC_REG_RESET_REG_2) &
(MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port)))
return;
val = REG_RD(sc, umac_base + UMAC_REG_COMMAND_CONFIG);
if (en)
val |= (UMAC_COMMAND_CONFIG_REG_TX_ENA |
UMAC_COMMAND_CONFIG_REG_RX_ENA);
else
val &= ~(UMAC_COMMAND_CONFIG_REG_TX_ENA |
UMAC_COMMAND_CONFIG_REG_RX_ENA);
/* Disable RX and TX */
REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val);
}
static void elink_umac_enable(struct elink_params *params,
struct elink_vars *vars, uint8_t lb)
{
uint32_t val;
uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
struct bxe_softc *sc = params->sc;
/* Reset UMAC */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port));
DELAY(1000 * 1);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port));
ELINK_DEBUG_P0(sc, "enabling UMAC\n");
/* This register opens the gate for the UMAC despite its name */
REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 1);
val = UMAC_COMMAND_CONFIG_REG_PROMIS_EN |
UMAC_COMMAND_CONFIG_REG_PAD_EN |
UMAC_COMMAND_CONFIG_REG_SW_RESET |
UMAC_COMMAND_CONFIG_REG_NO_LGTH_CHECK;
switch (vars->line_speed) {
case ELINK_SPEED_10:
val |= (0<<2);
break;
case ELINK_SPEED_100:
val |= (1<<2);
break;
case ELINK_SPEED_1000:
val |= (2<<2);
break;
case ELINK_SPEED_2500:
val |= (3<<2);
break;
default:
ELINK_DEBUG_P1(sc, "Invalid speed for UMAC %d\n",
vars->line_speed);
break;
}
if (!(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val |= UMAC_COMMAND_CONFIG_REG_IGNORE_TX_PAUSE;
if (!(vars->flow_ctrl & ELINK_FLOW_CTRL_RX))
val |= UMAC_COMMAND_CONFIG_REG_PAUSE_IGNORE;
if (vars->duplex == DUPLEX_HALF)
val |= UMAC_COMMAND_CONFIG_REG_HD_ENA;
REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val);
DELAY(50);
/* Configure UMAC for EEE */
if (vars->eee_status & SHMEM_EEE_ADV_STATUS_MASK) {
ELINK_DEBUG_P0(sc, "configured UMAC for EEE\n");
REG_WR(sc, umac_base + UMAC_REG_UMAC_EEE_CTRL,
UMAC_UMAC_EEE_CTRL_REG_EEE_EN);
REG_WR(sc, umac_base + UMAC_REG_EEE_WAKE_TIMER, 0x11);
} else {
REG_WR(sc, umac_base + UMAC_REG_UMAC_EEE_CTRL, 0x0);
}
/* Set MAC address for source TX Pause/PFC frames (under SW reset) */
REG_WR(sc, umac_base + UMAC_REG_MAC_ADDR0,
((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
(params->mac_addr[5])));
REG_WR(sc, umac_base + UMAC_REG_MAC_ADDR1,
((params->mac_addr[0] << 8) |
(params->mac_addr[1])));
/* Enable RX and TX */
val &= ~UMAC_COMMAND_CONFIG_REG_PAD_EN;
val |= UMAC_COMMAND_CONFIG_REG_TX_ENA |
UMAC_COMMAND_CONFIG_REG_RX_ENA;
REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val);
DELAY(50);
/* Remove SW Reset */
val &= ~UMAC_COMMAND_CONFIG_REG_SW_RESET;
/* Check loopback mode */
if (lb)
val |= UMAC_COMMAND_CONFIG_REG_LOOP_ENA;
REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val);
/* Maximum Frame Length (RW). Defines a 14-Bit maximum frame
* length used by the MAC receive logic to check frames.
*/
REG_WR(sc, umac_base + UMAC_REG_MAXFR, 0x2710);
elink_set_xumac_nig(params,
((vars->flow_ctrl & ELINK_FLOW_CTRL_TX) != 0), 1);
vars->mac_type = ELINK_MAC_TYPE_UMAC;
}
/* Define the XMAC mode */
static void elink_xmac_init(struct elink_params *params, uint32_t max_speed)
{
struct bxe_softc *sc = params->sc;
uint32_t is_port4mode = elink_is_4_port_mode(sc);
/* In 4-port mode, need to set the mode only once, so if XMAC is
* already out of reset, it means the mode has already been set,
* and it must not* reset the XMAC again, since it controls both
* ports of the path
*/
if (((CHIP_NUM(sc) == CHIP_NUM_57840_4_10) ||
(CHIP_NUM(sc) == CHIP_NUM_57840_2_20) ||
(CHIP_NUM(sc) == CHIP_NUM_57840_OBS)) &&
is_port4mode &&
(REG_RD(sc, MISC_REG_RESET_REG_2) &
MISC_REGISTERS_RESET_REG_2_XMAC)) {
ELINK_DEBUG_P0(sc,
"XMAC already out of reset in 4-port mode\n");
return;
}
/* Hard reset */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
MISC_REGISTERS_RESET_REG_2_XMAC);
DELAY(1000 * 1);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
MISC_REGISTERS_RESET_REG_2_XMAC);
if (is_port4mode) {
ELINK_DEBUG_P0(sc, "Init XMAC to 2 ports x 10G per path\n");
/* Set the number of ports on the system side to up to 2 */
REG_WR(sc, MISC_REG_XMAC_CORE_PORT_MODE, 1);
/* Set the number of ports on the Warp Core to 10G */
REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 3);
} else {
/* Set the number of ports on the system side to 1 */
REG_WR(sc, MISC_REG_XMAC_CORE_PORT_MODE, 0);
if (max_speed == ELINK_SPEED_10000) {
ELINK_DEBUG_P0(sc,
"Init XMAC to 10G x 1 port per path\n");
/* Set the number of ports on the Warp Core to 10G */
REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 3);
} else {
ELINK_DEBUG_P0(sc,
"Init XMAC to 20G x 2 ports per path\n");
/* Set the number of ports on the Warp Core to 20G */
REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 1);
}
}
/* Soft reset */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT);
DELAY(1000 * 1);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT);
}
static void elink_set_xmac_rxtx(struct elink_params *params, uint8_t en)
{
uint8_t port = params->port;
struct bxe_softc *sc = params->sc;
uint32_t pfc_ctrl, xmac_base = (port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
uint32_t val;
if (REG_RD(sc, MISC_REG_RESET_REG_2) &
MISC_REGISTERS_RESET_REG_2_XMAC) {
/* Send an indication to change the state in the NIG back to XON
* Clearing this bit enables the next set of this bit to get
* rising edge
*/
pfc_ctrl = REG_RD(sc, xmac_base + XMAC_REG_PFC_CTRL_HI);
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI,
(pfc_ctrl & ~(1<<1)));
REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI,
(pfc_ctrl | (1<<1)));
ELINK_DEBUG_P1(sc, "Disable XMAC on port %x\n", port);
val = REG_RD(sc, xmac_base + XMAC_REG_CTRL);
if (en)
val |= (XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN);
else
val &= ~(XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN);
REG_WR(sc, xmac_base + XMAC_REG_CTRL, val);
}
}
static elink_status_t elink_xmac_enable(struct elink_params *params,
struct elink_vars *vars, uint8_t lb)
{
uint32_t val, xmac_base;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "enabling XMAC\n");
xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
elink_xmac_init(params, vars->line_speed);
/* This register determines on which events the MAC will assert
* error on the i/f to the NIG along w/ EOP.
*/
/* This register tells the NIG whether to send traffic to UMAC
* or XMAC
*/
REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 0);
/* When XMAC is in XLGMII mode, disable sending idles for fault
* detection.
*/
if (!(params->phy[ELINK_INT_PHY].flags & ELINK_FLAGS_TX_ERROR_CHECK)) {
REG_WR(sc, xmac_base + XMAC_REG_RX_LSS_CTRL,
(XMAC_RX_LSS_CTRL_REG_LOCAL_FAULT_DISABLE |
XMAC_RX_LSS_CTRL_REG_REMOTE_FAULT_DISABLE));
REG_WR(sc, xmac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, 0);
REG_WR(sc, xmac_base + XMAC_REG_CLEAR_RX_LSS_STATUS,
XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_LOCAL_FAULT_STATUS |
XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_REMOTE_FAULT_STATUS);
}
/* Set Max packet size */
REG_WR(sc, xmac_base + XMAC_REG_RX_MAX_SIZE, 0x2710);
/* CRC append for Tx packets */
REG_WR(sc, xmac_base + XMAC_REG_TX_CTRL, 0xC800);
/* update PFC */
elink_update_pfc_xmac(params, vars, 0);
if (vars->eee_status & SHMEM_EEE_ADV_STATUS_MASK) {
ELINK_DEBUG_P0(sc, "Setting XMAC for EEE\n");
REG_WR(sc, xmac_base + XMAC_REG_EEE_TIMERS_HI, 0x1380008);
REG_WR(sc, xmac_base + XMAC_REG_EEE_CTRL, 0x1);
} else {
REG_WR(sc, xmac_base + XMAC_REG_EEE_CTRL, 0x0);
}
/* Enable TX and RX */
val = XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN;
/* Set MAC in XLGMII mode for dual-mode */
if ((vars->line_speed == ELINK_SPEED_20000) &&
(params->phy[ELINK_INT_PHY].supported &
ELINK_SUPPORTED_20000baseKR2_Full))
val |= XMAC_CTRL_REG_XLGMII_ALIGN_ENB;
/* Check loopback mode */
if (lb)
val |= XMAC_CTRL_REG_LINE_LOCAL_LPBK;
REG_WR(sc, xmac_base + XMAC_REG_CTRL, val);
elink_set_xumac_nig(params,
((vars->flow_ctrl & ELINK_FLOW_CTRL_TX) != 0), 1);
vars->mac_type = ELINK_MAC_TYPE_XMAC;
return ELINK_STATUS_OK;
}
static elink_status_t elink_emac_enable(struct elink_params *params,
struct elink_vars *vars, uint8_t lb)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
uint32_t val;
ELINK_DEBUG_P0(sc, "enabling EMAC\n");
/* Disable BMAC */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
/* enable emac and not bmac */
REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + port*4, 1);
#ifdef ELINK_INCLUDE_EMUL
/* for paladium */
if (CHIP_REV_IS_EMUL(sc)) {
/* Use lane 1 (of lanes 0-3) */
REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1);
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
}
/* for fpga */
else
#endif
#ifdef ELINK_INCLUDE_FPGA
if (CHIP_REV_IS_FPGA(sc)) {
/* Use lane 1 (of lanes 0-3) */
ELINK_DEBUG_P0(sc, "elink_emac_enable: Setting FPGA\n");
REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1);
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0);
} else
#endif
/* ASIC */
if (vars->phy_flags & PHY_XGXS_FLAG) {
uint32_t ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
ELINK_DEBUG_P0(sc, "XGXS\n");
/* select the master lanes (out of 0-3) */
REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, ser_lane);
/* select XGXS */
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
} else { /* SerDes */
ELINK_DEBUG_P0(sc, "SerDes\n");
/* select SerDes */
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0);
}
elink_bits_en(sc, emac_base + EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_RESET);
elink_bits_en(sc, emac_base + EMAC_REG_EMAC_TX_MODE,
EMAC_TX_MODE_RESET);
#if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA)
if (CHIP_REV_IS_SLOW(sc)) {
/* config GMII mode */
val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, (val | EMAC_MODE_PORT_GMII));
} else { /* ASIC */
#endif
/* pause enable/disable */
elink_bits_dis(sc, emac_base + EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_FLOW_EN);
elink_bits_dis(sc, emac_base + EMAC_REG_EMAC_TX_MODE,
(EMAC_TX_MODE_EXT_PAUSE_EN |
EMAC_TX_MODE_FLOW_EN));
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED)) {
if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX)
elink_bits_en(sc, emac_base +
EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_FLOW_EN);
if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)
elink_bits_en(sc, emac_base +
EMAC_REG_EMAC_TX_MODE,
(EMAC_TX_MODE_EXT_PAUSE_EN |
EMAC_TX_MODE_FLOW_EN));
} else
elink_bits_en(sc, emac_base + EMAC_REG_EMAC_TX_MODE,
EMAC_TX_MODE_FLOW_EN);
#if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA)
}
#endif
/* KEEP_VLAN_TAG, promiscuous */
val = REG_RD(sc, emac_base + EMAC_REG_EMAC_RX_MODE);
val |= EMAC_RX_MODE_KEEP_VLAN_TAG | EMAC_RX_MODE_PROMISCUOUS;
/* Setting this bit causes MAC control frames (except for pause
* frames) to be passed on for processing. This setting has no
* affect on the operation of the pause frames. This bit effects
* all packets regardless of RX Parser packet sorting logic.
* Turn the PFC off to make sure we are in Xon state before
* enabling it.
*/
elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_MODE, 0);
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) {
ELINK_DEBUG_P0(sc, "PFC is enabled\n");
/* Enable PFC again */
elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_MODE,
EMAC_REG_RX_PFC_MODE_RX_EN |
EMAC_REG_RX_PFC_MODE_TX_EN |
EMAC_REG_RX_PFC_MODE_PRIORITIES);
elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_PARAM,
((0x0101 <<
EMAC_REG_RX_PFC_PARAM_OPCODE_BITSHIFT) |
(0x00ff <<
EMAC_REG_RX_PFC_PARAM_PRIORITY_EN_BITSHIFT)));
val |= EMAC_RX_MODE_KEEP_MAC_CONTROL;
}
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_RX_MODE, val);
/* Set Loopback */
val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE);
if (lb)
val |= 0x810;
else
val &= ~0x810;
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, val);
/* Enable emac */
REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 1);
/* Enable emac for jumbo packets */
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_RX_MTU_SIZE,
(EMAC_RX_MTU_SIZE_JUMBO_ENA |
(ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD)));
/* Strip CRC */
REG_WR(sc, NIG_REG_NIG_INGRESS_EMAC0_NO_CRC + port*4, 0x1);
/* Disable the NIG in/out to the bmac */
REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0x0);
REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, 0x0);
REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0x0);
/* Enable the NIG in/out to the emac */
REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0x1);
val = 0;
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED) ||
(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val = 1;
REG_WR(sc, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, val);
REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x1);
#ifdef ELINK_INCLUDE_EMUL
if (CHIP_REV_IS_EMUL(sc)) {
/* Take the BigMac out of reset */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
/* Enable access for bmac registers */
REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1);
} else
#endif
REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x0);
vars->mac_type = ELINK_MAC_TYPE_EMAC;
return ELINK_STATUS_OK;
}
static void elink_update_pfc_bmac1(struct elink_params *params,
struct elink_vars *vars)
{
uint32_t wb_data[2];
struct bxe_softc *sc = params->sc;
uint32_t bmac_addr = params->port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
uint32_t val = 0x14;
if ((!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED)) &&
(vars->flow_ctrl & ELINK_FLOW_CTRL_RX))
/* Enable BigMAC to react on received Pause packets */
val |= (1<<5);
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_CONTROL, wb_data, 2);
/* TX control */
val = 0xc0;
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED) &&
(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val |= 0x800000;
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_CONTROL, wb_data, 2);
}
static void elink_update_pfc_bmac2(struct elink_params *params,
struct elink_vars *vars,
uint8_t is_lb)
{
/* Set rx control: Strip CRC and enable BigMAC to relay
* control packets to the system as well
*/
uint32_t wb_data[2];
struct bxe_softc *sc = params->sc;
uint32_t bmac_addr = params->port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
uint32_t val = 0x14;
if ((!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED)) &&
(vars->flow_ctrl & ELINK_FLOW_CTRL_RX))
/* Enable BigMAC to react on received Pause packets */
val |= (1<<5);
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_CONTROL, wb_data, 2);
DELAY(30);
/* Tx control */
val = 0xc0;
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED) &&
(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val |= 0x800000;
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_CONTROL, wb_data, 2);
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) {
ELINK_DEBUG_P0(sc, "PFC is enabled\n");
/* Enable PFC RX & TX & STATS and set 8 COS */
wb_data[0] = 0x0;
wb_data[0] |= (1<<0); /* RX */
wb_data[0] |= (1<<1); /* TX */
wb_data[0] |= (1<<2); /* Force initial Xon */
wb_data[0] |= (1<<3); /* 8 cos */
wb_data[0] |= (1<<5); /* STATS */
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_PFC_CONTROL,
wb_data, 2);
/* Clear the force Xon */
wb_data[0] &= ~(1<<2);
} else {
ELINK_DEBUG_P0(sc, "PFC is disabled\n");
/* Disable PFC RX & TX & STATS and set 8 COS */
wb_data[0] = 0x8;
wb_data[1] = 0;
}
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_PFC_CONTROL, wb_data, 2);
/* Set Time (based unit is 512 bit time) between automatic
* re-sending of PP packets amd enable automatic re-send of
* Per-Priroity Packet as long as pp_gen is asserted and
* pp_disable is low.
*/
val = 0x8000;
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)
val |= (1<<16); /* enable automatic re-send */
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_PAUSE_CONTROL,
wb_data, 2);
/* mac control */
val = 0x3; /* Enable RX and TX */
if (is_lb) {
val |= 0x4; /* Local loopback */
ELINK_DEBUG_P0(sc, "enable bmac loopback\n");
}
/* When PFC enabled, Pass pause frames towards the NIG. */
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)
val |= ((1<<6)|(1<<5));
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_CONTROL, wb_data, 2);
}
/******************************************************************************
* Description:
* This function is needed because NIG ARB_CREDIT_WEIGHT_X are
* not continues and ARB_CREDIT_WEIGHT_0 + offset is suitable.
******************************************************************************/
static elink_status_t elink_pfc_nig_rx_priority_mask(struct bxe_softc *sc,
uint8_t cos_entry,
uint32_t priority_mask, uint8_t port)
{
uint32_t nig_reg_rx_priority_mask_add = 0;
switch (cos_entry) {
case 0:
nig_reg_rx_priority_mask_add = (port) ?
NIG_REG_P1_RX_COS0_PRIORITY_MASK :
NIG_REG_P0_RX_COS0_PRIORITY_MASK;
break;
case 1:
nig_reg_rx_priority_mask_add = (port) ?
NIG_REG_P1_RX_COS1_PRIORITY_MASK :
NIG_REG_P0_RX_COS1_PRIORITY_MASK;
break;
case 2:
nig_reg_rx_priority_mask_add = (port) ?
NIG_REG_P1_RX_COS2_PRIORITY_MASK :
NIG_REG_P0_RX_COS2_PRIORITY_MASK;
break;
case 3:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS3_PRIORITY_MASK;
break;
case 4:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS4_PRIORITY_MASK;
break;
case 5:
if (port)
return ELINK_STATUS_ERROR;
nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS5_PRIORITY_MASK;
break;
}
REG_WR(sc, nig_reg_rx_priority_mask_add, priority_mask);
return ELINK_STATUS_OK;
}
static void elink_update_mng(struct elink_params *params, uint32_t link_status)
{
struct bxe_softc *sc = params->sc;
REG_WR(sc, params->shmem_base +
offsetof(struct shmem_region,
port_mb[params->port].link_status), link_status);
}
static void elink_update_pfc_nig(struct elink_params *params,
struct elink_vars *vars,
struct elink_nig_brb_pfc_port_params *nig_params)
{
uint32_t xcm_mask = 0, ppp_enable = 0, pause_enable = 0, llfc_out_en = 0;
uint32_t llfc_enable = 0, xcm_out_en = 0, hwpfc_enable = 0;
uint32_t pkt_priority_to_cos = 0;
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
int set_pfc = params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED;
ELINK_DEBUG_P0(sc, "updating pfc nig parameters\n");
/* When NIG_LLH0_XCM_MASK_REG_LLHX_XCM_MASK_BCN bit is set
* MAC control frames (that are not pause packets)
* will be forwarded to the XCM.
*/
xcm_mask = REG_RD(sc, port ? NIG_REG_LLH1_XCM_MASK :
NIG_REG_LLH0_XCM_MASK);
/* NIG params will override non PFC params, since it's possible to
* do transition from PFC to SAFC
*/
if (set_pfc) {
pause_enable = 0;
llfc_out_en = 0;
llfc_enable = 0;
if (CHIP_IS_E3(sc))
ppp_enable = 0;
else
ppp_enable = 1;
xcm_mask &= ~(port ? NIG_LLH1_XCM_MASK_REG_LLH1_XCM_MASK_BCN :
NIG_LLH0_XCM_MASK_REG_LLH0_XCM_MASK_BCN);
xcm_out_en = 0;
hwpfc_enable = 1;
} else {
if (nig_params) {
llfc_out_en = nig_params->llfc_out_en;
llfc_enable = nig_params->llfc_enable;
pause_enable = nig_params->pause_enable;
} else /* Default non PFC mode - PAUSE */
pause_enable = 1;
xcm_mask |= (port ? NIG_LLH1_XCM_MASK_REG_LLH1_XCM_MASK_BCN :
NIG_LLH0_XCM_MASK_REG_LLH0_XCM_MASK_BCN);
xcm_out_en = 1;
}
if (CHIP_IS_E3(sc))
REG_WR(sc, port ? NIG_REG_BRB1_PAUSE_IN_EN :
NIG_REG_BRB0_PAUSE_IN_EN, pause_enable);
REG_WR(sc, port ? NIG_REG_LLFC_OUT_EN_1 :
NIG_REG_LLFC_OUT_EN_0, llfc_out_en);
REG_WR(sc, port ? NIG_REG_LLFC_ENABLE_1 :
NIG_REG_LLFC_ENABLE_0, llfc_enable);
REG_WR(sc, port ? NIG_REG_PAUSE_ENABLE_1 :
NIG_REG_PAUSE_ENABLE_0, pause_enable);
REG_WR(sc, port ? NIG_REG_PPP_ENABLE_1 :
NIG_REG_PPP_ENABLE_0, ppp_enable);
REG_WR(sc, port ? NIG_REG_LLH1_XCM_MASK :
NIG_REG_LLH0_XCM_MASK, xcm_mask);
REG_WR(sc, port ? NIG_REG_LLFC_EGRESS_SRC_ENABLE_1 :
NIG_REG_LLFC_EGRESS_SRC_ENABLE_0, 0x7);
/* Output enable for RX_XCM # IF */
REG_WR(sc, port ? NIG_REG_XCM1_OUT_EN :
NIG_REG_XCM0_OUT_EN, xcm_out_en);
/* HW PFC TX enable */
REG_WR(sc, port ? NIG_REG_P1_HWPFC_ENABLE :
NIG_REG_P0_HWPFC_ENABLE, hwpfc_enable);
if (nig_params) {
uint8_t i = 0;
pkt_priority_to_cos = nig_params->pkt_priority_to_cos;
for (i = 0; i < nig_params->num_of_rx_cos_priority_mask; i++)
elink_pfc_nig_rx_priority_mask(sc, i,
nig_params->rx_cos_priority_mask[i], port);
REG_WR(sc, port ? NIG_REG_LLFC_HIGH_PRIORITY_CLASSES_1 :
NIG_REG_LLFC_HIGH_PRIORITY_CLASSES_0,
nig_params->llfc_high_priority_classes);
REG_WR(sc, port ? NIG_REG_LLFC_LOW_PRIORITY_CLASSES_1 :
NIG_REG_LLFC_LOW_PRIORITY_CLASSES_0,
nig_params->llfc_low_priority_classes);
}
REG_WR(sc, port ? NIG_REG_P1_PKT_PRIORITY_TO_COS :
NIG_REG_P0_PKT_PRIORITY_TO_COS,
pkt_priority_to_cos);
}
elink_status_t elink_update_pfc(struct elink_params *params,
struct elink_vars *vars,
struct elink_nig_brb_pfc_port_params *pfc_params)
{
/* The PFC and pause are orthogonal to one another, meaning when
* PFC is enabled, the pause are disabled, and when PFC is
* disabled, pause are set according to the pause result.
*/
uint32_t val;
struct bxe_softc *sc = params->sc;
uint8_t bmac_loopback = (params->loopback_mode == ELINK_LOOPBACK_BMAC);
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)
vars->link_status |= LINK_STATUS_PFC_ENABLED;
else
vars->link_status &= ~LINK_STATUS_PFC_ENABLED;
elink_update_mng(params, vars->link_status);
/* Update NIG params */
elink_update_pfc_nig(params, vars, pfc_params);
if (!vars->link_up)
return ELINK_STATUS_OK;
ELINK_DEBUG_P0(sc, "About to update PFC in BMAC\n");
if (CHIP_IS_E3(sc)) {
if (vars->mac_type == ELINK_MAC_TYPE_XMAC)
elink_update_pfc_xmac(params, vars, 0);
} else {
val = REG_RD(sc, MISC_REG_RESET_REG_2);
if ((val &
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << params->port))
== 0) {
ELINK_DEBUG_P0(sc, "About to update PFC in EMAC\n");
elink_emac_enable(params, vars, 0);
return ELINK_STATUS_OK;
}
if (CHIP_IS_E2(sc))
elink_update_pfc_bmac2(params, vars, bmac_loopback);
else
elink_update_pfc_bmac1(params, vars);
val = 0;
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED) ||
(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val = 1;
REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + params->port*4, val);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_bmac1_enable(struct elink_params *params,
struct elink_vars *vars,
uint8_t is_lb)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
uint32_t wb_data[2];
uint32_t val;
ELINK_DEBUG_P0(sc, "Enabling BigMAC1\n");
/* XGXS control */
wb_data[0] = 0x3c;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_BMAC_XGXS_CONTROL,
wb_data, 2);
/* TX MAC SA */
wb_data[0] = ((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
params->mac_addr[5]);
wb_data[1] = ((params->mac_addr[0] << 8) |
params->mac_addr[1]);
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_SOURCE_ADDR, wb_data, 2);
/* MAC control */
val = 0x3;
if (is_lb) {
val |= 0x4;
ELINK_DEBUG_P0(sc, "enable bmac loopback\n");
}
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_BMAC_CONTROL, wb_data, 2);
/* Set rx mtu */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_MAX_SIZE, wb_data, 2);
elink_update_pfc_bmac1(params, vars);
/* Set tx mtu */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_MAX_SIZE, wb_data, 2);
/* Set cnt max size */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_CNT_MAX_SIZE, wb_data, 2);
/* Configure SAFC */
wb_data[0] = 0x1000200;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_LLFC_MSG_FLDS,
wb_data, 2);
#ifdef ELINK_INCLUDE_EMUL
/* Fix for emulation */
if (CHIP_REV_IS_EMUL(sc)) {
wb_data[0] = 0xf000;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_PAUSE_THRESHOLD,
wb_data, 2);
}
#endif
return ELINK_STATUS_OK;
}
static elink_status_t elink_bmac2_enable(struct elink_params *params,
struct elink_vars *vars,
uint8_t is_lb)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
uint32_t wb_data[2];
ELINK_DEBUG_P0(sc, "Enabling BigMAC2\n");
wb_data[0] = 0;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_CONTROL, wb_data, 2);
DELAY(30);
/* XGXS control: Reset phy HW, MDIO registers, PHY PLL and BMAC */
wb_data[0] = 0x3c;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_XGXS_CONTROL,
wb_data, 2);
DELAY(30);
/* TX MAC SA */
wb_data[0] = ((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
params->mac_addr[5]);
wb_data[1] = ((params->mac_addr[0] << 8) |
params->mac_addr[1]);
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_SOURCE_ADDR,
wb_data, 2);
DELAY(30);
/* Configure SAFC */
wb_data[0] = 0x1000200;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_LLFC_MSG_FLDS,
wb_data, 2);
DELAY(30);
/* Set RX MTU */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_MAX_SIZE, wb_data, 2);
DELAY(30);
/* Set TX MTU */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_MAX_SIZE, wb_data, 2);
DELAY(30);
/* Set cnt max size */
wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD - 2;
wb_data[1] = 0;
REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_CNT_MAX_SIZE, wb_data, 2);
DELAY(30);
elink_update_pfc_bmac2(params, vars, is_lb);
return ELINK_STATUS_OK;
}
static elink_status_t elink_bmac_enable(struct elink_params *params,
struct elink_vars *vars,
uint8_t is_lb, uint8_t reset_bmac)
{
elink_status_t rc = ELINK_STATUS_OK;
uint8_t port = params->port;
struct bxe_softc *sc = params->sc;
uint32_t val;
/* Reset and unreset the BigMac */
if (reset_bmac) {
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
DELAY(1000 * 1);
}
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
/* Enable access for bmac registers */
REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1);
/* Enable BMAC according to BMAC type*/
if (CHIP_IS_E2(sc))
rc = elink_bmac2_enable(params, vars, is_lb);
else
rc = elink_bmac1_enable(params, vars, is_lb);
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0x1);
REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 0x0);
REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + port*4, 0x0);
val = 0;
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_PFC_ENABLED) ||
(vars->flow_ctrl & ELINK_FLOW_CTRL_TX))
val = 1;
REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, val);
REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x0);
REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0x0);
REG_WR(sc, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, 0x0);
REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0x1);
REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0x1);
vars->mac_type = ELINK_MAC_TYPE_BMAC;
return rc;
}
static void elink_set_bmac_rx(struct bxe_softc *sc, uint32_t chip_id, uint8_t port, uint8_t en)
{
uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
uint32_t wb_data[2];
uint32_t nig_bmac_enable = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4);
if (CHIP_IS_E2(sc))
bmac_addr += BIGMAC2_REGISTER_BMAC_CONTROL;
else
bmac_addr += BIGMAC_REGISTER_BMAC_CONTROL;
/* Only if the bmac is out of reset */
if (REG_RD(sc, MISC_REG_RESET_REG_2) &
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port) &&
nig_bmac_enable) {
/* Clear Rx Enable bit in BMAC_CONTROL register */
REG_RD_DMAE(sc, bmac_addr, wb_data, 2);
if (en)
wb_data[0] |= ELINK_BMAC_CONTROL_RX_ENABLE;
else
wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
REG_WR_DMAE(sc, bmac_addr, wb_data, 2);
DELAY(1000 * 1);
}
}
static elink_status_t elink_pbf_update(struct elink_params *params, uint32_t flow_ctrl,
uint32_t line_speed)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t init_crd, crd;
uint32_t count = 1000;
/* Disable port */
REG_WR(sc, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x1);
/* Wait for init credit */
init_crd = REG_RD(sc, PBF_REG_P0_INIT_CRD + port*4);
crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8);
ELINK_DEBUG_P2(sc, "init_crd 0x%x crd 0x%x\n", init_crd, crd);
while ((init_crd != crd) && count) {
DELAY(1000 * 5);
crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8);
count--;
}
crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8);
if (init_crd != crd) {
ELINK_DEBUG_P2(sc, "BUG! init_crd 0x%x != crd 0x%x\n",
init_crd, crd);
return ELINK_STATUS_ERROR;
}
if (flow_ctrl & ELINK_FLOW_CTRL_RX ||
line_speed == ELINK_SPEED_10 ||
line_speed == ELINK_SPEED_100 ||
line_speed == ELINK_SPEED_1000 ||
line_speed == ELINK_SPEED_2500) {
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 1);
/* Update threshold */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, 0);
/* Update init credit */
init_crd = 778; /* (800-18-4) */
} else {
uint32_t thresh = (ELINK_ETH_MAX_JUMBO_PACKET_SIZE +
ELINK_ETH_OVREHEAD)/16;
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* Update threshold */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, thresh);
/* Update init credit */
switch (line_speed) {
case ELINK_SPEED_10000:
init_crd = thresh + 553 - 22;
break;
default:
ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n",
line_speed);
return ELINK_STATUS_ERROR;
}
}
REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, init_crd);
ELINK_DEBUG_P2(sc, "PBF updated to speed %d credit %d\n",
line_speed, init_crd);
/* Probe the credit changes */
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0x1);
DELAY(1000 * 5);
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0x0);
/* Enable port */
REG_WR(sc, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x0);
return ELINK_STATUS_OK;
}
/**
* elink_get_emac_base - retrive emac base address
*
* @bp: driver handle
* @mdc_mdio_access: access type
* @port: port id
*
* This function selects the MDC/MDIO access (through emac0 or
* emac1) depend on the mdc_mdio_access, port, port swapped. Each
* phy has a default access mode, which could also be overridden
* by nvram configuration. This parameter, whether this is the
* default phy configuration, or the nvram overrun
* configuration, is passed here as mdc_mdio_access and selects
* the emac_base for the CL45 read/writes operations
*/
static uint32_t elink_get_emac_base(struct bxe_softc *sc,
uint32_t mdc_mdio_access, uint8_t port)
{
uint32_t emac_base = 0;
switch (mdc_mdio_access) {
case SHARED_HW_CFG_MDC_MDIO_ACCESS1_PHY_TYPE:
break;
case SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC0:
if (REG_RD(sc, NIG_REG_PORT_SWAP))
emac_base = GRCBASE_EMAC1;
else
emac_base = GRCBASE_EMAC0;
break;
case SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1:
if (REG_RD(sc, NIG_REG_PORT_SWAP))
emac_base = GRCBASE_EMAC0;
else
emac_base = GRCBASE_EMAC1;
break;
case SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH:
emac_base = (port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
break;
case SHARED_HW_CFG_MDC_MDIO_ACCESS1_SWAPPED:
emac_base = (port) ? GRCBASE_EMAC0 : GRCBASE_EMAC1;
break;
default:
break;
}
return emac_base;
}
/******************************************************************/
/* CL22 access functions */
/******************************************************************/
static elink_status_t elink_cl22_write(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t reg, uint16_t val)
{
uint32_t tmp, mode;
uint8_t i;
elink_status_t rc = ELINK_STATUS_OK;
/* Switch to CL22 */
mode = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE,
mode & ~EMAC_MDIO_MODE_CLAUSE_45);
/* Address */
tmp = ((phy->addr << 21) | (reg << 16) | val |
EMAC_MDIO_COMM_COMMAND_WRITE_22 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp);
for (i = 0; i < 50; i++) {
DELAY(10);
tmp = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (tmp & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "write phy register failed\n");
rc = ELINK_STATUS_TIMEOUT;
}
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode);
return rc;
}
static elink_status_t elink_cl22_read(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t reg, uint16_t *ret_val)
{
uint32_t val, mode;
uint16_t i;
elink_status_t rc = ELINK_STATUS_OK;
/* Switch to CL22 */
mode = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE,
mode & ~EMAC_MDIO_MODE_CLAUSE_45);
/* Address */
val = ((phy->addr << 21) | (reg << 16) |
EMAC_MDIO_COMM_COMMAND_READ_22 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val);
for (i = 0; i < 50; i++) {
DELAY(10);
val = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(val & EMAC_MDIO_COMM_START_BUSY)) {
*ret_val = (uint16_t)(val & EMAC_MDIO_COMM_DATA);
DELAY(5);
break;
}
}
if (val & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "read phy register failed\n");
*ret_val = 0;
rc = ELINK_STATUS_TIMEOUT;
}
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode);
return rc;
}
/******************************************************************/
/* CL45 access functions */
/******************************************************************/
static elink_status_t elink_cl45_read(struct bxe_softc *sc, struct elink_phy *phy,
uint8_t devad, uint16_t reg, uint16_t *ret_val)
{
uint32_t val;
uint16_t i;
elink_status_t rc = ELINK_STATUS_OK;
uint32_t chip_id;
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_G) {
chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12);
elink_set_mdio_clk(sc, chip_id, phy->mdio_ctrl);
}
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0)
elink_bits_en(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS,
EMAC_MDIO_STATUS_10MB);
/* Address */
val = ((phy->addr << 21) | (devad << 16) | reg |
EMAC_MDIO_COMM_COMMAND_ADDRESS |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val);
for (i = 0; i < 50; i++) {
DELAY(10);
val = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(val & EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (val & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "read phy register failed\n");
elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n"
*ret_val = 0;
rc = ELINK_STATUS_TIMEOUT;
} else {
/* Data */
val = ((phy->addr << 21) | (devad << 16) |
EMAC_MDIO_COMM_COMMAND_READ_45 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val);
for (i = 0; i < 50; i++) {
DELAY(10);
val = REG_RD(sc, phy->mdio_ctrl +
EMAC_REG_EMAC_MDIO_COMM);
if (!(val & EMAC_MDIO_COMM_START_BUSY)) {
*ret_val = (uint16_t)(val & EMAC_MDIO_COMM_DATA);
break;
}
}
if (val & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "read phy register failed\n");
elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n"
*ret_val = 0;
rc = ELINK_STATUS_TIMEOUT;
}
}
/* Work around for E3 A0 */
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA) {
phy->flags ^= ELINK_FLAGS_DUMMY_READ;
if (phy->flags & ELINK_FLAGS_DUMMY_READ) {
uint16_t temp_val;
elink_cl45_read(sc, phy, devad, 0xf, &temp_val);
}
}
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0)
elink_bits_dis(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS,
EMAC_MDIO_STATUS_10MB);
return rc;
}
static elink_status_t elink_cl45_write(struct bxe_softc *sc, struct elink_phy *phy,
uint8_t devad, uint16_t reg, uint16_t val)
{
uint32_t tmp;
uint8_t i;
elink_status_t rc = ELINK_STATUS_OK;
uint32_t chip_id;
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_G) {
chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12);
elink_set_mdio_clk(sc, chip_id, phy->mdio_ctrl);
}
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0)
elink_bits_en(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS,
EMAC_MDIO_STATUS_10MB);
/* Address */
tmp = ((phy->addr << 21) | (devad << 16) | reg |
EMAC_MDIO_COMM_COMMAND_ADDRESS |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp);
for (i = 0; i < 50; i++) {
DELAY(10);
tmp = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (tmp & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "write phy register failed\n");
elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n"
rc = ELINK_STATUS_TIMEOUT;
} else {
/* Data */
tmp = ((phy->addr << 21) | (devad << 16) | val |
EMAC_MDIO_COMM_COMMAND_WRITE_45 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp);
for (i = 0; i < 50; i++) {
DELAY(10);
tmp = REG_RD(sc, phy->mdio_ctrl +
EMAC_REG_EMAC_MDIO_COMM);
if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (tmp & EMAC_MDIO_COMM_START_BUSY) {
ELINK_DEBUG_P0(sc, "write phy register failed\n");
elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n"
rc = ELINK_STATUS_TIMEOUT;
}
}
/* Work around for E3 A0 */
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA) {
phy->flags ^= ELINK_FLAGS_DUMMY_READ;
if (phy->flags & ELINK_FLAGS_DUMMY_READ) {
uint16_t temp_val;
elink_cl45_read(sc, phy, devad, 0xf, &temp_val);
}
}
if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0)
elink_bits_dis(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS,
EMAC_MDIO_STATUS_10MB);
return rc;
}
/******************************************************************/
/* EEE section */
/******************************************************************/
static uint8_t elink_eee_has_cap(struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
if (REG_RD(sc, params->shmem2_base) <=
offsetof(struct shmem2_region, eee_status[params->port]))
return 0;
return 1;
}
static elink_status_t elink_eee_nvram_to_time(uint32_t nvram_mode, uint32_t *idle_timer)
{
switch (nvram_mode) {
case PORT_FEAT_CFG_EEE_POWER_MODE_BALANCED:
*idle_timer = ELINK_EEE_MODE_NVRAM_BALANCED_TIME;
break;
case PORT_FEAT_CFG_EEE_POWER_MODE_AGGRESSIVE:
*idle_timer = ELINK_EEE_MODE_NVRAM_AGGRESSIVE_TIME;
break;
case PORT_FEAT_CFG_EEE_POWER_MODE_LOW_LATENCY:
*idle_timer = ELINK_EEE_MODE_NVRAM_LATENCY_TIME;
break;
default:
*idle_timer = 0;
break;
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_eee_time_to_nvram(uint32_t idle_timer, uint32_t *nvram_mode)
{
switch (idle_timer) {
case ELINK_EEE_MODE_NVRAM_BALANCED_TIME:
*nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_BALANCED;
break;
case ELINK_EEE_MODE_NVRAM_AGGRESSIVE_TIME:
*nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_AGGRESSIVE;
break;
case ELINK_EEE_MODE_NVRAM_LATENCY_TIME:
*nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_LOW_LATENCY;
break;
default:
*nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED;
break;
}
return ELINK_STATUS_OK;
}
static uint32_t elink_eee_calc_timer(struct elink_params *params)
{
uint32_t eee_mode, eee_idle;
struct bxe_softc *sc = params->sc;
if (params->eee_mode & ELINK_EEE_MODE_OVERRIDE_NVRAM) {
if (params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME) {
/* time value in eee_mode --> used directly*/
eee_idle = params->eee_mode & ELINK_EEE_MODE_TIMER_MASK;
} else {
/* hsi value in eee_mode --> time */
if (elink_eee_nvram_to_time(params->eee_mode &
ELINK_EEE_MODE_NVRAM_MASK,
&eee_idle))
return 0;
}
} else {
/* hsi values in nvram --> time*/
eee_mode = ((REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].
eee_power_mode)) &
PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
if (elink_eee_nvram_to_time(eee_mode, &eee_idle))
return 0;
}
return eee_idle;
}
static elink_status_t elink_eee_set_timers(struct elink_params *params,
struct elink_vars *vars)
{
uint32_t eee_idle = 0, eee_mode;
struct bxe_softc *sc = params->sc;
eee_idle = elink_eee_calc_timer(params);
if (eee_idle) {
REG_WR(sc, MISC_REG_CPMU_LP_IDLE_THR_P0 + (params->port << 2),
eee_idle);
} else if ((params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI) &&
(params->eee_mode & ELINK_EEE_MODE_OVERRIDE_NVRAM) &&
(params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME)) {
ELINK_DEBUG_P0(sc, "Error: Tx LPI is enabled with timer 0\n");
return ELINK_STATUS_ERROR;
}
vars->eee_status &= ~(SHMEM_EEE_TIMER_MASK | SHMEM_EEE_TIME_OUTPUT_BIT);
if (params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME) {
/* eee_idle in 1u --> eee_status in 16u */
eee_idle >>= 4;
vars->eee_status |= (eee_idle & SHMEM_EEE_TIMER_MASK) |
SHMEM_EEE_TIME_OUTPUT_BIT;
} else {
if (elink_eee_time_to_nvram(eee_idle, &eee_mode))
return ELINK_STATUS_ERROR;
vars->eee_status |= eee_mode;
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_eee_initial_config(struct elink_params *params,
struct elink_vars *vars, uint8_t mode)
{
vars->eee_status |= ((uint32_t) mode) << SHMEM_EEE_SUPPORTED_SHIFT;
/* Propagate params' bits --> vars (for migration exposure) */
if (params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI)
vars->eee_status |= SHMEM_EEE_LPI_REQUESTED_BIT;
else
vars->eee_status &= ~SHMEM_EEE_LPI_REQUESTED_BIT;
if (params->eee_mode & ELINK_EEE_MODE_ADV_LPI)
vars->eee_status |= SHMEM_EEE_REQUESTED_BIT;
else
vars->eee_status &= ~SHMEM_EEE_REQUESTED_BIT;
return elink_eee_set_timers(params, vars);
}
static elink_status_t elink_eee_disable(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
/* Make Certain LPI is disabled */
REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 + (params->port << 2), 0);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, 0x0);
vars->eee_status &= ~SHMEM_EEE_ADV_STATUS_MASK;
return ELINK_STATUS_OK;
}
static elink_status_t elink_eee_advertise(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars, uint8_t modes)
{
struct bxe_softc *sc = params->sc;
uint16_t val = 0;
/* Mask events preventing LPI generation */
REG_WR(sc, MISC_REG_CPMU_LP_MASK_EXT_P0 + (params->port << 2), 0xfc20);
if (modes & SHMEM_EEE_10G_ADV) {
ELINK_DEBUG_P0(sc, "Advertise 10GBase-T EEE\n");
val |= 0x8;
}
if (modes & SHMEM_EEE_1G_ADV) {
ELINK_DEBUG_P0(sc, "Advertise 1GBase-T EEE\n");
val |= 0x4;
}
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, val);
vars->eee_status &= ~SHMEM_EEE_ADV_STATUS_MASK;
vars->eee_status |= (modes << SHMEM_EEE_ADV_STATUS_SHIFT);
return ELINK_STATUS_OK;
}
static void elink_update_mng_eee(struct elink_params *params, uint32_t eee_status)
{
struct bxe_softc *sc = params->sc;
if (elink_eee_has_cap(params))
REG_WR(sc, params->shmem2_base +
offsetof(struct shmem2_region,
eee_status[params->port]), eee_status);
}
static void elink_eee_an_resolve(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t adv = 0, lp = 0;
uint32_t lp_adv = 0;
uint8_t neg = 0;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, &adv);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_EEE_ADV, &lp);
if (lp & 0x2) {
lp_adv |= SHMEM_EEE_100M_ADV;
if (adv & 0x2) {
if (vars->line_speed == ELINK_SPEED_100)
neg = 1;
ELINK_DEBUG_P0(sc, "EEE negotiated - 100M\n");
}
}
if (lp & 0x14) {
lp_adv |= SHMEM_EEE_1G_ADV;
if (adv & 0x14) {
if (vars->line_speed == ELINK_SPEED_1000)
neg = 1;
ELINK_DEBUG_P0(sc, "EEE negotiated - 1G\n");
}
}
if (lp & 0x68) {
lp_adv |= SHMEM_EEE_10G_ADV;
if (adv & 0x68) {
if (vars->line_speed == ELINK_SPEED_10000)
neg = 1;
ELINK_DEBUG_P0(sc, "EEE negotiated - 10G\n");
}
}
vars->eee_status &= ~SHMEM_EEE_LP_ADV_STATUS_MASK;
vars->eee_status |= (lp_adv << SHMEM_EEE_LP_ADV_STATUS_SHIFT);
if (neg) {
ELINK_DEBUG_P0(sc, "EEE is active\n");
vars->eee_status |= SHMEM_EEE_ACTIVE_BIT;
}
}
/******************************************************************/
/* BSC access functions from E3 */
/******************************************************************/
static void elink_bsc_module_sel(struct elink_params *params)
{
int idx;
uint32_t board_cfg, sfp_ctrl;
uint32_t i2c_pins[I2C_SWITCH_WIDTH], i2c_val[I2C_SWITCH_WIDTH];
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
/* Read I2C output PINs */
board_cfg = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.shared_hw_config.board));
i2c_pins[I2C_BSC0] = board_cfg & SHARED_HW_CFG_E3_I2C_MUX0_MASK;
i2c_pins[I2C_BSC1] = (board_cfg & SHARED_HW_CFG_E3_I2C_MUX1_MASK) >>
SHARED_HW_CFG_E3_I2C_MUX1_SHIFT;
/* Read I2C output value */
sfp_ctrl = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_cmn_pin_cfg));
i2c_val[I2C_BSC0] = (sfp_ctrl & PORT_HW_CFG_E3_I2C_MUX0_MASK) > 0;
i2c_val[I2C_BSC1] = (sfp_ctrl & PORT_HW_CFG_E3_I2C_MUX1_MASK) > 0;
ELINK_DEBUG_P0(sc, "Setting BSC switch\n");
for (idx = 0; idx < I2C_SWITCH_WIDTH; idx++)
elink_set_cfg_pin(sc, i2c_pins[idx], i2c_val[idx]);
}
static elink_status_t elink_bsc_read(struct bxe_softc *sc,
uint8_t sl_devid,
uint16_t sl_addr,
uint8_t lc_addr,
uint8_t xfer_cnt,
uint32_t *data_array)
{
uint32_t val, i;
elink_status_t rc = ELINK_STATUS_OK;
if (xfer_cnt > 16) {
ELINK_DEBUG_P1(sc, "invalid xfer_cnt %d. Max is 16 bytes\n",
xfer_cnt);
return ELINK_STATUS_ERROR;
}
xfer_cnt = 16 - lc_addr;
/* Enable the engine */
val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND);
val |= MCPR_IMC_COMMAND_ENABLE;
REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val);
/* Program slave device ID */
val = (sl_devid << 16) | sl_addr;
REG_WR(sc, MCP_REG_MCPR_IMC_SLAVE_CONTROL, val);
/* Start xfer with 0 byte to update the address pointer ???*/
val = (MCPR_IMC_COMMAND_ENABLE) |
(MCPR_IMC_COMMAND_WRITE_OP <<
MCPR_IMC_COMMAND_OPERATION_BITSHIFT) |
(lc_addr << MCPR_IMC_COMMAND_TRANSFER_ADDRESS_BITSHIFT) | (0);
REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val);
/* Poll for completion */
i = 0;
val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND);
while (((val >> MCPR_IMC_COMMAND_IMC_STATUS_BITSHIFT) & 0x3) != 1) {
DELAY(10);
val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND);
if (i++ > 1000) {
ELINK_DEBUG_P1(sc, "wr 0 byte timed out after %d try\n",
i);
rc = ELINK_STATUS_TIMEOUT;
break;
}
}
if (rc == ELINK_STATUS_TIMEOUT)
return rc;
/* Start xfer with read op */
val = (MCPR_IMC_COMMAND_ENABLE) |
(MCPR_IMC_COMMAND_READ_OP <<
MCPR_IMC_COMMAND_OPERATION_BITSHIFT) |
(lc_addr << MCPR_IMC_COMMAND_TRANSFER_ADDRESS_BITSHIFT) |
(xfer_cnt);
REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val);
/* Poll for completion */
i = 0;
val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND);
while (((val >> MCPR_IMC_COMMAND_IMC_STATUS_BITSHIFT) & 0x3) != 1) {
DELAY(10);
val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND);
if (i++ > 1000) {
ELINK_DEBUG_P1(sc, "rd op timed out after %d try\n", i);
rc = ELINK_STATUS_TIMEOUT;
break;
}
}
if (rc == ELINK_STATUS_TIMEOUT)
return rc;
for (i = (lc_addr >> 2); i < 4; i++) {
data_array[i] = REG_RD(sc, (MCP_REG_MCPR_IMC_DATAREG0 + i*4));
#ifdef __BIG_ENDIAN
data_array[i] = ((data_array[i] & 0x000000ff) << 24) |
((data_array[i] & 0x0000ff00) << 8) |
((data_array[i] & 0x00ff0000) >> 8) |
((data_array[i] & 0xff000000) >> 24);
#endif
}
return rc;
}
static void elink_cl45_read_or_write(struct bxe_softc *sc, struct elink_phy *phy,
uint8_t devad, uint16_t reg, uint16_t or_val)
{
uint16_t val;
elink_cl45_read(sc, phy, devad, reg, &val);
elink_cl45_write(sc, phy, devad, reg, val | or_val);
}
static void elink_cl45_read_and_write(struct bxe_softc *sc,
struct elink_phy *phy,
uint8_t devad, uint16_t reg, uint16_t and_val)
{
uint16_t val;
elink_cl45_read(sc, phy, devad, reg, &val);
elink_cl45_write(sc, phy, devad, reg, val & and_val);
}
elink_status_t elink_phy_read(struct elink_params *params, uint8_t phy_addr,
uint8_t devad, uint16_t reg, uint16_t *ret_val)
{
uint8_t phy_index;
/* Probe for the phy according to the given phy_addr, and execute
* the read request on it
*/
for (phy_index = 0; phy_index < params->num_phys; phy_index++) {
if (params->phy[phy_index].addr == phy_addr) {
return elink_cl45_read(params->sc,
&params->phy[phy_index], devad,
reg, ret_val);
}
}
return ELINK_STATUS_ERROR;
}
elink_status_t elink_phy_write(struct elink_params *params, uint8_t phy_addr,
uint8_t devad, uint16_t reg, uint16_t val)
{
uint8_t phy_index;
/* Probe for the phy according to the given phy_addr, and execute
* the write request on it
*/
for (phy_index = 0; phy_index < params->num_phys; phy_index++) {
if (params->phy[phy_index].addr == phy_addr) {
return elink_cl45_write(params->sc,
&params->phy[phy_index], devad,
reg, val);
}
}
return ELINK_STATUS_ERROR;
}
static uint8_t elink_get_warpcore_lane(struct elink_phy *phy,
struct elink_params *params)
{
uint8_t lane = 0;
struct bxe_softc *sc = params->sc;
uint32_t path_swap, path_swap_ovr;
uint8_t path, port;
path = SC_PATH(sc);
port = params->port;
if (elink_is_4_port_mode(sc)) {
uint32_t port_swap, port_swap_ovr;
/* Figure out path swap value */
path_swap_ovr = REG_RD(sc, MISC_REG_FOUR_PORT_PATH_SWAP_OVWR);
if (path_swap_ovr & 0x1)
path_swap = (path_swap_ovr & 0x2);
else
path_swap = REG_RD(sc, MISC_REG_FOUR_PORT_PATH_SWAP);
if (path_swap)
path = path ^ 1;
/* Figure out port swap value */
port_swap_ovr = REG_RD(sc, MISC_REG_FOUR_PORT_PORT_SWAP_OVWR);
if (port_swap_ovr & 0x1)
port_swap = (port_swap_ovr & 0x2);
else
port_swap = REG_RD(sc, MISC_REG_FOUR_PORT_PORT_SWAP);
if (port_swap)
port = port ^ 1;
lane = (port<<1) + path;
} else { /* Two port mode - no port swap */
/* Figure out path swap value */
path_swap_ovr =
REG_RD(sc, MISC_REG_TWO_PORT_PATH_SWAP_OVWR);
if (path_swap_ovr & 0x1) {
path_swap = (path_swap_ovr & 0x2);
} else {
path_swap =
REG_RD(sc, MISC_REG_TWO_PORT_PATH_SWAP);
}
if (path_swap)
path = path ^ 1;
lane = path << 1 ;
}
return lane;
}
static void elink_set_aer_mmd(struct elink_params *params,
struct elink_phy *phy)
{
uint32_t ser_lane;
uint16_t offset, aer_val;
struct bxe_softc *sc = params->sc;
ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
offset = (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) ?
(phy->addr + ser_lane) : 0;
if (USES_WARPCORE(sc)) {
aer_val = elink_get_warpcore_lane(phy, params);
/* In Dual-lane mode, two lanes are joined together,
* so in order to configure them, the AER broadcast method is
* used here.
* 0x200 is the broadcast address for lanes 0,1
* 0x201 is the broadcast address for lanes 2,3
*/
if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE)
aer_val = (aer_val >> 1) | 0x200;
} else if (CHIP_IS_E2(sc))
aer_val = 0x3800 + offset - 1;
else
aer_val = 0x3800 + offset;
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, aer_val);
}
/******************************************************************/
/* Internal phy section */
/******************************************************************/
static void elink_set_serdes_access(struct bxe_softc *sc, uint8_t port)
{
uint32_t emac_base = (port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
/* Set Clause 22 */
REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_ST + port*0x10, 1);
REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245f8000);
DELAY(500);
REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245d000f);
DELAY(500);
/* Set Clause 45 */
REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_ST + port*0x10, 0);
}
static void elink_serdes_deassert(struct bxe_softc *sc, uint8_t port)
{
uint32_t val;
ELINK_DEBUG_P0(sc, "elink_serdes_deassert\n");
val = ELINK_SERDES_RESET_BITS << (port*16);
/* Reset and unreset the SerDes/XGXS */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR, val);
DELAY(500);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_SET, val);
elink_set_serdes_access(sc, port);
REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_DEVAD + port*0x10,
ELINK_DEFAULT_PHY_DEV_ADDR);
}
static void elink_xgxs_specific_func(struct elink_phy *phy,
struct elink_params *params,
uint32_t action)
{
struct bxe_softc *sc = params->sc;
switch (action) {
case ELINK_PHY_INIT:
/* Set correct devad */
REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_ST + params->port*0x18, 0);
REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + params->port*0x18,
phy->def_md_devad);
break;
}
}
static void elink_xgxs_deassert(struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t port;
uint32_t val;
ELINK_DEBUG_P0(sc, "elink_xgxs_deassert\n");
port = params->port;
val = ELINK_XGXS_RESET_BITS << (port*16);
/* Reset and unreset the SerDes/XGXS */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR, val);
DELAY(500);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_SET, val);
elink_xgxs_specific_func(&params->phy[ELINK_INT_PHY], params,
ELINK_PHY_INIT);
}
static void elink_calc_ieee_aneg_adv(struct elink_phy *phy,
struct elink_params *params, uint16_t *ieee_fc)
{
struct bxe_softc *sc = params->sc;
*ieee_fc = MDIO_COMBO_IEEE0_AUTO_NEG_ADV_FULL_DUPLEX;
/* Resolve pause mode and advertisement Please refer to Table
* 28B-3 of the 802.3ab-1999 spec
*/
switch (phy->req_flow_ctrl) {
case ELINK_FLOW_CTRL_AUTO:
switch (params->req_fc_auto_adv) {
case ELINK_FLOW_CTRL_BOTH:
case ELINK_FLOW_CTRL_RX:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
break;
case ELINK_FLOW_CTRL_TX:
*ieee_fc |=
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC;
break;
default:
break;
}
break;
case ELINK_FLOW_CTRL_TX:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC;
break;
case ELINK_FLOW_CTRL_RX:
case ELINK_FLOW_CTRL_BOTH:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
break;
case ELINK_FLOW_CTRL_NONE:
default:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE;
break;
}
ELINK_DEBUG_P1(sc, "ieee_fc = 0x%x\n", *ieee_fc);
}
static void set_phy_vars(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t actual_phy_idx, phy_index, link_cfg_idx;
uint8_t phy_config_swapped = params->multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED;
for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys;
phy_index++) {
link_cfg_idx = ELINK_LINK_CONFIG_IDX(phy_index);
actual_phy_idx = phy_index;
if (phy_config_swapped) {
if (phy_index == ELINK_EXT_PHY1)
actual_phy_idx = ELINK_EXT_PHY2;
else if (phy_index == ELINK_EXT_PHY2)
actual_phy_idx = ELINK_EXT_PHY1;
}
params->phy[actual_phy_idx].req_flow_ctrl =
params->req_flow_ctrl[link_cfg_idx];
params->phy[actual_phy_idx].req_line_speed =
params->req_line_speed[link_cfg_idx];
params->phy[actual_phy_idx].speed_cap_mask =
params->speed_cap_mask[link_cfg_idx];
params->phy[actual_phy_idx].req_duplex =
params->req_duplex[link_cfg_idx];
if (params->req_line_speed[link_cfg_idx] ==
ELINK_SPEED_AUTO_NEG)
vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_ENABLED;
ELINK_DEBUG_P3(sc, "req_flow_ctrl %x, req_line_speed %x,"
" speed_cap_mask %x\n",
params->phy[actual_phy_idx].req_flow_ctrl,
params->phy[actual_phy_idx].req_line_speed,
params->phy[actual_phy_idx].speed_cap_mask);
}
}
static void elink_ext_phy_set_pause(struct elink_params *params,
struct elink_phy *phy,
struct elink_vars *vars)
{
uint16_t val;
struct bxe_softc *sc = params->sc;
/* Read modify write pause advertizing */
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, &val);
val &= ~MDIO_AN_REG_ADV_PAUSE_BOTH;
/* Please refer to Table 28B-3 of 802.3ab-1999 spec. */
elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc);
if ((vars->ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) {
val |= MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC;
}
if ((vars->ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) {
val |= MDIO_AN_REG_ADV_PAUSE_PAUSE;
}
ELINK_DEBUG_P1(sc, "Ext phy AN advertize 0x%x\n", val);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, val);
}
static void elink_pause_resolve(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint32_t pause_result)
{
struct bxe_softc *sc = params->sc;
/* LD LP */
switch (pause_result) { /* ASYM P ASYM P */
case 0xb: /* 1 0 1 1 */
ELINK_DEBUG_P0(sc, "Flow Control: TX only\n");
vars->flow_ctrl = ELINK_FLOW_CTRL_TX;
break;
case 0xe: /* 1 1 1 0 */
ELINK_DEBUG_P0(sc, "Flow Control: RX only\n");
vars->flow_ctrl = ELINK_FLOW_CTRL_RX;
break;
case 0x5: /* 0 1 0 1 */
case 0x7: /* 0 1 1 1 */
case 0xd: /* 1 1 0 1 */
case 0xf: /* 1 1 1 1 */
/* If the user selected to advertise RX ONLY,
* although we advertised both, need to enable
* RX only.
*/
if (params->req_fc_auto_adv == ELINK_FLOW_CTRL_BOTH) {
ELINK_DEBUG_P0(sc, "Flow Control: RX & TX\n");
vars->flow_ctrl = ELINK_FLOW_CTRL_BOTH;
} else {
ELINK_DEBUG_P0(sc, "Flow Control: RX only\n");
vars->flow_ctrl = ELINK_FLOW_CTRL_RX;
}
break;
default:
ELINK_DEBUG_P0(sc, "Flow Control: None\n");
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
break;
}
if (pause_result & (1<<0))
vars->link_status |= LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE;
if (pause_result & (1<<1))
vars->link_status |= LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE;
}
static void elink_ext_phy_update_adv_fc(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint16_t ld_pause; /* local */
uint16_t lp_pause; /* link partner */
uint16_t pause_result;
struct bxe_softc *sc = params->sc;
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) {
elink_cl22_read(sc, phy, 0x4, &ld_pause);
elink_cl22_read(sc, phy, 0x5, &lp_pause);
} else if (CHIP_IS_E3(sc) &&
ELINK_SINGLE_MEDIA_DIRECT(params)) {
uint8_t lane = elink_get_warpcore_lane(phy, params);
uint16_t gp_status, gp_mask;
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_4,
&gp_status);
gp_mask = (MDIO_WC_REG_GP2_STATUS_GP_2_4_CL73_AN_CMPL |
MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_LP_AN_CAP) <<
lane;
if ((gp_status & gp_mask) == gp_mask) {
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_ADV_PAUSE, &ld_pause);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG, &lp_pause);
} else {
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LD, &ld_pause);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LP, &lp_pause);
ld_pause = ((ld_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH)
<< 3);
lp_pause = ((lp_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH)
<< 3);
}
} else {
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_ADV_PAUSE, &ld_pause);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG, &lp_pause);
}
pause_result = (ld_pause &
MDIO_AN_REG_ADV_PAUSE_MASK) >> 8;
pause_result |= (lp_pause &
MDIO_AN_REG_ADV_PAUSE_MASK) >> 10;
ELINK_DEBUG_P1(sc, "Ext PHY pause result 0x%x\n", pause_result);
elink_pause_resolve(phy, params, vars, pause_result);
}
static uint8_t elink_ext_phy_resolve_fc(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint8_t ret = 0;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (phy->req_flow_ctrl != ELINK_FLOW_CTRL_AUTO) {
/* Update the advertised flow-controled of LD/LP in AN */
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG)
elink_ext_phy_update_adv_fc(phy, params, vars);
/* But set the flow-control result as the requested one */
vars->flow_ctrl = phy->req_flow_ctrl;
} else if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG)
vars->flow_ctrl = params->req_fc_auto_adv;
else if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) {
ret = 1;
elink_ext_phy_update_adv_fc(phy, params, vars);
}
return ret;
}
/******************************************************************/
/* Warpcore section */
/******************************************************************/
/* The init_internal_warpcore should mirror the xgxs,
* i.e. reset the lane (if needed), set aer for the
* init configuration, and set/clear SGMII flag. Internal
* phy init is done purely in phy_init stage.
*/
#define WC_TX_DRIVER(post2, idriver, ipre, ifir) \
((post2 << MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_OFFSET) | \
(idriver << MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_OFFSET) | \
(ipre << MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_OFFSET) | \
(ifir << MDIO_WC_REG_TX0_TX_DRIVER_IFIR_OFFSET))
#define WC_TX_FIR(post, main, pre) \
((post << MDIO_WC_REG_TX_FIR_TAP_POST_TAP_OFFSET) | \
(main << MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_OFFSET) | \
(pre << MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_OFFSET))
static void elink_update_link_attr(struct elink_params *params, uint32_t link_attr)
{
struct bxe_softc *sc = params->sc;
if (SHMEM2_HAS(sc, link_attr_sync))
REG_WR(sc, params->shmem2_base +
offsetof(struct shmem2_region,
link_attr_sync[params->port]), link_attr);
}
static void elink_warpcore_enable_AN_KR2(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t i;
static struct elink_reg_set reg_set[] = {
/* Step 1 - Program the TX/RX alignment markers */
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL5, 0xa157},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL7, 0xcbe2},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL6, 0x7537},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL9, 0xa157},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL11, 0xcbe2},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL10, 0x7537},
/* Step 2 - Configure the NP registers */
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, 0x000a},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL1, 0x6400},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL3, 0x0620},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CODE_FIELD, 0x0157},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI1, 0x6464},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI2, 0x3150},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI3, 0x3150},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_BAM_CODE, 0x0157},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_UD_CODE, 0x0620}
};
ELINK_DEBUG_P0(sc, "Enabling 20G-KR2\n");
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL49_USERB0_CTRL, (3<<6));
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg,
reg_set[i].val);
/* Start KR2 work-around timer which handles BCM8073 link-parner */
params->link_attr_sync |= LINK_ATTR_SYNC_KR2_ENABLE;
elink_update_link_attr(params, params->link_attr_sync);
}
static void elink_disable_kr2(struct elink_params *params,
struct elink_vars *vars,
struct elink_phy *phy)
{
struct bxe_softc *sc = params->sc;
int i;
static struct elink_reg_set reg_set[] = {
/* Step 1 - Program the TX/RX alignment markers */
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL5, 0x7690},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL7, 0xe647},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL6, 0xc4f0},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL9, 0x7690},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL11, 0xe647},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL10, 0xc4f0},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, 0x000c},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL1, 0x6000},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL3, 0x0000},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CODE_FIELD, 0x0002},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI1, 0x0000},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI2, 0x0af7},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI3, 0x0af7},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_BAM_CODE, 0x0002},
{MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_UD_CODE, 0x0000}
};
ELINK_DEBUG_P0(sc, "Disabling 20G-KR2\n");
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg,
reg_set[i].val);
params->link_attr_sync &= ~LINK_ATTR_SYNC_KR2_ENABLE;
elink_update_link_attr(params, params->link_attr_sync);
vars->check_kr2_recovery_cnt = ELINK_CHECK_KR2_RECOVERY_CNT;
}
static void elink_warpcore_set_lpi_passthrough(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "Configure WC for LPI pass through\n");
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_EEE_COMBO_CONTROL0, 0x7c);
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL4_MISC5, 0xc000);
}
static void elink_warpcore_restart_AN_KR(struct elink_phy *phy,
struct elink_params *params)
{
/* Restart autoneg on the leading lane only */
struct bxe_softc *sc = params->sc;
uint16_t lane = elink_get_warpcore_lane(phy, params);
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, lane);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x1200);
/* Restore AER */
elink_set_aer_mmd(params, phy);
}
static void elink_warpcore_enable_AN_KR(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars) {
uint16_t lane, i, cl72_ctrl, an_adv = 0, val;
uint32_t wc_lane_config;
struct bxe_softc *sc = params->sc;
static struct elink_reg_set reg_set[] = {
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, 0x7},
{MDIO_PMA_DEVAD, MDIO_WC_REG_IEEE0BLK_AUTONEGNP, 0x0},
{MDIO_WC_DEVAD, MDIO_WC_REG_RX66_CONTROL, 0x7415},
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC2, 0x6190},
/* Disable Autoneg: re-enable it after adv is done. */
{MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0},
{MDIO_PMA_DEVAD, MDIO_WC_REG_PMD_KR_CONTROL, 0x2},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP, 0},
};
ELINK_DEBUG_P0(sc, "Enable Auto Negotiation for KR\n");
/* Set to default registers that may be overriden by 10G force */
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg,
reg_set[i].val);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, &cl72_ctrl);
cl72_ctrl &= 0x08ff;
cl72_ctrl |= 0x3800;
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, cl72_ctrl);
/* Check adding advertisement for 1G KX */
if (((vars->line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) ||
(vars->line_speed == ELINK_SPEED_1000)) {
uint16_t addr = MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2;
an_adv |= (1<<5);
/* Enable CL37 1G Parallel Detect */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, addr, 0x1);
ELINK_DEBUG_P0(sc, "Advertize 1G\n");
}
if (((vars->line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) ||
(vars->line_speed == ELINK_SPEED_10000)) {
/* Check adding advertisement for 10G KR */
an_adv |= (1<<7);
/* Enable 10G Parallel Detect */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_WC_REG_PAR_DET_10G_CTRL, 1);
elink_set_aer_mmd(params, phy);
ELINK_DEBUG_P0(sc, "Advertize 10G\n");
}
/* Set Transmit PMD settings */
lane = elink_get_warpcore_lane(phy, params);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane,
WC_TX_DRIVER(0x02, 0x06, 0x09, 0));
/* Configure the next lane if dual mode */
if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE)
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX0_TX_DRIVER + 0x10*(lane+1),
WC_TX_DRIVER(0x02, 0x06, 0x09, 0));
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_OS_DEF_CTRL,
0x03f0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_2P5_DEF_CTRL,
0x03f0);
/* Advertised speeds */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1, an_adv);
/* Advertised and set FEC (Forward Error Correction) */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT2,
(MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_ABILITY |
MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_REQ));
/* Enable CL37 BAM */
if (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].default_cfg)) &
PORT_HW_CFG_ENABLE_BAM_ON_KR_ENABLED) {
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL6_MP5_NEXTPAGECTRL,
1);
ELINK_DEBUG_P0(sc, "Enable CL37 BAM on KR\n");
}
/* Advertise pause */
elink_ext_phy_set_pause(params, phy, vars);
vars->rx_tx_asic_rst = MAX_KR_LINK_RETRY;
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_MISC7, 0x100);
/* Over 1G - AN local device user page 1 */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL3_UP1, 0x1f);
if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) ||
(phy->req_line_speed == ELINK_SPEED_20000)) {
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, lane);
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX1_PCI_CTRL + (0x10*lane),
(1<<11));
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXS_X2_CONTROL3, 0x7);
elink_set_aer_mmd(params, phy);
elink_warpcore_enable_AN_KR2(phy, params, vars);
} else {
/* Enable Auto-Detect to support 1G over CL37 as well */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0x10);
wc_lane_config = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
shared_hw_config.wc_lane_config));
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX0_PCI_CTRL + (lane << 4), &val);
/* Force cl48 sync_status LOW to avoid getting stuck in CL73
* parallel-detect loop when CL73 and CL37 are enabled.
*/
val |= 1 << 11;
/* Restore Polarity settings in case it was run over by
* previous link owner
*/
if (wc_lane_config &
(SHARED_HW_CFG_RX_LANE0_POL_FLIP_ENABLED << lane))
val |= 3 << 2;
else
val &= ~(3 << 2);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX0_PCI_CTRL + (lane << 4),
val);
elink_disable_kr2(params, vars, phy);
}
/* Enable Autoneg: only on the main lane */
elink_warpcore_restart_AN_KR(phy, params);
}
static void elink_warpcore_set_10G_KR(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t val16, i, lane;
static struct elink_reg_set reg_set[] = {
/* Disable Autoneg */
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, 0x7},
{MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL,
0x3f00},
{MDIO_AN_DEVAD, MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1, 0},
{MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x0},
{MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL3_UP1, 0x1},
{MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC7, 0xa},
/* Leave cl72 training enable, needed for KR */
{MDIO_PMA_DEVAD, MDIO_WC_REG_PMD_KR_CONTROL, 0x2}
};
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg,
reg_set[i].val);
lane = elink_get_warpcore_lane(phy, params);
/* Global registers */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
/* Disable CL36 PCS Tx */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL0, &val16);
val16 &= ~(0x0011 << lane);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL0, val16);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL1, &val16);
val16 |= (0x0303 << (lane << 1));
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL1, val16);
/* Restore AER */
elink_set_aer_mmd(params, phy);
/* Set speed via PMA/PMD register */
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x2040);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD,
MDIO_WC_REG_IEEE0BLK_AUTONEGNP, 0xB);
/* Enable encoded forced speed */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_MISC2, 0x30);
/* Turn TX scramble payload only the 64/66 scrambler */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX66_CONTROL, 0x9);
/* Turn RX scramble payload only the 64/66 scrambler */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_CONTROL, 0xF9);
/* Set and clear loopback to cause a reset to 64/66 decoder */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x4000);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x0);
}
static void elink_warpcore_set_10G_XFI(struct elink_phy *phy,
struct elink_params *params,
uint8_t is_xfi)
{
struct bxe_softc *sc = params->sc;
uint16_t misc1_val, tap_val, tx_driver_val, lane, val;
uint32_t cfg_tap_val, tx_drv_brdct, tx_equal;
uint32_t ifir_val, ipost2_val, ipre_driver_val;
/* Hold rxSeqStart */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0, 0x8000);
/* Hold tx_fifo_reset */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3, 0x1);
/* Disable CL73 AN */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0);
/* Disable 100FX Enable and Auto-Detect */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_FX100_CTRL1, 0xFFFA);
/* Disable 100FX Idle detect */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_FX100_CTRL3, 0x0080);
/* Set Block address to Remote PHY & Clear forced_speed[5] */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL4_MISC3, 0xFF7F);
/* Turn off auto-detect & fiber mode */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1,
0xFFEE);
/* Set filter_force_link, disable_false_link and parallel_detect */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, &val);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2,
((val | 0x0006) & 0xFFFE));
/* Set XFI / SFI */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_MISC1, &misc1_val);
misc1_val &= ~(0x1f);
if (is_xfi) {
misc1_val |= 0x5;
tap_val = WC_TX_FIR(0x08, 0x37, 0x00);
tx_driver_val = WC_TX_DRIVER(0x00, 0x02, 0x03, 0);
} else {
cfg_tap_val = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].
sfi_tap_values));
tx_equal = cfg_tap_val & PORT_HW_CFG_TX_EQUALIZATION_MASK;
misc1_val |= 0x9;
/* TAP values are controlled by nvram, if value there isn't 0 */
if (tx_equal)
tap_val = (uint16_t)tx_equal;
else
tap_val = WC_TX_FIR(0x0f, 0x2b, 0x02);
ifir_val = DEFAULT_TX_DRV_IFIR;
ipost2_val = DEFAULT_TX_DRV_POST2;
ipre_driver_val = DEFAULT_TX_DRV_IPRE_DRIVER;
tx_drv_brdct = DEFAULT_TX_DRV_BRDCT;
/* If any of the IFIR/IPRE_DRIVER/POST@ is set, apply all
* configuration.
*/
if (cfg_tap_val & (PORT_HW_CFG_TX_DRV_IFIR_MASK |
PORT_HW_CFG_TX_DRV_IPREDRIVER_MASK |
PORT_HW_CFG_TX_DRV_POST2_MASK)) {
ifir_val = (cfg_tap_val &
PORT_HW_CFG_TX_DRV_IFIR_MASK) >>
PORT_HW_CFG_TX_DRV_IFIR_SHIFT;
ipre_driver_val = (cfg_tap_val &
PORT_HW_CFG_TX_DRV_IPREDRIVER_MASK)
>> PORT_HW_CFG_TX_DRV_IPREDRIVER_SHIFT;
ipost2_val = (cfg_tap_val &
PORT_HW_CFG_TX_DRV_POST2_MASK) >>
PORT_HW_CFG_TX_DRV_POST2_SHIFT;
}
if (cfg_tap_val & PORT_HW_CFG_TX_DRV_BROADCAST_MASK) {
tx_drv_brdct = (cfg_tap_val &
PORT_HW_CFG_TX_DRV_BROADCAST_MASK) >>
PORT_HW_CFG_TX_DRV_BROADCAST_SHIFT;
}
tx_driver_val = WC_TX_DRIVER(ipost2_val, tx_drv_brdct,
ipre_driver_val, ifir_val);
}
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_MISC1, misc1_val);
/* Set Transmit PMD settings */
lane = elink_get_warpcore_lane(phy, params);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX_FIR_TAP,
tap_val | MDIO_WC_REG_TX_FIR_TAP_ENABLE);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane,
tx_driver_val);
/* Enable fiber mode, enable and invert sig_det */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0xd);
/* Set Block address to Remote PHY & Set forced_speed[5], 40bit mode */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL4_MISC3, 0x8080);
elink_warpcore_set_lpi_passthrough(phy, params);
/* 10G XFI Full Duplex */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x100);
/* Release tx_fifo_reset */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3,
0xFFFE);
/* Release rxSeqStart */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0, 0x7FFF);
}
static void elink_warpcore_set_20G_force_KR2(struct elink_phy *phy,
struct elink_params *params)
{
uint16_t val;
struct bxe_softc *sc = params->sc;
/* Set global registers, so set AER lane to 0 */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
/* Disable sequencer */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, ~(1<<13));
elink_set_aer_mmd(params, phy);
elink_cl45_read_and_write(sc, phy, MDIO_PMA_DEVAD,
MDIO_WC_REG_PMD_KR_CONTROL, ~(1<<1));
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_CTRL, 0);
/* Turn off CL73 */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL73_USERB0_CTRL, &val);
val &= ~(1<<5);
val |= (1<<6);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL73_USERB0_CTRL, val);
/* Set 20G KR2 force speed */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x1f);
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL4_MISC3, (1<<7));
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, &val);
val &= ~(3<<14);
val |= (1<<15);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, val);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP, 0x835A);
/* Enable sequencer (over lane 0) */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, (1<<13));
elink_set_aer_mmd(params, phy);
}
static void elink_warpcore_set_20G_DXGXS(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t lane)
{
/* Rx0 anaRxControl1G */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX0_ANARXCONTROL1G, 0x90);
/* Rx2 anaRxControl1G */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX2_ANARXCONTROL1G, 0x90);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW0, 0xE070);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW1, 0xC0D0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW2, 0xA0B0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW3, 0x8090);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW0_MASK, 0xF0F0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW1_MASK, 0xF0F0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW2_MASK, 0xF0F0);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_SCW3_MASK, 0xF0F0);
/* Serdes Digital Misc1 */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x6008);
/* Serdes Digital4 Misc3 */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL4_MISC3, 0x8088);
/* Set Transmit PMD settings */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX_FIR_TAP,
(WC_TX_FIR(0x12, 0x2d, 0x00) |
MDIO_WC_REG_TX_FIR_TAP_ENABLE));
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane,
WC_TX_DRIVER(0x02, 0x02, 0x02, 0));
}
static void elink_warpcore_set_sgmii_speed(struct elink_phy *phy,
struct elink_params *params,
uint8_t fiber_mode,
uint8_t always_autoneg)
{
struct bxe_softc *sc = params->sc;
uint16_t val16, digctrl_kx1, digctrl_kx2;
/* Clear XFI clock comp in non-10G single lane mode. */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_CONTROL, ~(3<<13));
elink_warpcore_set_lpi_passthrough(phy, params);
if (always_autoneg || phy->req_line_speed == ELINK_SPEED_AUTO_NEG) {
/* SGMII Autoneg */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL,
0x1000);
ELINK_DEBUG_P0(sc, "set SGMII AUTONEG\n");
} else {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL, &val16);
val16 &= 0xcebf;
switch (phy->req_line_speed) {
case ELINK_SPEED_10:
break;
case ELINK_SPEED_100:
val16 |= 0x2000;
break;
case ELINK_SPEED_1000:
val16 |= 0x0040;
break;
default:
ELINK_DEBUG_P1(sc,
"Speed not supported: 0x%x\n", phy->req_line_speed);
return;
}
if (phy->req_duplex == DUPLEX_FULL)
val16 |= 0x0100;
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL, val16);
ELINK_DEBUG_P1(sc, "set SGMII force speed %d\n",
phy->req_line_speed);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL, &val16);
ELINK_DEBUG_P1(sc, " (readback) %x\n", val16);
}
/* SGMII Slave mode and disable signal detect */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, &digctrl_kx1);
if (fiber_mode)
digctrl_kx1 = 1;
else
digctrl_kx1 &= 0xff4a;
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1,
digctrl_kx1);
/* Turn off parallel detect */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, &digctrl_kx2);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2,
(digctrl_kx2 & ~(1<<2)));
/* Re-enable parallel detect */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2,
(digctrl_kx2 | (1<<2)));
/* Enable autodet */
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1,
(digctrl_kx1 | 0x10));
}
static void elink_warpcore_reset_lane(struct bxe_softc *sc,
struct elink_phy *phy,
uint8_t reset)
{
uint16_t val;
/* Take lane out of reset after configuration is finished */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_MISC6, &val);
if (reset)
val |= 0xC000;
else
val &= 0x3FFF;
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_MISC6, val);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_MISC6, &val);
}
/* Clear SFI/XFI link settings registers */
static void elink_warpcore_clear_regs(struct elink_phy *phy,
struct elink_params *params,
uint16_t lane)
{
struct bxe_softc *sc = params->sc;
uint16_t i;
static struct elink_reg_set wc_regs[] = {
{MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0},
{MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL1, 0x014a},
{MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL3, 0x0800},
{MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, 0x8008},
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1,
0x0195},
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2,
0x0007},
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3,
0x0002},
{MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x6000},
{MDIO_WC_DEVAD, MDIO_WC_REG_TX_FIR_TAP, 0x0000},
{MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x2040},
{MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, 0x0140}
};
/* Set XFI clock comp as default. */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_RX66_CONTROL, (3<<13));
for (i = 0; i < ARRAY_SIZE(wc_regs); i++)
elink_cl45_write(sc, phy, wc_regs[i].devad, wc_regs[i].reg,
wc_regs[i].val);
lane = elink_get_warpcore_lane(phy, params);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane, 0x0990);
}
static elink_status_t elink_get_mod_abs_int_cfg(struct bxe_softc *sc,
uint32_t chip_id,
uint32_t shmem_base, uint8_t port,
uint8_t *gpio_num, uint8_t *gpio_port)
{
uint32_t cfg_pin;
*gpio_num = 0;
*gpio_port = 0;
if (CHIP_IS_E3(sc)) {
cfg_pin = (REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_sfp_ctrl)) &
PORT_HW_CFG_E3_MOD_ABS_MASK) >>
PORT_HW_CFG_E3_MOD_ABS_SHIFT;
/* Should not happen. This function called upon interrupt
* triggered by GPIO ( since EPIO can only generate interrupts
* to MCP).
* So if this function was called and none of the GPIOs was set,
* it means the shit hit the fan.
*/
if ((cfg_pin < PIN_CFG_GPIO0_P0) ||
(cfg_pin > PIN_CFG_GPIO3_P1)) {
ELINK_DEBUG_P1(sc,
"No cfg pin %x for module detect indication\n",
cfg_pin);
return ELINK_STATUS_ERROR;
}
*gpio_num = (cfg_pin - PIN_CFG_GPIO0_P0) & 0x3;
*gpio_port = (cfg_pin - PIN_CFG_GPIO0_P0) >> 2;
} else {
*gpio_num = MISC_REGISTERS_GPIO_3;
*gpio_port = port;
}
return ELINK_STATUS_OK;
}
static int elink_is_sfp_module_plugged(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t gpio_num, gpio_port;
uint32_t gpio_val;
if (elink_get_mod_abs_int_cfg(sc, params->chip_id,
params->shmem_base, params->port,
&gpio_num, &gpio_port) != ELINK_STATUS_OK)
return 0;
gpio_val = elink_cb_gpio_read(sc, gpio_num, gpio_port);
/* Call the handling function in case module is detected */
if (gpio_val == 0)
return 1;
else
return 0;
}
static int elink_warpcore_get_sigdet(struct elink_phy *phy,
struct elink_params *params)
{
uint16_t gp2_status_reg0, lane;
struct bxe_softc *sc = params->sc;
lane = elink_get_warpcore_lane(phy, params);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_0,
&gp2_status_reg0);
return (gp2_status_reg0 >> (8+lane)) & 0x1;
}
static void elink_warpcore_config_runtime(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint32_t serdes_net_if;
uint16_t gp_status1 = 0, lnkup = 0, lnkup_kr = 0;
vars->turn_to_run_wc_rt = vars->turn_to_run_wc_rt ? 0 : 1;
if (!vars->turn_to_run_wc_rt)
return;
if (vars->rx_tx_asic_rst) {
uint16_t lane = elink_get_warpcore_lane(phy, params);
serdes_net_if = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].default_cfg)) &
PORT_HW_CFG_NET_SERDES_IF_MASK);
switch (serdes_net_if) {
case PORT_HW_CFG_NET_SERDES_IF_KR:
/* Do we get link yet? */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD, 0x81d1,
&gp_status1);
lnkup = (gp_status1 >> (8+lane)) & 0x1;/* 1G */
/*10G KR*/
lnkup_kr = (gp_status1 >> (12+lane)) & 0x1;
if (lnkup_kr || lnkup) {
vars->rx_tx_asic_rst = 0;
} else {
/* Reset the lane to see if link comes up.*/
elink_warpcore_reset_lane(sc, phy, 1);
elink_warpcore_reset_lane(sc, phy, 0);
/* Restart Autoneg */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x1200);
vars->rx_tx_asic_rst--;
ELINK_DEBUG_P1(sc, "0x%x retry left\n",
vars->rx_tx_asic_rst);
}
break;
default:
break;
}
} /*params->rx_tx_asic_rst*/
}
static void elink_warpcore_config_sfi(struct elink_phy *phy,
struct elink_params *params)
{
uint16_t lane = elink_get_warpcore_lane(phy, params);
struct bxe_softc *sc = params->sc;
elink_warpcore_clear_regs(phy, params, lane);
if ((params->req_line_speed[ELINK_LINK_CONFIG_IDX(ELINK_INT_PHY)] ==
ELINK_SPEED_10000) &&
(phy->media_type != ELINK_ETH_PHY_SFP_1G_FIBER)) {
ELINK_DEBUG_P0(sc, "Setting 10G SFI\n");
elink_warpcore_set_10G_XFI(phy, params, 0);
} else {
ELINK_DEBUG_P0(sc, "Setting 1G Fiber\n");
elink_warpcore_set_sgmii_speed(phy, params, 1, 0);
}
}
static void elink_sfp_e3_set_transmitter(struct elink_params *params,
struct elink_phy *phy,
uint8_t tx_en)
{
struct bxe_softc *sc = params->sc;
uint32_t cfg_pin;
uint8_t port = params->port;
cfg_pin = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_sfp_ctrl)) &
PORT_HW_CFG_E3_TX_LASER_MASK;
/* Set the !tx_en since this pin is DISABLE_TX_LASER */
ELINK_DEBUG_P1(sc, "Setting WC TX to %d\n", tx_en);
/* For 20G, the expected pin to be used is 3 pins after the current */
elink_set_cfg_pin(sc, cfg_pin, tx_en ^ 1);
if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
elink_set_cfg_pin(sc, cfg_pin + 3, tx_en ^ 1);
}
static void elink_warpcore_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint32_t serdes_net_if;
uint8_t fiber_mode;
uint16_t lane = elink_get_warpcore_lane(phy, params);
serdes_net_if = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].default_cfg)) &
PORT_HW_CFG_NET_SERDES_IF_MASK);
ELINK_DEBUG_P2(sc, "Begin Warpcore init, link_speed %d, "
"serdes_net_if = 0x%x\n",
vars->line_speed, serdes_net_if);
elink_set_aer_mmd(params, phy);
elink_warpcore_reset_lane(sc, phy, 1);
vars->phy_flags |= PHY_XGXS_FLAG;
if ((serdes_net_if == PORT_HW_CFG_NET_SERDES_IF_SGMII) ||
(phy->req_line_speed &&
((phy->req_line_speed == ELINK_SPEED_100) ||
(phy->req_line_speed == ELINK_SPEED_10)))) {
vars->phy_flags |= PHY_SGMII_FLAG;
ELINK_DEBUG_P0(sc, "Setting SGMII mode\n");
elink_warpcore_clear_regs(phy, params, lane);
elink_warpcore_set_sgmii_speed(phy, params, 0, 1);
} else {
switch (serdes_net_if) {
case PORT_HW_CFG_NET_SERDES_IF_KR:
/* Enable KR Auto Neg */
if (params->loopback_mode != ELINK_LOOPBACK_EXT)
elink_warpcore_enable_AN_KR(phy, params, vars);
else {
ELINK_DEBUG_P0(sc, "Setting KR 10G-Force\n");
elink_warpcore_set_10G_KR(phy, params, vars);
}
break;
case PORT_HW_CFG_NET_SERDES_IF_XFI:
elink_warpcore_clear_regs(phy, params, lane);
if (vars->line_speed == ELINK_SPEED_10000) {
ELINK_DEBUG_P0(sc, "Setting 10G XFI\n");
elink_warpcore_set_10G_XFI(phy, params, 1);
} else {
if (ELINK_SINGLE_MEDIA_DIRECT(params)) {
ELINK_DEBUG_P0(sc, "1G Fiber\n");
fiber_mode = 1;
} else {
ELINK_DEBUG_P0(sc, "10/100/1G SGMII\n");
fiber_mode = 0;
}
elink_warpcore_set_sgmii_speed(phy,
params,
fiber_mode,
0);
}
break;
case PORT_HW_CFG_NET_SERDES_IF_SFI:
/* Issue Module detection if module is plugged, or
* enabled transmitter to avoid current leakage in case
* no module is connected
*/
if ((params->loopback_mode == ELINK_LOOPBACK_NONE) ||
(params->loopback_mode == ELINK_LOOPBACK_EXT)) {
if (elink_is_sfp_module_plugged(phy, params))
elink_sfp_module_detection(phy, params);
else
elink_sfp_e3_set_transmitter(params,
phy, 1);
}
elink_warpcore_config_sfi(phy, params);
break;
case PORT_HW_CFG_NET_SERDES_IF_DXGXS:
if (vars->line_speed != ELINK_SPEED_20000) {
ELINK_DEBUG_P0(sc, "Speed not supported yet\n");
return;
}
ELINK_DEBUG_P0(sc, "Setting 20G DXGXS\n");
elink_warpcore_set_20G_DXGXS(sc, phy, lane);
/* Issue Module detection */
elink_sfp_module_detection(phy, params);
break;
case PORT_HW_CFG_NET_SERDES_IF_KR2:
if (!params->loopback_mode) {
elink_warpcore_enable_AN_KR(phy, params, vars);
} else {
ELINK_DEBUG_P0(sc, "Setting KR 20G-Force\n");
elink_warpcore_set_20G_force_KR2(phy, params);
}
break;
default:
ELINK_DEBUG_P1(sc,
"Unsupported Serdes Net Interface 0x%x\n",
serdes_net_if);
return;
}
}
/* Take lane out of reset after configuration is finished */
elink_warpcore_reset_lane(sc, phy, 0);
ELINK_DEBUG_P0(sc, "Exit config init\n");
}
static void elink_warpcore_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t val16, lane;
elink_sfp_e3_set_transmitter(params, phy, 0);
elink_set_mdio_emac_per_phy(sc, params);
elink_set_aer_mmd(params, phy);
/* Global register */
elink_warpcore_reset_lane(sc, phy, 1);
/* Clear loopback settings (if any) */
/* 10G & 20G */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL, 0xBFFF);
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0xfffe);
/* Update those 1-copy registers */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
/* Enable 1G MDIO (1-copy) */
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK0_XGXSCONTROL,
~0x10);
elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL2, 0xff00);
lane = elink_get_warpcore_lane(phy, params);
/* Disable CL36 PCS Tx */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL0, &val16);
val16 |= (0x11 << lane);
if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE)
val16 |= (0x22 << lane);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL0, val16);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL1, &val16);
val16 &= ~(0x0303 << (lane << 1));
val16 |= (0x0101 << (lane << 1));
if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE) {
val16 &= ~(0x0c0c << (lane << 1));
val16 |= (0x0404 << (lane << 1));
}
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL1, val16);
/* Restore AER */
elink_set_aer_mmd(params, phy);
}
static void elink_set_warpcore_loopback(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t val16;
uint32_t lane;
ELINK_DEBUG_P2(sc, "Setting Warpcore loopback type %x, speed %d\n",
params->loopback_mode, phy->req_line_speed);
if (phy->req_line_speed < ELINK_SPEED_10000 ||
phy->supported & ELINK_SUPPORTED_20000baseKR2_Full) {
/* 10/100/1000/20G-KR2 */
/* Update those 1-copy registers */
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0);
/* Enable 1G MDIO (1-copy) */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK0_XGXSCONTROL,
0x10);
/* Set 1G loopback based on lane (1-copy) */
lane = elink_get_warpcore_lane(phy, params);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL2, &val16);
val16 |= (1<<lane);
if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE)
val16 |= (2<<lane);
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_XGXSBLK1_LANECTRL2,
val16);
/* Switch back to 4-copy registers */
elink_set_aer_mmd(params, phy);
} else {
/* 10G / 20G-DXGXS */
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_COMBO_IEEE0_MIICTRL,
0x4000);
elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x1);
}
}
static void elink_sync_link(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t link_10g_plus;
if (vars->link_status & LINK_STATUS_PHYSICAL_LINK_FLAG)
vars->phy_flags |= PHY_PHYSICAL_LINK_FLAG;
vars->link_up = (vars->link_status & LINK_STATUS_LINK_UP);
if (vars->link_up) {
ELINK_DEBUG_P0(sc, "phy link up\n");
ELINK_DEBUG_P1(sc, "link status = %x\n", vars->link_status);
vars->phy_link_up = 1;
vars->duplex = DUPLEX_FULL;
switch (vars->link_status &
LINK_STATUS_SPEED_AND_DUPLEX_MASK) {
case ELINK_LINK_10THD:
vars->duplex = DUPLEX_HALF;
/* Fall thru */
case ELINK_LINK_10TFD:
vars->line_speed = ELINK_SPEED_10;
break;
case ELINK_LINK_100TXHD:
vars->duplex = DUPLEX_HALF;
/* Fall thru */
case ELINK_LINK_100T4:
case ELINK_LINK_100TXFD:
vars->line_speed = ELINK_SPEED_100;
break;
case ELINK_LINK_1000THD:
vars->duplex = DUPLEX_HALF;
/* Fall thru */
case ELINK_LINK_1000TFD:
vars->line_speed = ELINK_SPEED_1000;
break;
case ELINK_LINK_2500THD:
vars->duplex = DUPLEX_HALF;
/* Fall thru */
case ELINK_LINK_2500TFD:
vars->line_speed = ELINK_SPEED_2500;
break;
case ELINK_LINK_10GTFD:
vars->line_speed = ELINK_SPEED_10000;
break;
case ELINK_LINK_20GTFD:
vars->line_speed = ELINK_SPEED_20000;
break;
default:
break;
}
vars->flow_ctrl = 0;
if (vars->link_status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED)
vars->flow_ctrl |= ELINK_FLOW_CTRL_TX;
if (vars->link_status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED)
vars->flow_ctrl |= ELINK_FLOW_CTRL_RX;
if (!vars->flow_ctrl)
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (vars->line_speed &&
((vars->line_speed == ELINK_SPEED_10) ||
(vars->line_speed == ELINK_SPEED_100))) {
vars->phy_flags |= PHY_SGMII_FLAG;
} else {
vars->phy_flags &= ~PHY_SGMII_FLAG;
}
if (vars->line_speed &&
USES_WARPCORE(sc) &&
(vars->line_speed == ELINK_SPEED_1000))
vars->phy_flags |= PHY_SGMII_FLAG;
/* Anything 10 and over uses the bmac */
link_10g_plus = (vars->line_speed >= ELINK_SPEED_10000);
if (link_10g_plus) {
if (USES_WARPCORE(sc))
vars->mac_type = ELINK_MAC_TYPE_XMAC;
else
vars->mac_type = ELINK_MAC_TYPE_BMAC;
} else {
if (USES_WARPCORE(sc))
vars->mac_type = ELINK_MAC_TYPE_UMAC;
else
vars->mac_type = ELINK_MAC_TYPE_EMAC;
}
} else { /* Link down */
ELINK_DEBUG_P0(sc, "phy link down\n");
vars->phy_link_up = 0;
vars->line_speed = 0;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
/* Indicate no mac active */
vars->mac_type = ELINK_MAC_TYPE_NONE;
if (vars->link_status & LINK_STATUS_PHYSICAL_LINK_FLAG)
vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG;
if (vars->link_status & LINK_STATUS_SFP_TX_FAULT)
vars->phy_flags |= PHY_SFP_TX_FAULT_FLAG;
}
}
void elink_link_status_update(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t sync_offset, media_types;
/* Update PHY configuration */
set_phy_vars(params, vars);
vars->link_status = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
port_mb[port].link_status));
/* Force link UP in non LOOPBACK_EXT loopback mode(s) */
if (params->loopback_mode != ELINK_LOOPBACK_NONE &&
params->loopback_mode != ELINK_LOOPBACK_EXT)
vars->link_status |= LINK_STATUS_LINK_UP;
if (elink_eee_has_cap(params))
vars->eee_status = REG_RD(sc, params->shmem2_base +
offsetof(struct shmem2_region,
eee_status[params->port]));
vars->phy_flags = PHY_XGXS_FLAG;
elink_sync_link(params, vars);
/* Sync media type */
sync_offset = params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].media_type);
media_types = REG_RD(sc, sync_offset);
params->phy[ELINK_INT_PHY].media_type =
(media_types & PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) >>
PORT_HW_CFG_MEDIA_TYPE_PHY0_SHIFT;
params->phy[ELINK_EXT_PHY1].media_type =
(media_types & PORT_HW_CFG_MEDIA_TYPE_PHY1_MASK) >>
PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT;
params->phy[ELINK_EXT_PHY2].media_type =
(media_types & PORT_HW_CFG_MEDIA_TYPE_PHY2_MASK) >>
PORT_HW_CFG_MEDIA_TYPE_PHY2_SHIFT;
ELINK_DEBUG_P1(sc, "media_types = 0x%x\n", media_types);
/* Sync AEU offset */
sync_offset = params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].aeu_int_mask);
vars->aeu_int_mask = REG_RD(sc, sync_offset);
/* Sync PFC status */
if (vars->link_status & LINK_STATUS_PFC_ENABLED)
params->feature_config_flags |=
ELINK_FEATURE_CONFIG_PFC_ENABLED;
else
params->feature_config_flags &=
~ELINK_FEATURE_CONFIG_PFC_ENABLED;
if (SHMEM2_HAS(sc, link_attr_sync))
params->link_attr_sync = SHMEM2_RD(sc,
link_attr_sync[params->port]);
ELINK_DEBUG_P3(sc, "link_status 0x%x phy_link_up %x int_mask 0x%x\n",
vars->link_status, vars->phy_link_up, vars->aeu_int_mask);
ELINK_DEBUG_P3(sc, "line_speed %x duplex %x flow_ctrl 0x%x\n",
vars->line_speed, vars->duplex, vars->flow_ctrl);
}
static void elink_set_master_ln(struct elink_params *params,
struct elink_phy *phy)
{
struct bxe_softc *sc = params->sc;
uint16_t new_master_ln, ser_lane;
ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
/* Set the master_ln for AN */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TEST_MODE_LANE,
&new_master_ln);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2 ,
MDIO_XGXS_BLOCK2_TEST_MODE_LANE,
(new_master_ln | ser_lane));
}
static elink_status_t elink_reset_unicore(struct elink_params *params,
struct elink_phy *phy,
uint8_t set_serdes)
{
struct bxe_softc *sc = params->sc;
uint16_t mii_control;
uint16_t i;
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control);
/* Reset the unicore */
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
(mii_control |
MDIO_COMBO_IEEO_MII_CONTROL_RESET));
if (set_serdes)
elink_set_serdes_access(sc, params->port);
/* Wait for the reset to self clear */
for (i = 0; i < ELINK_MDIO_ACCESS_TIMEOUT; i++) {
DELAY(5);
/* The reset erased the previous bank value */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
if (!(mii_control & MDIO_COMBO_IEEO_MII_CONTROL_RESET)) {
DELAY(5);
return ELINK_STATUS_OK;
}
}
elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, params->port); // "Warning: PHY was not initialized,"
// " Port %d\n",
ELINK_DEBUG_P0(sc, "BUG! XGXS is still in reset!\n");
return ELINK_STATUS_ERROR;
}
static void elink_set_swap_lanes(struct elink_params *params,
struct elink_phy *phy)
{
struct bxe_softc *sc = params->sc;
/* Each two bits represents a lane number:
* No swap is 0123 => 0x1b no need to enable the swap
*/
uint16_t rx_lane_swap, tx_lane_swap;
rx_lane_swap = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_RX_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_RX_SHIFT);
tx_lane_swap = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_TX_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_TX_SHIFT);
if (rx_lane_swap != 0x1b) {
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_RX_LN_SWAP,
(rx_lane_swap |
MDIO_XGXS_BLOCK2_RX_LN_SWAP_ENABLE |
MDIO_XGXS_BLOCK2_RX_LN_SWAP_FORCE_ENABLE));
} else {
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_RX_LN_SWAP, 0);
}
if (tx_lane_swap != 0x1b) {
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TX_LN_SWAP,
(tx_lane_swap |
MDIO_XGXS_BLOCK2_TX_LN_SWAP_ENABLE));
} else {
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TX_LN_SWAP, 0);
}
}
static void elink_set_parallel_detection(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t control2;
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL2,
&control2);
if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)
control2 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN;
else
control2 &= ~MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN;
ELINK_DEBUG_P2(sc, "phy->speed_cap_mask = 0x%x, control2 = 0x%x\n",
phy->speed_cap_mask, control2);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL2,
control2);
if ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
ELINK_DEBUG_P0(sc, "XGXS\n");
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK_CNT);
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL,
&control2);
control2 |=
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL_PARDET10G_EN;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL,
control2);
/* Disable parallel detection of HiG */
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G,
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_CX4_XGXS |
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_HIGIG_XGXS);
}
}
static void elink_set_autoneg(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint8_t enable_cl73)
{
struct bxe_softc *sc = params->sc;
uint16_t reg_val;
/* CL37 Autoneg */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &reg_val);
/* CL37 Autoneg Enabled */
if (vars->line_speed == ELINK_SPEED_AUTO_NEG)
reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_AN_EN;
else /* CL37 Autoneg Disabled */
reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, reg_val);
/* Enable/Disable Autodetection */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, &reg_val);
reg_val &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_SIGNAL_DETECT_EN |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT);
reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE;
if (vars->line_speed == ELINK_SPEED_AUTO_NEG)
reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET;
else
reg_val &= ~MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, reg_val);
/* Enable TetonII and BAM autoneg */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_BAM_NEXT_PAGE,
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL,
&reg_val);
if (vars->line_speed == ELINK_SPEED_AUTO_NEG) {
/* Enable BAM aneg Mode and TetonII aneg Mode */
reg_val |= (MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE |
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN);
} else {
/* TetonII and BAM Autoneg Disabled */
reg_val &= ~(MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE |
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN);
}
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_BAM_NEXT_PAGE,
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL,
reg_val);
if (enable_cl73) {
/* Enable Cl73 FSM status bits */
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_UCTRL,
0xe);
/* Enable BAM Station Manager*/
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_BAM_CTRL1,
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_EN |
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_STATION_MNGR_EN |
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_NP_AFTER_BP_EN);
/* Advertise CL73 link speeds */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV2,
&reg_val);
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
reg_val |= MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4;
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)
reg_val |= MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV2,
reg_val);
/* CL73 Autoneg Enabled */
reg_val = MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN;
} else /* CL73 Autoneg Disabled */
reg_val = 0;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL, reg_val);
}
/* Program SerDes, forced speed */
static void elink_program_serdes(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t reg_val;
/* Program duplex, disable autoneg and sgmii*/
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &reg_val);
reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX |
MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK);
if (phy->req_duplex == DUPLEX_FULL)
reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, reg_val);
/* Program speed
* - needed only if the speed is greater than 1G (2.5G or 10G)
*/
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_MISC1, &reg_val);
/* Clearing the speed value before setting the right speed */
ELINK_DEBUG_P1(sc, "MDIO_REG_BANK_SERDES_DIGITAL = 0x%x\n", reg_val);
reg_val &= ~(MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_MASK |
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL);
if (!((vars->line_speed == ELINK_SPEED_1000) ||
(vars->line_speed == ELINK_SPEED_100) ||
(vars->line_speed == ELINK_SPEED_10))) {
reg_val |= (MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_156_25M |
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL);
if (vars->line_speed == ELINK_SPEED_10000)
reg_val |=
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_CX4;
}
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_MISC1, reg_val);
}
static void elink_set_brcm_cl37_advertisement(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t val = 0;
/* Set extended capabilities */
if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)
val |= MDIO_OVER_1G_UP1_2_5G;
if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
val |= MDIO_OVER_1G_UP1_10G;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_UP1, val);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_UP3, 0x400);
}
static void elink_set_ieee_aneg_advertisement(struct elink_phy *phy,
struct elink_params *params,
uint16_t ieee_fc)
{
struct bxe_softc *sc = params->sc;
uint16_t val;
/* For AN, we are always publishing full duplex */
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_ADV, ieee_fc);
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV1, &val);
val &= ~MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_BOTH;
val |= ((ieee_fc<<3) & MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV1, val);
}
static void elink_restart_autoneg(struct elink_phy *phy,
struct elink_params *params,
uint8_t enable_cl73)
{
struct bxe_softc *sc = params->sc;
uint16_t mii_control;
ELINK_DEBUG_P0(sc, "elink_restart_autoneg\n");
/* Enable and restart BAM/CL37 aneg */
if (enable_cl73) {
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
&mii_control);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
(mii_control |
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN |
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_RESTART_AN));
} else {
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
ELINK_DEBUG_P1(sc,
"elink_restart_autoneg mii_control before = 0x%x\n",
mii_control);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
(mii_control |
MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN));
}
}
static void elink_initialize_sgmii_process(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t control1;
/* In SGMII mode, the unicore is always slave */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1,
&control1);
control1 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT;
/* Set sgmii mode (and not fiber) */
control1 &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_MSTR_MODE);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1,
control1);
/* If forced speed */
if (!(vars->line_speed == ELINK_SPEED_AUTO_NEG)) {
/* Set speed, disable autoneg */
uint16_t mii_control;
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
mii_control &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK|
MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX);
switch (vars->line_speed) {
case ELINK_SPEED_100:
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_100;
break;
case ELINK_SPEED_1000:
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_1000;
break;
case ELINK_SPEED_10:
/* There is nothing to set for 10M */
break;
default:
/* Invalid speed for SGMII */
ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n",
vars->line_speed);
break;
}
/* Setting the full duplex */
if (phy->req_duplex == DUPLEX_FULL)
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX;
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
mii_control);
} else { /* AN mode */
/* Enable and restart AN */
elink_restart_autoneg(phy, params, 0);
}
}
/* Link management
*/
static elink_status_t elink_direct_parallel_detect_used(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t pd_10g, status2_1000x;
if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG)
return ELINK_STATUS_OK;
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_STATUS2,
&status2_1000x);
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_STATUS2,
&status2_1000x);
if (status2_1000x & MDIO_SERDES_DIGITAL_A_1000X_STATUS2_AN_DISABLED) {
ELINK_DEBUG_P1(sc, "1G parallel detect link on port %d\n",
params->port);
return 1;
}
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS,
&pd_10g);
if (pd_10g & MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS_PD_LINK) {
ELINK_DEBUG_P1(sc, "10G parallel detect link on port %d\n",
params->port);
return 1;
}
return ELINK_STATUS_OK;
}
static void elink_update_adv_fc(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint32_t gp_status)
{
uint16_t ld_pause; /* local driver */
uint16_t lp_pause; /* link partner */
uint16_t pause_result;
struct bxe_softc *sc = params->sc;
if ((gp_status &
(MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE |
MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE)) ==
(MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE |
MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE)) {
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV1,
&ld_pause);
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_LP_ADV1,
&lp_pause);
pause_result = (ld_pause &
MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK) >> 8;
pause_result |= (lp_pause &
MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_MASK) >> 10;
ELINK_DEBUG_P1(sc, "pause_result CL73 0x%x\n", pause_result);
} else {
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_ADV,
&ld_pause);
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1,
&lp_pause);
pause_result = (ld_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>5;
pause_result |= (lp_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>7;
ELINK_DEBUG_P1(sc, "pause_result CL37 0x%x\n", pause_result);
}
elink_pause_resolve(phy, params, vars, pause_result);
}
static void elink_flow_ctrl_resolve(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint32_t gp_status)
{
struct bxe_softc *sc = params->sc;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
/* Resolve from gp_status in case of AN complete and not sgmii */
if (phy->req_flow_ctrl != ELINK_FLOW_CTRL_AUTO) {
/* Update the advertised flow-controled of LD/LP in AN */
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG)
elink_update_adv_fc(phy, params, vars, gp_status);
/* But set the flow-control result as the requested one */
vars->flow_ctrl = phy->req_flow_ctrl;
} else if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG)
vars->flow_ctrl = params->req_fc_auto_adv;
else if ((gp_status & ELINK_MDIO_AN_CL73_OR_37_COMPLETE) &&
(!(vars->phy_flags & PHY_SGMII_FLAG))) {
if (elink_direct_parallel_detect_used(phy, params)) {
vars->flow_ctrl = params->req_fc_auto_adv;
return;
}
elink_update_adv_fc(phy, params, vars, gp_status);
}
ELINK_DEBUG_P1(sc, "flow_ctrl 0x%x\n", vars->flow_ctrl);
}
static void elink_check_fallback_to_cl37(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t rx_status, ustat_val, cl37_fsm_received;
ELINK_DEBUG_P0(sc, "elink_check_fallback_to_cl37\n");
/* Step 1: Make sure signal is detected */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_RX0,
MDIO_RX0_RX_STATUS,
&rx_status);
if ((rx_status & MDIO_RX0_RX_STATUS_SIGDET) !=
(MDIO_RX0_RX_STATUS_SIGDET)) {
ELINK_DEBUG_P1(sc, "Signal is not detected. Restoring CL73."
"rx_status(0x80b0) = 0x%x\n", rx_status);
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN);
return;
}
/* Step 2: Check CL73 state machine */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_USTAT1,
&ustat_val);
if ((ustat_val &
(MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK |
MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) !=
(MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK |
MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) {
ELINK_DEBUG_P1(sc, "CL73 state-machine is not stable. "
"ustat_val(0x8371) = 0x%x\n", ustat_val);
return;
}
/* Step 3: Check CL37 Message Pages received to indicate LP
* supports only CL37
*/
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_REMOTE_PHY,
MDIO_REMOTE_PHY_MISC_RX_STATUS,
&cl37_fsm_received);
if ((cl37_fsm_received &
(MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG |
MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) !=
(MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG |
MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) {
ELINK_DEBUG_P1(sc, "No CL37 FSM were received. "
"misc_rx_status(0x8330) = 0x%x\n",
cl37_fsm_received);
return;
}
/* The combined cl37/cl73 fsm state information indicating that
* we are connected to a device which does not support cl73, but
* does support cl37 BAM. In this case we disable cl73 and
* restart cl37 auto-neg
*/
/* Disable CL73 */
CL22_WR_OVER_CL45(sc, phy,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
0);
/* Restart CL37 autoneg */
elink_restart_autoneg(phy, params, 0);
ELINK_DEBUG_P0(sc, "Disabling CL73, and restarting CL37 autoneg\n");
}
static void elink_xgxs_an_resolve(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint32_t gp_status)
{
if (gp_status & ELINK_MDIO_AN_CL73_OR_37_COMPLETE)
vars->link_status |=
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
if (elink_direct_parallel_detect_used(phy, params))
vars->link_status |=
LINK_STATUS_PARALLEL_DETECTION_USED;
}
static elink_status_t elink_get_link_speed_duplex(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars,
uint16_t is_link_up,
uint16_t speed_mask,
uint16_t is_duplex)
{
struct bxe_softc *sc = params->sc;
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG)
vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_ENABLED;
if (is_link_up) {
ELINK_DEBUG_P0(sc, "phy link up\n");
vars->phy_link_up = 1;
vars->link_status |= LINK_STATUS_LINK_UP;
switch (speed_mask) {
case ELINK_GP_STATUS_10M:
vars->line_speed = ELINK_SPEED_10;
if (is_duplex == DUPLEX_FULL)
vars->link_status |= ELINK_LINK_10TFD;
else
vars->link_status |= ELINK_LINK_10THD;
break;
case ELINK_GP_STATUS_100M:
vars->line_speed = ELINK_SPEED_100;
if (is_duplex == DUPLEX_FULL)
vars->link_status |= ELINK_LINK_100TXFD;
else
vars->link_status |= ELINK_LINK_100TXHD;
break;
case ELINK_GP_STATUS_1G:
case ELINK_GP_STATUS_1G_KX:
vars->line_speed = ELINK_SPEED_1000;
if (is_duplex == DUPLEX_FULL)
vars->link_status |= ELINK_LINK_1000TFD;
else
vars->link_status |= ELINK_LINK_1000THD;
break;
case ELINK_GP_STATUS_2_5G:
vars->line_speed = ELINK_SPEED_2500;
if (is_duplex == DUPLEX_FULL)
vars->link_status |= ELINK_LINK_2500TFD;
else
vars->link_status |= ELINK_LINK_2500THD;
break;
case ELINK_GP_STATUS_5G:
case ELINK_GP_STATUS_6G:
ELINK_DEBUG_P1(sc,
"link speed unsupported gp_status 0x%x\n",
speed_mask);
return ELINK_STATUS_ERROR;
case ELINK_GP_STATUS_10G_KX4:
case ELINK_GP_STATUS_10G_HIG:
case ELINK_GP_STATUS_10G_CX4:
case ELINK_GP_STATUS_10G_KR:
case ELINK_GP_STATUS_10G_SFI:
case ELINK_GP_STATUS_10G_XFI:
vars->line_speed = ELINK_SPEED_10000;
vars->link_status |= ELINK_LINK_10GTFD;
break;
case ELINK_GP_STATUS_20G_DXGXS:
case ELINK_GP_STATUS_20G_KR2:
vars->line_speed = ELINK_SPEED_20000;
vars->link_status |= ELINK_LINK_20GTFD;
break;
default:
ELINK_DEBUG_P1(sc,
"link speed unsupported gp_status 0x%x\n",
speed_mask);
return ELINK_STATUS_ERROR;
}
} else { /* link_down */
ELINK_DEBUG_P0(sc, "phy link down\n");
vars->phy_link_up = 0;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_NONE;
}
ELINK_DEBUG_P2(sc, " in elink_get_link_speed_duplex vars->link_status = %x, vars->duplex = %x\n",
vars->link_status, vars->duplex);
ELINK_DEBUG_P2(sc, " phy_link_up %x line_speed %d\n",
vars->phy_link_up, vars->line_speed);
return ELINK_STATUS_OK;
}
static elink_status_t elink_link_settings_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t gp_status, duplex = DUPLEX_HALF, link_up = 0, speed_mask;
elink_status_t rc = ELINK_STATUS_OK;
/* Read gp_status */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_GP_STATUS,
MDIO_GP_STATUS_TOP_AN_STATUS1,
&gp_status);
if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_DUPLEX_STATUS) {
duplex = DUPLEX_FULL;
ELINK_DEBUG_P1(sc, "duplex status read from phy is = %x\n",
duplex);
} else {
ELINK_DEBUG_P1(sc, "phy status does not allow interface to be FULL_DUPLEX : %x\n",
gp_status);
}
if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS)
link_up = 1;
speed_mask = gp_status & ELINK_GP_STATUS_SPEED_MASK;
ELINK_DEBUG_P3(sc, "gp_status 0x%x, is_link_up %d, speed_mask 0x%x\n",
gp_status, link_up, speed_mask);
rc = elink_get_link_speed_duplex(phy, params, vars, link_up, speed_mask,
duplex);
if (rc == ELINK_STATUS_ERROR)
return rc;
if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS) {
if (ELINK_SINGLE_MEDIA_DIRECT(params)) {
vars->duplex = duplex;
elink_flow_ctrl_resolve(phy, params, vars, gp_status);
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG)
elink_xgxs_an_resolve(phy, params, vars,
gp_status);
}
} else { /* Link_down */
if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
ELINK_SINGLE_MEDIA_DIRECT(params)) {
/* Check signal is detected */
elink_check_fallback_to_cl37(phy, params);
}
}
/* Read LP advertised speeds*/
if (ELINK_SINGLE_MEDIA_DIRECT(params) &&
(vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE)) {
uint16_t val;
CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_LP_ADV2, &val);
if (val & MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX)
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE;
if (val & (MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 |
MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_LP_UP1, &val);
if (val & MDIO_OVER_1G_UP1_2_5G)
vars->link_status |=
LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE;
if (val & (MDIO_OVER_1G_UP1_10G | MDIO_OVER_1G_UP1_10GH))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
}
ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n",
vars->duplex, vars->flow_ctrl, vars->link_status);
return rc;
}
static elink_status_t elink_warpcore_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t lane;
uint16_t gp_status1, gp_speed, link_up, duplex = DUPLEX_FULL;
elink_status_t rc = ELINK_STATUS_OK;
lane = elink_get_warpcore_lane(phy, params);
/* Read gp_status */
if ((params->loopback_mode) &&
(phy->flags & ELINK_FLAGS_WC_DUAL_MODE)) {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_LINK_STATUS, &link_up);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_LINK_STATUS, &link_up);
link_up &= 0x1;
ELINK_DEBUG_P1(sc, "params->loopback_mode link_up read = %x\n",
link_up);
} else if ((phy->req_line_speed > ELINK_SPEED_10000) &&
(phy->supported & ELINK_SUPPORTED_20000baseMLD2_Full)) {
uint16_t temp_link_up;
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
1, &temp_link_up);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
1, &link_up);
ELINK_DEBUG_P2(sc, "PCS RX link status = 0x%x-->0x%x\n",
temp_link_up, link_up);
link_up &= (1<<2);
if (link_up)
elink_ext_phy_resolve_fc(phy, params, vars);
} else {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_1,
&gp_status1);
ELINK_DEBUG_P1(sc, "0x81d1 = 0x%x\n", gp_status1);
/* Check for either KR, 1G, or AN up. */
link_up = ((gp_status1 >> 8) |
(gp_status1 >> 12) |
(gp_status1)) &
(1 << lane);
if (phy->supported & ELINK_SUPPORTED_20000baseKR2_Full) {
uint16_t an_link;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &an_link);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &an_link);
link_up |= (an_link & (1<<2));
ELINK_DEBUG_P2(sc,"an_link = %x, link_up = %x\n", an_link,
link_up);
}
if (link_up && ELINK_SINGLE_MEDIA_DIRECT(params)) {
uint16_t pd, gp_status4;
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) {
/* Check Autoneg complete */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_4,
&gp_status4);
if (gp_status4 & ((1<<12)<<lane))
vars->link_status |=
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
/* Check parallel detect used */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_PAR_DET_10G_STATUS,
&pd);
if (pd & (1<<15))
vars->link_status |=
LINK_STATUS_PARALLEL_DETECTION_USED;
ELINK_DEBUG_P2(sc, "pd = %x, link_status = %x\n",
pd, vars->link_status);
}
elink_ext_phy_resolve_fc(phy, params, vars);
vars->duplex = duplex;
ELINK_DEBUG_P3(sc, " ELINK_SINGLE_MEDIA_DIRECT duplex %x flow_ctrl 0x%x link_status 0x%x\n",
vars->duplex, vars->flow_ctrl, vars->link_status);
}
}
ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n",
vars->duplex, vars->flow_ctrl, vars->link_status);
if ((vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) &&
ELINK_SINGLE_MEDIA_DIRECT(params)) {
uint16_t val;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG2, &val);
if (val & MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX)
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE;
if (val & (MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 |
MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
ELINK_DEBUG_P2(sc, "val = %x, link_status = %x\n",
val, vars->link_status);
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL3_LP_UP1, &val);
if (val & MDIO_OVER_1G_UP1_2_5G)
vars->link_status |=
LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE;
if (val & (MDIO_OVER_1G_UP1_10G | MDIO_OVER_1G_UP1_10GH))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
ELINK_DEBUG_P2(sc, "val = %x, link_status = %x\n",
val, vars->link_status);
}
if (lane < 2) {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_2, &gp_speed);
} else {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_3, &gp_speed);
}
ELINK_DEBUG_P2(sc, "lane %d gp_speed 0x%x\n", lane, gp_speed);
if ((lane & 1) == 0)
gp_speed <<= 8;
gp_speed &= 0x3f00;
link_up = !!link_up;
/* Reset the TX FIFO to fix SGMII issue */
rc = elink_get_link_speed_duplex(phy, params, vars, link_up, gp_speed,
duplex);
/* In case of KR link down, start up the recovering procedure */
if ((!link_up) && (phy->media_type == ELINK_ETH_PHY_KR) &&
(!(phy->flags & ELINK_FLAGS_WC_DUAL_MODE)))
vars->rx_tx_asic_rst = MAX_KR_LINK_RETRY;
ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n",
vars->duplex, vars->flow_ctrl, vars->link_status);
return rc;
}
static void elink_set_gmii_tx_driver(struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
struct elink_phy *phy = &params->phy[ELINK_INT_PHY];
uint16_t lp_up2;
uint16_t tx_driver;
uint16_t bank;
/* Read precomp */
CL22_RD_OVER_CL45(sc, phy,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_LP_UP2, &lp_up2);
/* Bits [10:7] at lp_up2, positioned at [15:12] */
lp_up2 = (((lp_up2 & MDIO_OVER_1G_LP_UP2_PREEMPHASIS_MASK) >>
MDIO_OVER_1G_LP_UP2_PREEMPHASIS_SHIFT) <<
MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT);
if (lp_up2 == 0)
return;
for (bank = MDIO_REG_BANK_TX0; bank <= MDIO_REG_BANK_TX3;
bank += (MDIO_REG_BANK_TX1 - MDIO_REG_BANK_TX0)) {
CL22_RD_OVER_CL45(sc, phy,
bank,
MDIO_TX0_TX_DRIVER, &tx_driver);
/* Replace tx_driver bits [15:12] */
if (lp_up2 !=
(tx_driver & MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK)) {
tx_driver &= ~MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK;
tx_driver |= lp_up2;
CL22_WR_OVER_CL45(sc, phy,
bank,
MDIO_TX0_TX_DRIVER, tx_driver);
}
}
}
static elink_status_t elink_emac_program(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint16_t mode = 0;
ELINK_DEBUG_P0(sc, "setting link speed & duplex\n");
elink_bits_dis(sc, GRCBASE_EMAC0 + port*0x400 +
EMAC_REG_EMAC_MODE,
(EMAC_MODE_25G_MODE |
EMAC_MODE_PORT_MII_10M |
EMAC_MODE_HALF_DUPLEX));
switch (vars->line_speed) {
case ELINK_SPEED_10:
mode |= EMAC_MODE_PORT_MII_10M;
break;
case ELINK_SPEED_100:
mode |= EMAC_MODE_PORT_MII;
break;
case ELINK_SPEED_1000:
mode |= EMAC_MODE_PORT_GMII;
break;
case ELINK_SPEED_2500:
mode |= (EMAC_MODE_25G_MODE | EMAC_MODE_PORT_GMII);
break;
default:
/* 10G not valid for EMAC */
ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n",
vars->line_speed);
return ELINK_STATUS_ERROR;
}
if (vars->duplex == DUPLEX_HALF)
mode |= EMAC_MODE_HALF_DUPLEX;
elink_bits_en(sc,
GRCBASE_EMAC0 + port*0x400 + EMAC_REG_EMAC_MODE,
mode);
elink_set_led(params, vars, ELINK_LED_MODE_OPER, vars->line_speed);
return ELINK_STATUS_OK;
}
static void elink_set_preemphasis(struct elink_phy *phy,
struct elink_params *params)
{
uint16_t bank, i = 0;
struct bxe_softc *sc = params->sc;
for (bank = MDIO_REG_BANK_RX0, i = 0; bank <= MDIO_REG_BANK_RX3;
bank += (MDIO_REG_BANK_RX1-MDIO_REG_BANK_RX0), i++) {
CL22_WR_OVER_CL45(sc, phy,
bank,
MDIO_RX0_RX_EQ_BOOST,
phy->rx_preemphasis[i]);
}
for (bank = MDIO_REG_BANK_TX0, i = 0; bank <= MDIO_REG_BANK_TX3;
bank += (MDIO_REG_BANK_TX1 - MDIO_REG_BANK_TX0), i++) {
CL22_WR_OVER_CL45(sc, phy,
bank,
MDIO_TX0_TX_DRIVER,
phy->tx_preemphasis[i]);
}
}
static void elink_xgxs_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t enable_cl73 = (ELINK_SINGLE_MEDIA_DIRECT(params) ||
(params->loopback_mode == ELINK_LOOPBACK_XGXS));
if (!(vars->phy_flags & PHY_SGMII_FLAG)) {
if (ELINK_SINGLE_MEDIA_DIRECT(params) &&
(params->feature_config_flags &
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED))
elink_set_preemphasis(phy, params);
/* Forced speed requested? */
if (vars->line_speed != ELINK_SPEED_AUTO_NEG ||
(ELINK_SINGLE_MEDIA_DIRECT(params) &&
params->loopback_mode == ELINK_LOOPBACK_EXT)) {
ELINK_DEBUG_P0(sc, "not SGMII, no AN\n");
/* Disable autoneg */
elink_set_autoneg(phy, params, vars, 0);
/* Program speed and duplex */
elink_program_serdes(phy, params, vars);
} else { /* AN_mode */
ELINK_DEBUG_P0(sc, "not SGMII, AN\n");
/* AN enabled */
elink_set_brcm_cl37_advertisement(phy, params);
/* Program duplex & pause advertisement (for aneg) */
elink_set_ieee_aneg_advertisement(phy, params,
vars->ieee_fc);
/* Enable autoneg */
elink_set_autoneg(phy, params, vars, enable_cl73);
/* Enable and restart AN */
elink_restart_autoneg(phy, params, enable_cl73);
}
} else { /* SGMII mode */
ELINK_DEBUG_P0(sc, "SGMII\n");
elink_initialize_sgmii_process(phy, params, vars);
}
}
static elink_status_t elink_prepare_xgxs(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
elink_status_t rc;
vars->phy_flags |= PHY_XGXS_FLAG;
if ((phy->req_line_speed &&
((phy->req_line_speed == ELINK_SPEED_100) ||
(phy->req_line_speed == ELINK_SPEED_10))) ||
(!phy->req_line_speed &&
(phy->speed_cap_mask >=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) &&
(phy->speed_cap_mask <
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) ||
(phy->type == PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT_SD))
vars->phy_flags |= PHY_SGMII_FLAG;
else
vars->phy_flags &= ~PHY_SGMII_FLAG;
elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc);
elink_set_aer_mmd(params, phy);
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
elink_set_master_ln(params, phy);
rc = elink_reset_unicore(params, phy, 0);
/* Reset the SerDes and wait for reset bit return low */
if (rc != ELINK_STATUS_OK)
return rc;
elink_set_aer_mmd(params, phy);
/* Setting the masterLn_def again after the reset */
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) {
elink_set_master_ln(params, phy);
elink_set_swap_lanes(params, phy);
}
return rc;
}
static uint16_t elink_wait_reset_complete(struct bxe_softc *sc,
struct elink_phy *phy,
struct elink_params *params)
{
uint16_t cnt, ctrl;
/* Wait for soft reset to get cleared up to 1 sec */
for (cnt = 0; cnt < 1000; cnt++) {
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE)
elink_cl22_read(sc, phy,
MDIO_PMA_REG_CTRL, &ctrl);
else
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL, &ctrl);
if (!(ctrl & (1<<15)))
break;
DELAY(1000 * 1);
}
if (cnt == 1000)
elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, params->port); // "Warning: PHY was not initialized,"
// " Port %d\n",
ELINK_DEBUG_P2(sc, "control reg 0x%x (after %d ms)\n", ctrl, cnt);
return cnt;
}
static void elink_link_int_enable(struct elink_params *params)
{
uint8_t port = params->port;
uint32_t mask;
struct bxe_softc *sc = params->sc;
/* Setting the status to report on link up for either XGXS or SerDes */
if (CHIP_IS_E3(sc)) {
mask = ELINK_NIG_MASK_XGXS0_LINK_STATUS;
if (!(ELINK_SINGLE_MEDIA_DIRECT(params)))
mask |= ELINK_NIG_MASK_MI_INT;
} else if (params->switch_cfg == ELINK_SWITCH_CFG_10G) {
mask = (ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_XGXS0_LINK_STATUS);
ELINK_DEBUG_P0(sc, "enabled XGXS interrupt\n");
if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) &&
params->phy[ELINK_INT_PHY].type !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) {
mask |= ELINK_NIG_MASK_MI_INT;
ELINK_DEBUG_P0(sc, "enabled external phy int\n");
}
} else { /* SerDes */
mask = ELINK_NIG_MASK_SERDES0_LINK_STATUS;
ELINK_DEBUG_P0(sc, "enabled SerDes interrupt\n");
if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) &&
params->phy[ELINK_INT_PHY].type !=
PORT_HW_CFG_SERDES_EXT_PHY_TYPE_NOT_CONN) {
mask |= ELINK_NIG_MASK_MI_INT;
ELINK_DEBUG_P0(sc, "enabled external phy int\n");
}
}
elink_bits_en(sc,
NIG_REG_MASK_INTERRUPT_PORT0 + port*4,
mask);
ELINK_DEBUG_P3(sc, "port %x, is_xgxs %x, int_status 0x%x\n", port,
(params->switch_cfg == ELINK_SWITCH_CFG_10G),
REG_RD(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4));
ELINK_DEBUG_P3(sc, " int_mask 0x%x, MI_INT %x, SERDES_LINK %x\n",
REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4),
REG_RD(sc, NIG_REG_EMAC0_STATUS_MISC_MI_INT + port*0x18),
REG_RD(sc, NIG_REG_SERDES0_STATUS_LINK_STATUS+port*0x3c));
ELINK_DEBUG_P2(sc, " 10G %x, XGXS_LINK %x\n",
REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK10G + port*0x68),
REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK_STATUS + port*0x68));
}
static void elink_rearm_latch_signal(struct bxe_softc *sc, uint8_t port,
uint8_t exp_mi_int)
{
uint32_t latch_status = 0;
/* Disable the MI INT ( external phy int ) by writing 1 to the
* status register. Link down indication is high-active-signal,
* so in this case we need to write the status to clear the XOR
*/
/* Read Latched signals */
latch_status = REG_RD(sc,
NIG_REG_LATCH_STATUS_0 + port*8);
ELINK_DEBUG_P1(sc, "latch_status = 0x%x\n", latch_status);
/* Handle only those with latched-signal=up.*/
if (exp_mi_int)
elink_bits_en(sc,
NIG_REG_STATUS_INTERRUPT_PORT0
+ port*4,
ELINK_NIG_STATUS_EMAC0_MI_INT);
else
elink_bits_dis(sc,
NIG_REG_STATUS_INTERRUPT_PORT0
+ port*4,
ELINK_NIG_STATUS_EMAC0_MI_INT);
if (latch_status & 1) {
/* For all latched-signal=up : Re-Arm Latch signals */
REG_WR(sc, NIG_REG_LATCH_STATUS_0 + port*8,
(latch_status & 0xfffe) | (latch_status & 1));
}
/* For all latched-signal=up,Write original_signal to status */
}
static void elink_link_int_ack(struct elink_params *params,
struct elink_vars *vars, uint8_t is_10g_plus)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
uint32_t mask;
/* First reset all status we assume only one line will be
* change at a time
*/
elink_bits_dis(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4,
(ELINK_NIG_STATUS_XGXS0_LINK10G |
ELINK_NIG_STATUS_XGXS0_LINK_STATUS |
ELINK_NIG_STATUS_SERDES0_LINK_STATUS));
if (vars->phy_link_up) {
if (USES_WARPCORE(sc))
mask = ELINK_NIG_STATUS_XGXS0_LINK_STATUS;
else {
if (is_10g_plus)
mask = ELINK_NIG_STATUS_XGXS0_LINK10G;
else if (params->switch_cfg == ELINK_SWITCH_CFG_10G) {
/* Disable the link interrupt by writing 1 to
* the relevant lane in the status register
*/
uint32_t ser_lane =
((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
mask = ((1 << ser_lane) <<
ELINK_NIG_STATUS_XGXS0_LINK_STATUS_SIZE);
} else
mask = ELINK_NIG_STATUS_SERDES0_LINK_STATUS;
}
ELINK_DEBUG_P1(sc, "Ack link up interrupt with mask 0x%x\n",
mask);
elink_bits_en(sc,
NIG_REG_STATUS_INTERRUPT_PORT0 + port*4,
mask);
}
}
static elink_status_t elink_format_ver(uint32_t num, uint8_t *str, uint16_t *len)
{
uint8_t *str_ptr = str;
uint32_t mask = 0xf0000000;
uint8_t shift = 8*4;
uint8_t digit;
uint8_t remove_leading_zeros = 1;
if (*len < 10) {
/* Need more than 10chars for this format */
*str_ptr = '\0';
(*len)--;
return ELINK_STATUS_ERROR;
}
while (shift > 0) {
shift -= 4;
digit = ((num & mask) >> shift);
if (digit == 0 && remove_leading_zeros) {
mask = mask >> 4;
continue;
} else if (digit < 0xa)
*str_ptr = digit + '0';
else
*str_ptr = digit - 0xa + 'a';
remove_leading_zeros = 0;
str_ptr++;
(*len)--;
mask = mask >> 4;
if (shift == 4*4) {
*str_ptr = '.';
str_ptr++;
(*len)--;
remove_leading_zeros = 1;
}
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_null_format_ver(uint32_t spirom_ver, uint8_t *str, uint16_t *len)
{
str[0] = '\0';
(*len)--;
return ELINK_STATUS_OK;
}
elink_status_t elink_get_ext_phy_fw_version(struct elink_params *params, uint8_t *version,
uint16_t len)
{
struct bxe_softc *sc;
uint32_t spirom_ver = 0;
elink_status_t status = ELINK_STATUS_OK;
uint8_t *ver_p = version;
uint16_t remain_len = len;
if (version == NULL || params == NULL)
return ELINK_STATUS_ERROR;
sc = params->sc;
/* Extract first external phy*/
version[0] = '\0';
spirom_ver = REG_RD(sc, params->phy[ELINK_EXT_PHY1].ver_addr);
if (params->phy[ELINK_EXT_PHY1].format_fw_ver) {
status |= params->phy[ELINK_EXT_PHY1].format_fw_ver(spirom_ver,
ver_p,
&remain_len);
ver_p += (len - remain_len);
}
if ((params->num_phys == ELINK_MAX_PHYS) &&
(params->phy[ELINK_EXT_PHY2].ver_addr != 0)) {
spirom_ver = REG_RD(sc, params->phy[ELINK_EXT_PHY2].ver_addr);
if (params->phy[ELINK_EXT_PHY2].format_fw_ver) {
*ver_p = '/';
ver_p++;
remain_len--;
status |= params->phy[ELINK_EXT_PHY2].format_fw_ver(
spirom_ver,
ver_p,
&remain_len);
ver_p = version + (len - remain_len);
}
}
*ver_p = '\0';
return status;
}
static void elink_set_xgxs_loopback(struct elink_phy *phy,
struct elink_params *params)
{
uint8_t port = params->port;
struct bxe_softc *sc = params->sc;
if (phy->req_line_speed != ELINK_SPEED_1000) {
uint32_t md_devad = 0;
ELINK_DEBUG_P0(sc, "XGXS 10G loopback enable\n");
if (!CHIP_IS_E3(sc)) {
/* Change the uni_phy_addr in the nig */
md_devad = REG_RD(sc, (NIG_REG_XGXS0_CTRL_MD_DEVAD +
port*0x18));
REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + port*0x18,
0x5);
}
elink_cl45_write(sc, phy,
5,
(MDIO_REG_BANK_AER_BLOCK +
(MDIO_AER_BLOCK_AER_REG & 0xf)),
0x2800);
elink_cl45_write(sc, phy,
5,
(MDIO_REG_BANK_CL73_IEEEB0 +
(MDIO_CL73_IEEEB0_CL73_AN_CONTROL & 0xf)),
0x6041);
DELAY(1000 * 200);
/* Set aer mmd back */
elink_set_aer_mmd(params, phy);
if (!CHIP_IS_E3(sc)) {
/* And md_devad */
REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + port*0x18,
md_devad);
}
} else {
uint16_t mii_ctrl;
ELINK_DEBUG_P0(sc, "XGXS 1G loopback enable\n");
elink_cl45_read(sc, phy, 5,
(MDIO_REG_BANK_COMBO_IEEE0 +
(MDIO_COMBO_IEEE0_MII_CONTROL & 0xf)),
&mii_ctrl);
elink_cl45_write(sc, phy, 5,
(MDIO_REG_BANK_COMBO_IEEE0 +
(MDIO_COMBO_IEEE0_MII_CONTROL & 0xf)),
mii_ctrl |
MDIO_COMBO_IEEO_MII_CONTROL_LOOPBACK);
}
}
elink_status_t elink_set_led(struct elink_params *params,
struct elink_vars *vars, uint8_t mode, uint32_t speed)
{
uint8_t port = params->port;
uint16_t hw_led_mode = params->hw_led_mode;
elink_status_t rc = ELINK_STATUS_OK;
uint8_t phy_idx;
uint32_t tmp;
uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P2(sc, "elink_set_led: port %x, mode %d\n", port, mode);
ELINK_DEBUG_P2(sc, "speed 0x%x, hw_led_mode 0x%x\n",
speed, hw_led_mode);
/* In case */
for (phy_idx = ELINK_EXT_PHY1; phy_idx < ELINK_MAX_PHYS; phy_idx++) {
if (params->phy[phy_idx].set_link_led) {
params->phy[phy_idx].set_link_led(
&params->phy[phy_idx], params, mode);
}
}
#ifdef ELINK_INCLUDE_EMUL
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC)
return rc;
#endif
switch (mode) {
case ELINK_LED_MODE_FRONT_PANEL_OFF:
case ELINK_LED_MODE_OFF:
REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 0);
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4,
SHARED_HW_CFG_LED_MAC1);
tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED);
if (params->phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE)
tmp &= ~(EMAC_LED_1000MB_OVERRIDE |
EMAC_LED_100MB_OVERRIDE |
EMAC_LED_10MB_OVERRIDE);
else
tmp |= EMAC_LED_OVERRIDE;
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, tmp);
break;
case ELINK_LED_MODE_OPER:
/* For all other phys, OPER mode is same as ON, so in case
* link is down, do nothing
*/
if (!vars->link_up)
break;
case ELINK_LED_MODE_ON:
if (((params->phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727) ||
(params->phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722)) &&
CHIP_IS_E2(sc) && params->num_phys == 2) {
/* This is a work-around for E2+8727 Configurations */
if (mode == ELINK_LED_MODE_ON ||
speed == ELINK_SPEED_10000){
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0);
REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 1);
tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED,
(tmp | EMAC_LED_OVERRIDE));
/* Return here without enabling traffic
* LED blink and setting rate in ON mode.
* In oper mode, enabling LED blink
* and setting rate is needed.
*/
if (mode == ELINK_LED_MODE_ON)
return rc;
}
} else if (ELINK_SINGLE_MEDIA_DIRECT(params)) {
/* This is a work-around for HW issue found when link
* is up in CL73
*/
if ((!CHIP_IS_E3(sc)) ||
(CHIP_IS_E3(sc) &&
mode == ELINK_LED_MODE_ON))
REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 1);
if (CHIP_IS_E1x(sc) ||
CHIP_IS_E2(sc) ||
(mode == ELINK_LED_MODE_ON))
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0);
else
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4,
hw_led_mode);
} else if ((params->phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) &&
(mode == ELINK_LED_MODE_ON)) {
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0);
tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, tmp |
EMAC_LED_OVERRIDE | EMAC_LED_1000MB_OVERRIDE);
/* Break here; otherwise, it'll disable the
* intended override.
*/
break;
} else {
uint32_t nig_led_mode = ((params->hw_led_mode <<
SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY2) ?
(SHARED_HW_CFG_LED_PHY1 >>
SHARED_HW_CFG_LED_MODE_SHIFT) : hw_led_mode;
REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4,
nig_led_mode);
}
REG_WR(sc, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0 + port*4, 0);
/* Set blinking rate to ~15.9Hz */
if (CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_P0 + port*4,
LED_BLINK_RATE_VAL_E3);
else
REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_P0 + port*4,
LED_BLINK_RATE_VAL_E1X_E2);
REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_ENA_P0 +
port*4, 1);
tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED);
elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED,
(tmp & (~EMAC_LED_OVERRIDE)));
if (CHIP_IS_E1(sc) &&
((speed == ELINK_SPEED_2500) ||
(speed == ELINK_SPEED_1000) ||
(speed == ELINK_SPEED_100) ||
(speed == ELINK_SPEED_10))) {
/* For speeds less than 10G LED scheme is different */
REG_WR(sc, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0
+ port*4, 1);
REG_WR(sc, NIG_REG_LED_CONTROL_TRAFFIC_P0 +
port*4, 0);
REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_TRAFFIC_P0 +
port*4, 1);
}
break;
default:
rc = ELINK_STATUS_ERROR;
ELINK_DEBUG_P1(sc, "elink_set_led: Invalid led mode %d\n",
mode);
break;
}
return rc;
}
/* This function comes to reflect the actual link state read DIRECTLY from the
* HW
*/
elink_status_t elink_test_link(struct elink_params *params, struct elink_vars *vars,
uint8_t is_serdes)
{
struct bxe_softc *sc = params->sc;
uint16_t gp_status = 0, phy_index = 0;
uint8_t ext_phy_link_up = 0, serdes_phy_type;
struct elink_vars temp_vars;
struct elink_phy *int_phy = &params->phy[ELINK_INT_PHY];
#ifdef ELINK_INCLUDE_FPGA
if (CHIP_REV_IS_FPGA(sc))
return ELINK_STATUS_OK;
#endif
#ifdef ELINK_INCLUDE_EMUL
if (CHIP_REV_IS_EMUL(sc))
return ELINK_STATUS_OK;
#endif
if (CHIP_IS_E3(sc)) {
uint16_t link_up;
if (params->req_line_speed[ELINK_LINK_CONFIG_IDX(ELINK_INT_PHY)]
> ELINK_SPEED_10000) {
/* Check 20G link */
elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD,
1, &link_up);
elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD,
1, &link_up);
link_up &= (1<<2);
} else {
/* Check 10G link and below*/
uint8_t lane = elink_get_warpcore_lane(int_phy, params);
elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_1,
&gp_status);
gp_status = ((gp_status >> 8) & 0xf) |
((gp_status >> 12) & 0xf);
link_up = gp_status & (1 << lane);
}
if (!link_up)
return ELINK_STATUS_NO_LINK;
} else {
CL22_RD_OVER_CL45(sc, int_phy,
MDIO_REG_BANK_GP_STATUS,
MDIO_GP_STATUS_TOP_AN_STATUS1,
&gp_status);
/* Link is up only if both local phy and external phy are up */
if (!(gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS))
return ELINK_STATUS_NO_LINK;
}
/* In XGXS loopback mode, do not check external PHY */
if (params->loopback_mode == ELINK_LOOPBACK_XGXS)
return ELINK_STATUS_OK;
switch (params->num_phys) {
case 1:
/* No external PHY */
return ELINK_STATUS_OK;
case 2:
ext_phy_link_up = params->phy[ELINK_EXT_PHY1].read_status(
&params->phy[ELINK_EXT_PHY1],
params, &temp_vars);
break;
case 3: /* Dual Media */
for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys;
phy_index++) {
serdes_phy_type = ((params->phy[phy_index].media_type ==
ELINK_ETH_PHY_SFPP_10G_FIBER) ||
(params->phy[phy_index].media_type ==
ELINK_ETH_PHY_SFP_1G_FIBER) ||
(params->phy[phy_index].media_type ==
ELINK_ETH_PHY_XFP_FIBER) ||
(params->phy[phy_index].media_type ==
ELINK_ETH_PHY_DA_TWINAX));
if (is_serdes != serdes_phy_type)
continue;
if (params->phy[phy_index].read_status) {
ext_phy_link_up |=
params->phy[phy_index].read_status(
&params->phy[phy_index],
params, &temp_vars);
}
}
break;
}
if (ext_phy_link_up)
return ELINK_STATUS_OK;
return ELINK_STATUS_NO_LINK;
}
static elink_status_t elink_link_initialize(struct elink_params *params,
struct elink_vars *vars)
{
uint8_t phy_index, non_ext_phy;
struct bxe_softc *sc = params->sc;
/* In case of external phy existence, the line speed would be the
* line speed linked up by the external phy. In case it is direct
* only, then the line_speed during initialization will be
* equal to the req_line_speed
*/
vars->line_speed = params->phy[ELINK_INT_PHY].req_line_speed;
/* Initialize the internal phy in case this is a direct board
* (no external phys), or this board has external phy which requires
* to first.
*/
if (!USES_WARPCORE(sc))
elink_prepare_xgxs(&params->phy[ELINK_INT_PHY], params, vars);
/* init ext phy and enable link state int */
non_ext_phy = (ELINK_SINGLE_MEDIA_DIRECT(params) ||
(params->loopback_mode == ELINK_LOOPBACK_XGXS));
if (non_ext_phy ||
(params->phy[ELINK_EXT_PHY1].flags & ELINK_FLAGS_INIT_XGXS_FIRST) ||
(params->loopback_mode == ELINK_LOOPBACK_EXT_PHY)) {
struct elink_phy *phy = &params->phy[ELINK_INT_PHY];
if (vars->line_speed == ELINK_SPEED_AUTO_NEG &&
(CHIP_IS_E1x(sc) ||
CHIP_IS_E2(sc)))
elink_set_parallel_detection(phy, params);
if (params->phy[ELINK_INT_PHY].config_init)
params->phy[ELINK_INT_PHY].config_init(phy, params, vars);
}
/* Re-read this value in case it was changed inside config_init due to
* limitations of optic module
*/
vars->line_speed = params->phy[ELINK_INT_PHY].req_line_speed;
/* Init external phy*/
if (non_ext_phy) {
if (params->phy[ELINK_INT_PHY].supported &
ELINK_SUPPORTED_FIBRE)
vars->link_status |= LINK_STATUS_SERDES_LINK;
} else {
for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys;
phy_index++) {
/* No need to initialize second phy in case of first
* phy only selection. In case of second phy, we do
* need to initialize the first phy, since they are
* connected.
*/
if (params->phy[phy_index].supported &
ELINK_SUPPORTED_FIBRE)
vars->link_status |= LINK_STATUS_SERDES_LINK;
if (phy_index == ELINK_EXT_PHY2 &&
(elink_phy_selection(params) ==
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY)) {
ELINK_DEBUG_P0(sc,
"Not initializing second phy\n");
continue;
}
params->phy[phy_index].config_init(
&params->phy[phy_index],
params, vars);
}
}
/* Reset the interrupt indication after phy was initialized */
elink_bits_dis(sc, NIG_REG_STATUS_INTERRUPT_PORT0 +
params->port*4,
(ELINK_NIG_STATUS_XGXS0_LINK10G |
ELINK_NIG_STATUS_XGXS0_LINK_STATUS |
ELINK_NIG_STATUS_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
return ELINK_STATUS_OK;
}
static void elink_int_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
/* Reset the SerDes/XGXS */
REG_WR(params->sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR,
(0x1ff << (params->port*16)));
}
static void elink_common_ext_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t gpio_port;
/* HW reset */
if (CHIP_IS_E2(sc))
gpio_port = SC_PATH(sc);
else
gpio_port = params->port;
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW,
gpio_port);
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_LOW,
gpio_port);
ELINK_DEBUG_P0(sc, "reset external PHY\n");
}
static elink_status_t elink_update_link_down(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t port = params->port;
ELINK_DEBUG_P1(sc, "Port %x: Link is down\n", port);
elink_set_led(params, vars, ELINK_LED_MODE_OFF, 0);
vars->phy_flags &= ~PHY_PHYSICAL_LINK_FLAG;
/* Indicate no mac active */
vars->mac_type = ELINK_MAC_TYPE_NONE;
/* Update shared memory */
vars->link_status &= ~ELINK_LINK_UPDATE_MASK;
vars->line_speed = 0;
elink_update_mng(params, vars->link_status);
/* Activate nig drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 1);
/* Disable emac */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0);
DELAY(1000 * 10);
/* Reset BigMac/Xmac */
if (CHIP_IS_E1x(sc) ||
CHIP_IS_E2(sc))
elink_set_bmac_rx(sc, params->chip_id, params->port, 0);
if (CHIP_IS_E3(sc)) {
/* Prevent LPI Generation by chip */
REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 + (params->port << 2),
0);
REG_WR(sc, MISC_REG_CPMU_LP_MASK_ENT_P0 + (params->port << 2),
0);
vars->eee_status &= ~(SHMEM_EEE_LP_ADV_STATUS_MASK |
SHMEM_EEE_ACTIVE_BIT);
elink_update_mng_eee(params, vars->eee_status);
elink_set_xmac_rxtx(params, 0);
elink_set_umac_rxtx(params, 0);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_update_link_up(struct elink_params *params,
struct elink_vars *vars,
uint8_t link_10g)
{
struct bxe_softc *sc = params->sc;
uint8_t phy_idx, port = params->port;
elink_status_t rc = ELINK_STATUS_OK;
vars->link_status |= (LINK_STATUS_LINK_UP |
LINK_STATUS_PHYSICAL_LINK_FLAG);
vars->phy_flags |= PHY_PHYSICAL_LINK_FLAG;
if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)
vars->link_status |=
LINK_STATUS_TX_FLOW_CONTROL_ENABLED;
if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX)
vars->link_status |=
LINK_STATUS_RX_FLOW_CONTROL_ENABLED;
if (USES_WARPCORE(sc)) {
if (link_10g) {
if (elink_xmac_enable(params, vars, 0) ==
ELINK_STATUS_NO_LINK) {
ELINK_DEBUG_P0(sc, "Found errors on XMAC\n");
vars->link_up = 0;
vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG;
vars->link_status &= ~LINK_STATUS_LINK_UP;
}
} else
elink_umac_enable(params, vars, 0);
elink_set_led(params, vars,
ELINK_LED_MODE_OPER, vars->line_speed);
if ((vars->eee_status & SHMEM_EEE_ACTIVE_BIT) &&
(vars->eee_status & SHMEM_EEE_LPI_REQUESTED_BIT)) {
ELINK_DEBUG_P0(sc, "Enabling LPI assertion\n");
REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 +
(params->port << 2), 1);
REG_WR(sc, MISC_REG_CPMU_LP_DR_ENABLE, 1);
REG_WR(sc, MISC_REG_CPMU_LP_MASK_ENT_P0 +
(params->port << 2), 0xfc20);
}
}
if ((CHIP_IS_E1x(sc) ||
CHIP_IS_E2(sc))) {
if (link_10g) {
if (elink_bmac_enable(params, vars, 0, 1) ==
ELINK_STATUS_NO_LINK) {
ELINK_DEBUG_P0(sc, "Found errors on BMAC\n");
vars->link_up = 0;
vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG;
vars->link_status &= ~LINK_STATUS_LINK_UP;
}
elink_set_led(params, vars,
ELINK_LED_MODE_OPER, ELINK_SPEED_10000);
} else {
rc = elink_emac_program(params, vars);
elink_emac_enable(params, vars, 0);
/* AN complete? */
if ((vars->link_status &
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE)
&& (!(vars->phy_flags & PHY_SGMII_FLAG)) &&
ELINK_SINGLE_MEDIA_DIRECT(params))
elink_set_gmii_tx_driver(params);
}
}
/* PBF - link up */
if (CHIP_IS_E1x(sc))
rc |= elink_pbf_update(params, vars->flow_ctrl,
vars->line_speed);
/* Disable drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 0);
/* Update shared memory */
elink_update_mng(params, vars->link_status);
elink_update_mng_eee(params, vars->eee_status);
/* Check remote fault */
for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) {
if (params->phy[phy_idx].flags & ELINK_FLAGS_TX_ERROR_CHECK) {
elink_check_half_open_conn(params, vars, 0);
break;
}
}
DELAY(1000 * 20);
return rc;
}
static void elink_chng_link_count(struct elink_params *params, uint8_t clear)
{
struct bxe_softc *sc = params->sc;
uint32_t addr, val;
/* Verify the link_change_count is supported by the MFW */
if (!(SHMEM2_HAS(sc, link_change_count)))
return;
addr = params->shmem2_base +
offsetof(struct shmem2_region, link_change_count[params->port]);
if (clear)
val = 0;
else
val = REG_RD(sc, addr) + 1;
REG_WR(sc, addr, val);
}
/* The elink_link_update function should be called upon link
* interrupt.
* Link is considered up as follows:
* - DIRECT_SINGLE_MEDIA - Only XGXS link (internal link) needs
* to be up
* - SINGLE_MEDIA - The link between the 577xx and the external
* phy (XGXS) need to up as well as the external link of the
* phy (PHY_EXT1)
* - DUAL_MEDIA - The link between the 577xx and the first
* external phy needs to be up, and at least one of the 2
* external phy link must be up.
*/
elink_status_t elink_link_update(struct elink_params *params, struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
struct elink_vars phy_vars[ELINK_MAX_PHYS];
uint8_t port = params->port;
uint8_t link_10g_plus, phy_index;
uint32_t prev_link_status = vars->link_status;
uint8_t ext_phy_link_up = 0, cur_link_up;
elink_status_t rc = ELINK_STATUS_OK;
uint16_t ext_phy_line_speed = 0, prev_line_speed = vars->line_speed;
uint8_t active_external_phy = ELINK_INT_PHY;
vars->phy_flags &= ~PHY_HALF_OPEN_CONN_FLAG;
vars->link_status &= ~ELINK_LINK_UPDATE_MASK;
for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys;
phy_index++) {
phy_vars[phy_index].flow_ctrl = 0;
phy_vars[phy_index].link_status = 0;
phy_vars[phy_index].line_speed = 0;
phy_vars[phy_index].duplex = DUPLEX_FULL;
phy_vars[phy_index].phy_link_up = 0;
phy_vars[phy_index].link_up = 0;
phy_vars[phy_index].fault_detected = 0;
/* different consideration, since vars holds inner state */
phy_vars[phy_index].eee_status = vars->eee_status;
}
if (USES_WARPCORE(sc))
elink_set_aer_mmd(params, &params->phy[ELINK_INT_PHY]);
ELINK_DEBUG_P3(sc, "port %x, XGXS?%x, int_status 0x%x\n",
port, (vars->phy_flags & PHY_XGXS_FLAG),
REG_RD(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4));
ELINK_DEBUG_P3(sc, "int_mask 0x%x MI_INT %x, SERDES_LINK %x\n",
REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4),
REG_RD(sc, NIG_REG_EMAC0_STATUS_MISC_MI_INT + port*0x18) > 0,
REG_RD(sc, NIG_REG_SERDES0_STATUS_LINK_STATUS + port*0x3c));
ELINK_DEBUG_P2(sc, " 10G %x, XGXS_LINK %x\n",
REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK10G + port*0x68),
REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK_STATUS + port*0x68));
/* Disable emac */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0);
/* Step 1:
* Check external link change only for external phys, and apply
* priority selection between them in case the link on both phys
* is up. Note that instead of the common vars, a temporary
* vars argument is used since each phy may have different link/
* speed/duplex result
*/
for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys;
phy_index++) {
struct elink_phy *phy = &params->phy[phy_index];
if (!phy->read_status)
continue;
/* Read link status and params of this ext phy */
cur_link_up = phy->read_status(phy, params,
&phy_vars[phy_index]);
if (cur_link_up) {
ELINK_DEBUG_P1(sc, "phy in index %d link is up\n",
phy_index);
} else {
ELINK_DEBUG_P1(sc, "phy in index %d link is down\n",
phy_index);
continue;
}
if (!ext_phy_link_up) {
ext_phy_link_up = 1;
active_external_phy = phy_index;
} else {
switch (elink_phy_selection(params)) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
/* In this option, the first PHY makes sure to pass the
* traffic through itself only.
* Its not clear how to reset the link on the second phy
*/
active_external_phy = ELINK_EXT_PHY1;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
/* In this option, the first PHY makes sure to pass the
* traffic through the second PHY.
*/
active_external_phy = ELINK_EXT_PHY2;
break;
default:
/* Link indication on both PHYs with the following cases
* is invalid:
* - FIRST_PHY means that second phy wasn't initialized,
* hence its link is expected to be down
* - SECOND_PHY means that first phy should not be able
* to link up by itself (using configuration)
* - DEFAULT should be overriden during initialiazation
*/
ELINK_DEBUG_P1(sc, "Invalid link indication"
"mpc=0x%x. DISABLING LINK !!!\n",
params->multi_phy_config);
ext_phy_link_up = 0;
break;
}
}
}
prev_line_speed = vars->line_speed;
/* Step 2:
* Read the status of the internal phy. In case of
* DIRECT_SINGLE_MEDIA board, this link is the external link,
* otherwise this is the link between the 577xx and the first
* external phy
*/
if (params->phy[ELINK_INT_PHY].read_status)
params->phy[ELINK_INT_PHY].read_status(
&params->phy[ELINK_INT_PHY],
params, vars);
/* The INT_PHY flow control reside in the vars. This include the
* case where the speed or flow control are not set to AUTO.
* Otherwise, the active external phy flow control result is set
* to the vars. The ext_phy_line_speed is needed to check if the
* speed is different between the internal phy and external phy.
* This case may be result of intermediate link speed change.
*/
if (active_external_phy > ELINK_INT_PHY) {
vars->flow_ctrl = phy_vars[active_external_phy].flow_ctrl;
/* Link speed is taken from the XGXS. AN and FC result from
* the external phy.
*/
vars->link_status |= phy_vars[active_external_phy].link_status;
/* if active_external_phy is first PHY and link is up - disable
* disable TX on second external PHY
*/
if (active_external_phy == ELINK_EXT_PHY1) {
if (params->phy[ELINK_EXT_PHY2].phy_specific_func) {
ELINK_DEBUG_P0(sc,
"Disabling TX on EXT_PHY2\n");
params->phy[ELINK_EXT_PHY2].phy_specific_func(
&params->phy[ELINK_EXT_PHY2],
params, ELINK_DISABLE_TX);
}
}
ext_phy_line_speed = phy_vars[active_external_phy].line_speed;
vars->duplex = phy_vars[active_external_phy].duplex;
if (params->phy[active_external_phy].supported &
ELINK_SUPPORTED_FIBRE)
vars->link_status |= LINK_STATUS_SERDES_LINK;
else
vars->link_status &= ~LINK_STATUS_SERDES_LINK;
vars->eee_status = phy_vars[active_external_phy].eee_status;
ELINK_DEBUG_P1(sc, "Active external phy selected: %x\n",
active_external_phy);
}
ELINK_DEBUG_P3(sc, "vars : phy_flags = %x, mac_type = %x, phy_link_up = %x\n",
vars->phy_flags, vars->mac_type, vars->phy_link_up);
ELINK_DEBUG_P3(sc, "vars : link_up = %x, line_speed = %x, duplex = %x\n",
vars->link_up, vars->line_speed, vars->duplex);
ELINK_DEBUG_P3(sc, "vars : flow_ctrl = %x, ieee_fc = %x, link_status = %x\n",
vars->flow_ctrl, vars->ieee_fc, vars->link_status);
ELINK_DEBUG_P3(sc, "vars : eee_status = %x, fault_detected = %x, check_kr2_recovery_cnt = %x\n",
vars->eee_status, vars->fault_detected, vars->check_kr2_recovery_cnt);
ELINK_DEBUG_P3(sc, "vars : periodic_flags = %x, aeu_int_mask = %x, rx_tx_asic_rst = %x\n",
vars->periodic_flags, vars->aeu_int_mask, vars->rx_tx_asic_rst);
ELINK_DEBUG_P2(sc, "vars : turn_to_run_wc_rt = %x, rsrv2 = %x\n",
vars->turn_to_run_wc_rt, vars->rsrv2);
for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys;
phy_index++) {
if (params->phy[phy_index].flags &
ELINK_FLAGS_REARM_LATCH_SIGNAL) {
elink_rearm_latch_signal(sc, port,
phy_index ==
active_external_phy);
break;
}
}
ELINK_DEBUG_P3(sc, "vars->flow_ctrl = 0x%x, vars->link_status = 0x%x,"
" ext_phy_line_speed = %d\n", vars->flow_ctrl,
vars->link_status, ext_phy_line_speed);
/* Upon link speed change set the NIG into drain mode. Comes to
* deals with possible FIFO glitch due to clk change when speed
* is decreased without link down indicator
*/
if (vars->phy_link_up) {
if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) && ext_phy_link_up &&
(ext_phy_line_speed != vars->line_speed)) {
ELINK_DEBUG_P2(sc, "Internal link speed %d is"
" different than the external"
" link speed %d\n", vars->line_speed,
ext_phy_line_speed);
vars->phy_link_up = 0;
ELINK_DEBUG_P0(sc, "phy_link_up set to 0\n");
} else if (prev_line_speed != vars->line_speed) {
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4,
0);
DELAY(1000 * 1);
}
}
/* Anything 10 and over uses the bmac */
link_10g_plus = (vars->line_speed >= ELINK_SPEED_10000);
elink_link_int_ack(params, vars, link_10g_plus);
/* In case external phy link is up, and internal link is down
* (not initialized yet probably after link initialization, it
* needs to be initialized.
* Note that after link down-up as result of cable plug, the xgxs
* link would probably become up again without the need
* initialize it
*/
if (!(ELINK_SINGLE_MEDIA_DIRECT(params))) {
ELINK_DEBUG_P3(sc, "ext_phy_link_up = %d, int_link_up = %d,"
" init_preceding = %d\n", ext_phy_link_up,
vars->phy_link_up,
params->phy[ELINK_EXT_PHY1].flags &
ELINK_FLAGS_INIT_XGXS_FIRST);
if (!(params->phy[ELINK_EXT_PHY1].flags &
ELINK_FLAGS_INIT_XGXS_FIRST)
&& ext_phy_link_up && !vars->phy_link_up) {
vars->line_speed = ext_phy_line_speed;
if (vars->line_speed < ELINK_SPEED_1000)
vars->phy_flags |= PHY_SGMII_FLAG;
else
vars->phy_flags &= ~PHY_SGMII_FLAG;
if (params->phy[ELINK_INT_PHY].config_init)
params->phy[ELINK_INT_PHY].config_init(
&params->phy[ELINK_INT_PHY], params,
vars);
}
}
/* Link is up only if both local phy and external phy (in case of
* non-direct board) are up and no fault detected on active PHY.
*/
vars->link_up = (vars->phy_link_up &&
(ext_phy_link_up ||
ELINK_SINGLE_MEDIA_DIRECT(params)) &&
(phy_vars[active_external_phy].fault_detected == 0));
if(vars->link_up) {
ELINK_DEBUG_P0(sc, "local phy and external phy are up\n");
} else {
ELINK_DEBUG_P0(sc, "either local phy or external phy or both are down\n");
}
/* Update the PFC configuration in case it was changed */
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)
vars->link_status |= LINK_STATUS_PFC_ENABLED;
else
vars->link_status &= ~LINK_STATUS_PFC_ENABLED;
if (vars->link_up)
rc = elink_update_link_up(params, vars, link_10g_plus);
else
rc = elink_update_link_down(params, vars);
if ((prev_link_status ^ vars->link_status) & LINK_STATUS_LINK_UP)
elink_chng_link_count(params, 0);
/* Update MCP link status was changed */
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX)
elink_cb_fw_command(sc, DRV_MSG_CODE_LINK_STATUS_CHANGED, 0);
return rc;
}
/*****************************************************************************/
/* External Phy section */
/*****************************************************************************/
void elink_ext_phy_hw_reset(struct bxe_softc *sc, uint8_t port)
{
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
DELAY(1000 * 1);
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, port);
}
static void elink_save_spirom_version(struct bxe_softc *sc, uint8_t port,
uint32_t spirom_ver, uint32_t ver_addr)
{
ELINK_DEBUG_P3(sc, "FW version 0x%x:0x%x for port %d\n",
(uint16_t)(spirom_ver>>16), (uint16_t)spirom_ver, port);
if (ver_addr)
REG_WR(sc, ver_addr, spirom_ver);
}
static void elink_save_bcm_spirom_ver(struct bxe_softc *sc,
struct elink_phy *phy,
uint8_t port)
{
uint16_t fw_ver1, fw_ver2;
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER1, &fw_ver1);
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2, &fw_ver2);
elink_save_spirom_version(sc, port, (uint32_t)(fw_ver1<<16 | fw_ver2),
phy->ver_addr);
}
static void elink_ext_phy_10G_an_resolve(struct bxe_softc *sc,
struct elink_phy *phy,
struct elink_vars *vars)
{
uint16_t val;
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &val);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &val);
if (val & (1<<5))
vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
if ((val & (1<<0)) == 0)
vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED;
}
/******************************************************************/
/* common BCM8073/BCM8727 PHY SECTION */
/******************************************************************/
static void elink_8073_resolve_fc(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
if (phy->req_line_speed == ELINK_SPEED_10 ||
phy->req_line_speed == ELINK_SPEED_100) {
vars->flow_ctrl = phy->req_flow_ctrl;
return;
}
if (elink_ext_phy_resolve_fc(phy, params, vars) &&
(vars->flow_ctrl == ELINK_FLOW_CTRL_NONE)) {
uint16_t pause_result;
uint16_t ld_pause; /* local */
uint16_t lp_pause; /* link partner */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LD, &ld_pause);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LP, &lp_pause);
pause_result = (ld_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 5;
pause_result |= (lp_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 7;
elink_pause_resolve(phy, params, vars, pause_result);
ELINK_DEBUG_P1(sc, "Ext PHY CL37 pause result 0x%x\n",
pause_result);
}
}
static elink_status_t elink_8073_8727_external_rom_boot(struct bxe_softc *sc,
struct elink_phy *phy,
uint8_t port)
{
uint32_t count = 0;
uint16_t fw_ver1, fw_msgout;
elink_status_t rc = ELINK_STATUS_OK;
/* Boot port from external ROM */
/* EDC grst */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
0x0001);
/* Ucode reboot and rst */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
0x008c);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0001);
/* Reset internal microprocessor */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET);
/* Release srst bit */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* Delay 100ms per the PHY specifications */
DELAY(1000 * 100);
/* 8073 sometimes taking longer to download */
do {
count++;
if (count > 300) {
ELINK_DEBUG_P2(sc,
"elink_8073_8727_external_rom_boot port %x:"
"Download failed. fw version = 0x%x\n",
port, fw_ver1);
rc = ELINK_STATUS_ERROR;
break;
}
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER1, &fw_ver1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_M8051_MSGOUT_REG, &fw_msgout);
DELAY(1000 * 1);
} while (fw_ver1 == 0 || fw_ver1 == 0x4321 ||
((fw_msgout & 0xff) != 0x03 && (phy->type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073)));
/* Clear ser_boot_ctl bit */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0000);
elink_save_bcm_spirom_ver(sc, phy, port);
ELINK_DEBUG_P2(sc,
"elink_8073_8727_external_rom_boot port %x:"
"Download complete. fw version = 0x%x\n",
port, fw_ver1);
return rc;
}
/******************************************************************/
/* BCM8073 PHY SECTION */
/******************************************************************/
static elink_status_t elink_8073_is_snr_needed(struct bxe_softc *sc, struct elink_phy *phy)
{
/* This is only required for 8073A1, version 102 only */
uint16_t val;
/* Read 8073 HW revision*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_CHIP_REV, &val);
if (val != 1) {
/* No need to workaround in 8073 A1 */
return ELINK_STATUS_OK;
}
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2, &val);
/* SNR should be applied only for version 0x102 */
if (val != 0x102)
return ELINK_STATUS_OK;
return 1;
}
static elink_status_t elink_8073_xaui_wa(struct bxe_softc *sc, struct elink_phy *phy)
{
uint16_t val, cnt, cnt1 ;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_CHIP_REV, &val);
if (val > 0) {
/* No need to workaround in 8073 A1 */
return ELINK_STATUS_OK;
}
/* XAUI workaround in 8073 A0: */
/* After loading the boot ROM and restarting Autoneg, poll
* Dev1, Reg $C820:
*/
for (cnt = 0; cnt < 1000; cnt++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_SPEED_LINK_STATUS,
&val);
/* If bit [14] = 0 or bit [13] = 0, continue on with
* system initialization (XAUI work-around not required, as
* these bits indicate 2.5G or 1G link up).
*/
if (!(val & (1<<14)) || !(val & (1<<13))) {
ELINK_DEBUG_P0(sc, "XAUI work-around not required\n");
return ELINK_STATUS_OK;
} else if (!(val & (1<<15))) {
ELINK_DEBUG_P0(sc, "bit 15 went off\n");
/* If bit 15 is 0, then poll Dev1, Reg $C841 until it's
* MSB (bit15) goes to 1 (indicating that the XAUI
* workaround has completed), then continue on with
* system initialization.
*/
for (cnt1 = 0; cnt1 < 1000; cnt1++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_XAUI_WA, &val);
if (val & (1<<15)) {
ELINK_DEBUG_P0(sc,
"XAUI workaround has completed\n");
return ELINK_STATUS_OK;
}
DELAY(1000 * 3);
}
break;
}
DELAY(1000 * 3);
}
ELINK_DEBUG_P0(sc, "Warning: XAUI work-around timeout !!!\n");
return ELINK_STATUS_ERROR;
}
static void elink_807x_force_10G(struct bxe_softc *sc, struct elink_phy *phy)
{
/* Force KR or KX */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x2040);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0x000b);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_BCM_CTRL, 0x0000);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x0000);
}
static void elink_8073_set_pause_cl37(struct elink_params *params,
struct elink_phy *phy,
struct elink_vars *vars)
{
uint16_t cl37_val;
struct bxe_softc *sc = params->sc;
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &cl37_val);
cl37_val &= ~MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
/* Please refer to Table 28B-3 of 802.3ab-1999 spec. */
elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc);
if ((vars->ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC) {
cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC;
}
if ((vars->ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) {
cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC;
}
if ((vars->ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) {
cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
}
ELINK_DEBUG_P1(sc,
"Ext phy AN advertize cl37 0x%x\n", cl37_val);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, cl37_val);
DELAY(1000 * 500);
}
static void elink_8073_specific_func(struct elink_phy *phy,
struct elink_params *params,
uint32_t action)
{
struct bxe_softc *sc = params->sc;
switch (action) {
case ELINK_PHY_INIT:
/* Enable LASI */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, (1<<2));
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x0004);
break;
}
}
static elink_status_t elink_8073_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t val = 0, tmp1;
uint8_t gpio_port;
ELINK_DEBUG_P0(sc, "Init 8073\n");
if (CHIP_IS_E2(sc))
gpio_port = SC_PATH(sc);
else
gpio_port = params->port;
/* Restore normal power mode*/
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, gpio_port);
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, gpio_port);
elink_8073_specific_func(phy, params, ELINK_PHY_INIT);
elink_8073_set_pause_cl37(params, phy, vars);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &tmp1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &tmp1);
ELINK_DEBUG_P1(sc, "Before rom RX_ALARM(port1): 0x%x\n", tmp1);
/* Swap polarity if required - Must be done only in non-1G mode */
if (params->lane_config & PORT_HW_CFG_SWAP_PHY_POLARITY_ENABLED) {
/* Configure the 8073 to swap _P and _N of the KR lines */
ELINK_DEBUG_P0(sc, "Swapping polarity for the 8073\n");
/* 10G Rx/Tx and 1G Tx signal polarity swap */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL, &val);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL,
(val | (3<<9)));
}
/* Enable CL37 BAM */
if (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].default_cfg)) &
PORT_HW_CFG_ENABLE_BAM_ON_KR_ENABLED) {
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8073_BAM, &val);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8073_BAM, val | 1);
ELINK_DEBUG_P0(sc, "Enable CL37 BAM on KR\n");
}
if (params->loopback_mode == ELINK_LOOPBACK_EXT) {
elink_807x_force_10G(sc, phy);
ELINK_DEBUG_P0(sc, "Forced speed 10G on 807X\n");
return ELINK_STATUS_OK;
} else {
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_BCM_CTRL, 0x0002);
}
if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG) {
if (phy->req_line_speed == ELINK_SPEED_10000) {
val = (1<<7);
} else if (phy->req_line_speed == ELINK_SPEED_2500) {
val = (1<<5);
/* Note that 2.5G works only when used with 1G
* advertisement
*/
} else
val = (1<<5);
} else {
val = 0;
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
val |= (1<<7);
/* Note that 2.5G works only when used with 1G advertisement */
if (phy->speed_cap_mask &
(PORT_HW_CFG_SPEED_CAPABILITY_D0_1G |
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
val |= (1<<5);
ELINK_DEBUG_P1(sc, "807x autoneg val = 0x%x\n", val);
}
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV, val);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_2_5G, &tmp1);
if (((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G) &&
(phy->req_line_speed == ELINK_SPEED_AUTO_NEG)) ||
(phy->req_line_speed == ELINK_SPEED_2500)) {
uint16_t phy_ver;
/* Allow 2.5G for A1 and above */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_CHIP_REV,
&phy_ver);
ELINK_DEBUG_P0(sc, "Add 2.5G\n");
if (phy_ver > 0)
tmp1 |= 1;
else
tmp1 &= 0xfffe;
} else {
ELINK_DEBUG_P0(sc, "Disable 2.5G\n");
tmp1 &= 0xfffe;
}
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_2_5G, tmp1);
/* Add support for CL37 (passive mode) II */
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &tmp1);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD,
(tmp1 | ((phy->req_duplex == DUPLEX_FULL) ?
0x20 : 0x40)));
/* Add support for CL37 (passive mode) III */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000);
/* The SNR will improve about 2db by changing BW and FEE main
* tap. Rest commands are executed after link is up
* Change FFE main cursor to 5 in EDC register
*/
if (elink_8073_is_snr_needed(sc, phy))
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_EDC_FFE_MAIN,
0xFB0C);
/* Enable FEC (Forware Error Correction) Request in the AN */
elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV2, &tmp1);
tmp1 |= (1<<15);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV2, tmp1);
elink_ext_phy_set_pause(params, phy, vars);
/* Restart autoneg */
DELAY(1000 * 500);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200);
ELINK_DEBUG_P2(sc, "807x Autoneg Restart: Advertise 1G=%x, 10G=%x\n",
((val & (1<<5)) > 0), ((val & (1<<7)) > 0));
return ELINK_STATUS_OK;
}
static uint8_t elink_8073_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t link_up = 0;
uint16_t val1, val2;
uint16_t link_status = 0;
uint16_t an1000_status = 0;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1);
ELINK_DEBUG_P1(sc, "8703 LASI status 0x%x\n", val1);
/* Clear the interrupt LASI status register */
elink_cl45_read(sc, phy,
MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val2);
elink_cl45_read(sc, phy,
MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val1);
ELINK_DEBUG_P2(sc, "807x PCS status 0x%x->0x%x\n", val2, val1);
/* Clear MSG-OUT */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &val1);
/* Check the LASI */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &val2);
ELINK_DEBUG_P1(sc, "KR 0x9003 0x%x\n", val2);
/* Check the link status */
elink_cl45_read(sc, phy,
MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val2);
ELINK_DEBUG_P1(sc, "KR PCS status 0x%x\n", val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1);
link_up = ((val1 & 4) == 4);
ELINK_DEBUG_P1(sc, "PMA_REG_STATUS=0x%x\n", val1);
if (link_up &&
((phy->req_line_speed != ELINK_SPEED_10000))) {
if (elink_8073_xaui_wa(sc, phy) != 0)
return 0;
}
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &an1000_status);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &an1000_status);
/* Check the link status on 1.1.2 */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1);
ELINK_DEBUG_P3(sc, "KR PMA status 0x%x->0x%x,"
"an_link_status=0x%x\n", val2, val1, an1000_status);
link_up = (((val1 & 4) == 4) || (an1000_status & (1<<1)));
if (link_up && elink_8073_is_snr_needed(sc, phy)) {
/* The SNR will improve about 2dbby changing the BW and FEE main
* tap. The 1st write to change FFE main tap is set before
* restart AN. Change PLL Bandwidth in EDC register
*/
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PLL_BANDWIDTH,
0x26BC);
/* Change CDR Bandwidth in EDC register */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CDR_BANDWIDTH,
0x0333);
}
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_SPEED_LINK_STATUS,
&link_status);
/* Bits 0..2 --> speed detected, bits 13..15--> link is down */
if ((link_status & (1<<2)) && (!(link_status & (1<<15)))) {
link_up = 1;
vars->line_speed = ELINK_SPEED_10000;
ELINK_DEBUG_P1(sc, "port %x: External link up in 10G\n",
params->port);
} else if ((link_status & (1<<1)) && (!(link_status & (1<<14)))) {
link_up = 1;
vars->line_speed = ELINK_SPEED_2500;
ELINK_DEBUG_P1(sc, "port %x: External link up in 2.5G\n",
params->port);
} else if ((link_status & (1<<0)) && (!(link_status & (1<<13)))) {
link_up = 1;
vars->line_speed = ELINK_SPEED_1000;
ELINK_DEBUG_P1(sc, "port %x: External link up in 1G\n",
params->port);
} else {
link_up = 0;
ELINK_DEBUG_P1(sc, "port %x: External link is down\n",
params->port);
}
if (link_up) {
/* Swap polarity if required */
if (params->lane_config &
PORT_HW_CFG_SWAP_PHY_POLARITY_ENABLED) {
/* Configure the 8073 to swap P and N of the KR lines */
elink_cl45_read(sc, phy,
MDIO_XS_DEVAD,
MDIO_XS_REG_8073_RX_CTRL_PCIE, &val1);
/* Set bit 3 to invert Rx in 1G mode and clear this bit
* when it`s in 10G mode.
*/
if (vars->line_speed == ELINK_SPEED_1000) {
ELINK_DEBUG_P0(sc, "Swapping 1G polarity for"
"the 8073\n");
val1 |= (1<<3);
} else
val1 &= ~(1<<3);
elink_cl45_write(sc, phy,
MDIO_XS_DEVAD,
MDIO_XS_REG_8073_RX_CTRL_PCIE,
val1);
}
elink_ext_phy_10G_an_resolve(sc, phy, vars);
elink_8073_resolve_fc(phy, params, vars);
vars->duplex = DUPLEX_FULL;
}
if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) {
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG2, &val1);
if (val1 & (1<<5))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE;
if (val1 & (1<<7))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
}
return link_up;
}
static void elink_8073_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t gpio_port;
if (CHIP_IS_E2(sc))
gpio_port = SC_PATH(sc);
else
gpio_port = params->port;
ELINK_DEBUG_P1(sc, "Setting 8073 port %d into low power mode\n",
gpio_port);
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_LOW,
gpio_port);
}
/******************************************************************/
/* BCM8705 PHY SECTION */
/******************************************************************/
static elink_status_t elink_8705_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "init 8705\n");
/* Restore normal power mode*/
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port);
/* HW reset */
elink_ext_phy_hw_reset(sc, params->port);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0xa040);
elink_wait_reset_complete(sc, phy, params);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL, 0x8288);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, 0x7fbf);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CMU_PLL_BYPASS, 0x0100);
elink_cl45_write(sc, phy,
MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_CNTL, 0x1);
/* BCM8705 doesn't have microcode, hence the 0 */
elink_save_spirom_version(sc, params->port, params->shmem_base, 0);
return ELINK_STATUS_OK;
}
static uint8_t elink_8705_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint8_t link_up = 0;
uint16_t val1, rx_sd;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "read status 8705\n");
elink_cl45_read(sc, phy,
MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_STATUS, &val1);
ELINK_DEBUG_P1(sc, "8705 LASI status 0x%x\n", val1);
elink_cl45_read(sc, phy,
MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_STATUS, &val1);
ELINK_DEBUG_P1(sc, "8705 LASI status 0x%x\n", val1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_RX_SD, &rx_sd);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, 0xc809, &val1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, 0xc809, &val1);
ELINK_DEBUG_P1(sc, "8705 1.c809 val=0x%x\n", val1);
link_up = ((rx_sd & 0x1) && (val1 & (1<<9)) && ((val1 & (1<<8)) == 0));
if (link_up) {
vars->line_speed = ELINK_SPEED_10000;
elink_ext_phy_resolve_fc(phy, params, vars);
}
return link_up;
}
/******************************************************************/
/* SFP+ module Section */
/******************************************************************/
static void elink_set_disable_pmd_transmit(struct elink_params *params,
struct elink_phy *phy,
uint8_t pmd_dis)
{
struct bxe_softc *sc = params->sc;
/* Disable transmitter only for bootcodes which can enable it afterwards
* (for D3 link)
*/
if (pmd_dis) {
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED) {
ELINK_DEBUG_P0(sc, "Disabling PMD transmitter\n");
} else {
ELINK_DEBUG_P0(sc, "NOT disabling PMD transmitter\n");
return;
}
} else
ELINK_DEBUG_P0(sc, "Enabling PMD transmitter\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_DISABLE, pmd_dis);
}
static uint8_t elink_get_gpio_port(struct elink_params *params)
{
uint8_t gpio_port;
uint32_t swap_val, swap_override;
struct bxe_softc *sc = params->sc;
if (CHIP_IS_E2(sc))
gpio_port = SC_PATH(sc);
else
gpio_port = params->port;
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
return gpio_port ^ (swap_val && swap_override);
}
static void elink_sfp_e1e2_set_transmitter(struct elink_params *params,
struct elink_phy *phy,
uint8_t tx_en)
{
uint16_t val;
uint8_t port = params->port;
struct bxe_softc *sc = params->sc;
uint32_t tx_en_mode;
/* Disable/Enable transmitter ( TX laser of the SFP+ module.)*/
tx_en_mode = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].sfp_ctrl)) &
PORT_HW_CFG_TX_LASER_MASK;
ELINK_DEBUG_P3(sc, "Setting transmitter tx_en=%x for port %x "
"mode = %x\n", tx_en, port, tx_en_mode);
switch (tx_en_mode) {
case PORT_HW_CFG_TX_LASER_MDIO:
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
&val);
if (tx_en)
val &= ~(1<<15);
else
val |= (1<<15);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
val);
break;
case PORT_HW_CFG_TX_LASER_GPIO0:
case PORT_HW_CFG_TX_LASER_GPIO1:
case PORT_HW_CFG_TX_LASER_GPIO2:
case PORT_HW_CFG_TX_LASER_GPIO3:
{
uint16_t gpio_pin;
uint8_t gpio_port, gpio_mode;
if (tx_en)
gpio_mode = MISC_REGISTERS_GPIO_OUTPUT_HIGH;
else
gpio_mode = MISC_REGISTERS_GPIO_OUTPUT_LOW;
gpio_pin = tx_en_mode - PORT_HW_CFG_TX_LASER_GPIO0;
gpio_port = elink_get_gpio_port(params);
elink_cb_gpio_write(sc, gpio_pin, gpio_mode, gpio_port);
break;
}
default:
ELINK_DEBUG_P1(sc, "Invalid TX_LASER_MDIO 0x%x\n", tx_en_mode);
break;
}
}
static void elink_sfp_set_transmitter(struct elink_params *params,
struct elink_phy *phy,
uint8_t tx_en)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P1(sc, "Setting SFP+ transmitter to %d\n", tx_en);
if (CHIP_IS_E3(sc))
elink_sfp_e3_set_transmitter(params, phy, tx_en);
else
elink_sfp_e1e2_set_transmitter(params, phy, tx_en);
}
static elink_status_t elink_8726_read_sfp_module_eeprom(struct elink_phy *phy,
struct elink_params *params,
uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt,
uint8_t *o_buf, uint8_t is_init)
{
struct bxe_softc *sc = params->sc;
uint16_t val = 0;
uint16_t i;
if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) {
ELINK_DEBUG_P0(sc,
"Reading from eeprom is limited to 0xf\n");
return ELINK_STATUS_ERROR;
}
/* Set the read command byte count */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT,
(byte_cnt | (dev_addr << 8)));
/* Set the read command address */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR,
addr);
/* Activate read command */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
0x2c0f);
/* Wait up to 500us for command complete status */
for (i = 0; i < 100; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE)
break;
DELAY(5);
}
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) !=
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) {
ELINK_DEBUG_P1(sc,
"Got bad status 0x%x when reading from SFP+ EEPROM\n",
(val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK));
return ELINK_STATUS_ERROR;
}
/* Read the buffer */
for (i = 0; i < byte_cnt; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8726_TWO_WIRE_DATA_BUF + i, &val);
o_buf[i] = (uint8_t)(val & MDIO_PMA_REG_8726_TWO_WIRE_DATA_MASK);
}
for (i = 0; i < 100; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE)
return ELINK_STATUS_OK;
DELAY(1000 * 1);
}
return ELINK_STATUS_ERROR;
}
static void elink_warpcore_power_module(struct elink_params *params,
uint8_t power)
{
uint32_t pin_cfg;
struct bxe_softc *sc = params->sc;
pin_cfg = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].e3_sfp_ctrl)) &
PORT_HW_CFG_E3_PWR_DIS_MASK) >>
PORT_HW_CFG_E3_PWR_DIS_SHIFT;
if (pin_cfg == PIN_CFG_NA)
return;
ELINK_DEBUG_P2(sc, "Setting SFP+ module power to %d using pin cfg %d\n",
power, pin_cfg);
/* Low ==> corresponding SFP+ module is powered
* high ==> the SFP+ module is powered down
*/
elink_set_cfg_pin(sc, pin_cfg, power ^ 1);
}
static elink_status_t elink_warpcore_read_sfp_module_eeprom(struct elink_phy *phy,
struct elink_params *params,
uint8_t dev_addr,
uint16_t addr, uint8_t byte_cnt,
uint8_t *o_buf, uint8_t is_init)
{
elink_status_t rc = ELINK_STATUS_OK;
uint8_t i, j = 0, cnt = 0;
uint32_t data_array[4];
uint16_t addr32;
struct bxe_softc *sc = params->sc;
if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) {
ELINK_DEBUG_P0(sc,
"Reading from eeprom is limited to 16 bytes\n");
return ELINK_STATUS_ERROR;
}
/* 4 byte aligned address */
addr32 = addr & (~0x3);
do {
if ((!is_init) && (cnt == I2C_WA_PWR_ITER)) {
elink_warpcore_power_module(params, 0);
/* Note that 100us are not enough here */
DELAY(1000 * 1);
elink_warpcore_power_module(params, 1);
}
elink_bsc_module_sel(params);
rc = elink_bsc_read(sc, dev_addr, addr32, 0, byte_cnt,
data_array);
} while ((rc != ELINK_STATUS_OK) && (++cnt < I2C_WA_RETRY_CNT));
if (rc == ELINK_STATUS_OK) {
for (i = (addr - addr32); i < byte_cnt + (addr - addr32); i++) {
o_buf[j] = *((uint8_t *)data_array + i);
j++;
}
}
return rc;
}
static elink_status_t elink_8727_read_sfp_module_eeprom(struct elink_phy *phy,
struct elink_params *params,
uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt,
uint8_t *o_buf, uint8_t is_init)
{
struct bxe_softc *sc = params->sc;
uint16_t val, i;
if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) {
ELINK_DEBUG_P0(sc,
"Reading from eeprom is limited to 0xf\n");
return ELINK_STATUS_ERROR;
}
/* Set 2-wire transfer rate of SFP+ module EEPROM
* to 100Khz since some DACs(direct attached cables) do
* not work at 400Khz.
*/
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_TWO_WIRE_SLAVE_ADDR,
((dev_addr << 8) | 1));
/* Need to read from 1.8000 to clear it */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
&val);
/* Set the read command byte count */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT,
((byte_cnt < 2) ? 2 : byte_cnt));
/* Set the read command address */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR,
addr);
/* Set the destination address */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
0x8004,
MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF);
/* Activate read command */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
0x8002);
/* Wait appropriate time for two-wire command to finish before
* polling the status register
*/
DELAY(1000 * 1);
/* Wait up to 500us for command complete status */
for (i = 0; i < 100; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE)
break;
DELAY(5);
}
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) !=
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) {
ELINK_DEBUG_P1(sc,
"Got bad status 0x%x when reading from SFP+ EEPROM\n",
(val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK));
return ELINK_STATUS_TIMEOUT;
}
/* Read the buffer */
for (i = 0; i < byte_cnt; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF + i, &val);
o_buf[i] = (uint8_t)(val & MDIO_PMA_REG_8727_TWO_WIRE_DATA_MASK);
}
for (i = 0; i < 100; i++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE)
return ELINK_STATUS_OK;
DELAY(1000 * 1);
}
return ELINK_STATUS_ERROR;
}
elink_status_t elink_read_sfp_module_eeprom(struct elink_phy *phy,
struct elink_params *params, uint8_t dev_addr,
uint16_t addr, uint16_t byte_cnt, uint8_t *o_buf)
{
elink_status_t rc = 0;
struct bxe_softc *sc = params->sc;
uint8_t xfer_size;
uint8_t *user_data = o_buf;
read_sfp_module_eeprom_func_p read_func;
if ((dev_addr != 0xa0) && (dev_addr != 0xa2)) {
ELINK_DEBUG_P1(sc, "invalid dev_addr 0x%x\n", dev_addr);
return ELINK_STATUS_ERROR;
}
switch (phy->type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
read_func = elink_8726_read_sfp_module_eeprom;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722:
read_func = elink_8727_read_sfp_module_eeprom;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
read_func = elink_warpcore_read_sfp_module_eeprom;
break;
default:
return ELINK_OP_NOT_SUPPORTED;
}
while (!rc && (byte_cnt > 0)) {
xfer_size = (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) ?
ELINK_SFP_EEPROM_PAGE_SIZE : byte_cnt;
rc = read_func(phy, params, dev_addr, addr, xfer_size,
user_data, 0);
byte_cnt -= xfer_size;
user_data += xfer_size;
addr += xfer_size;
}
return rc;
}
static elink_status_t elink_get_edc_mode(struct elink_phy *phy,
struct elink_params *params,
uint16_t *edc_mode)
{
struct bxe_softc *sc = params->sc;
uint32_t sync_offset = 0, phy_idx, media_types;
uint8_t val[ELINK_SFP_EEPROM_FC_TX_TECH_ADDR + 1], check_limiting_mode = 0;
*edc_mode = ELINK_EDC_MODE_LIMITING;
phy->media_type = ELINK_ETH_PHY_UNSPECIFIED;
/* First check for copper cable */
if (elink_read_sfp_module_eeprom(phy,
params,
ELINK_I2C_DEV_ADDR_A0,
0,
ELINK_SFP_EEPROM_FC_TX_TECH_ADDR + 1,
(uint8_t *)val) != 0) {
ELINK_DEBUG_P0(sc, "Failed to read from SFP+ module EEPROM\n");
return ELINK_STATUS_ERROR;
}
params->link_attr_sync &= ~LINK_SFP_EEPROM_COMP_CODE_MASK;
params->link_attr_sync |= val[ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR] <<
LINK_SFP_EEPROM_COMP_CODE_SHIFT;
elink_update_link_attr(params, params->link_attr_sync);
switch (val[ELINK_SFP_EEPROM_CON_TYPE_ADDR]) {
case ELINK_SFP_EEPROM_CON_TYPE_VAL_COPPER:
{
uint8_t copper_module_type;
phy->media_type = ELINK_ETH_PHY_DA_TWINAX;
/* Check if its active cable (includes SFP+ module)
* of passive cable
*/
copper_module_type = val[ELINK_SFP_EEPROM_FC_TX_TECH_ADDR];
if (copper_module_type &
ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE) {
ELINK_DEBUG_P0(sc, "Active Copper cable detected\n");
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
*edc_mode = ELINK_EDC_MODE_ACTIVE_DAC;
else
check_limiting_mode = 1;
} else {
*edc_mode = ELINK_EDC_MODE_PASSIVE_DAC;
/* Even in case PASSIVE_DAC indication is not set,
* treat it as a passive DAC cable, since some cables
* don't have this indication.
*/
if (copper_module_type &
ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE) {
ELINK_DEBUG_P0(sc,
"Passive Copper cable detected\n");
} else {
ELINK_DEBUG_P0(sc,
"Unknown copper-cable-type\n");
}
}
break;
}
case ELINK_SFP_EEPROM_CON_TYPE_VAL_UNKNOWN:
case ELINK_SFP_EEPROM_CON_TYPE_VAL_LC:
case ELINK_SFP_EEPROM_CON_TYPE_VAL_RJ45:
check_limiting_mode = 1;
/* Module is considered as 1G in case it's NOT compliant with
* any 10G ethernet protocol, but is 1G Ethernet compliant.
*/
if (((val[ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR] &
(ELINK_SFP_EEPROM_10G_COMP_CODE_SR_MASK |
ELINK_SFP_EEPROM_10G_COMP_CODE_LR_MASK |
ELINK_SFP_EEPROM_10G_COMP_CODE_LRM_MASK)) == 0) &&
(val[ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR] != 0)) {
ELINK_DEBUG_P0(sc, "1G SFP module detected\n");
phy->media_type = ELINK_ETH_PHY_SFP_1G_FIBER;
if (phy->req_line_speed != ELINK_SPEED_1000) {
uint8_t gport = params->port;
phy->req_line_speed = ELINK_SPEED_1000;
if (!CHIP_IS_E1x(sc)) {
gport = SC_PATH(sc) +
(params->port << 1);
}
elink_cb_event_log(sc, ELINK_LOG_ID_NON_10G_MODULE, gport); //"Warning: Link speed was forced to 1000Mbps."
// " Current SFP module in port %d is not"
// " compliant with 10G Ethernet\n",
}
if (val[ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR] &
ELINK_SFP_EEPROM_1G_COMP_CODE_BASE_T) {
/* Some 1G-baseT modules will not link up,
* unless TX_EN is toggled with long delay in
* between.
*/
elink_sfp_set_transmitter(params, phy, 0);
DELAY(1000 * 40);
elink_sfp_set_transmitter(params, phy, 1);
}
} else {
int idx, cfg_idx = 0;
ELINK_DEBUG_P0(sc, "10G Optic module detected\n");
for (idx = ELINK_INT_PHY; idx < ELINK_MAX_PHYS; idx++) {
if (params->phy[idx].type == phy->type) {
cfg_idx = ELINK_LINK_CONFIG_IDX(idx);
break;
}
}
phy->media_type = ELINK_ETH_PHY_SFPP_10G_FIBER;
phy->req_line_speed = params->req_line_speed[cfg_idx];
}
break;
default:
ELINK_DEBUG_P1(sc, "Unable to determine module type 0x%x !!!\n",
val[ELINK_SFP_EEPROM_CON_TYPE_ADDR]);
return ELINK_STATUS_ERROR;
}
sync_offset = params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].media_type);
media_types = REG_RD(sc, sync_offset);
/* Update media type for non-PMF sync */
for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) {
if (&(params->phy[phy_idx]) == phy) {
media_types &= ~(PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK <<
(PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * phy_idx));
media_types |= ((phy->media_type &
PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) <<
(PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * phy_idx));
break;
}
}
REG_WR(sc, sync_offset, media_types);
if (check_limiting_mode) {
uint8_t options[ELINK_SFP_EEPROM_OPTIONS_SIZE];
if (elink_read_sfp_module_eeprom(phy,
params,
ELINK_I2C_DEV_ADDR_A0,
ELINK_SFP_EEPROM_OPTIONS_ADDR,
ELINK_SFP_EEPROM_OPTIONS_SIZE,
options) != 0) {
ELINK_DEBUG_P0(sc,
"Failed to read Option field from module EEPROM\n");
return ELINK_STATUS_ERROR;
}
if ((options[0] & ELINK_SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK))
*edc_mode = ELINK_EDC_MODE_LINEAR;
else
*edc_mode = ELINK_EDC_MODE_LIMITING;
}
ELINK_DEBUG_P1(sc, "EDC mode is set to 0x%x\n", *edc_mode);
return ELINK_STATUS_OK;
}
/* This function read the relevant field from the module (SFP+), and verify it
* is compliant with this board
*/
static elink_status_t elink_verify_sfp_module(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint32_t val, cmd;
uint32_t fw_resp, fw_cmd_param;
char vendor_name[ELINK_SFP_EEPROM_VENDOR_NAME_SIZE+1];
char vendor_pn[ELINK_SFP_EEPROM_PART_NO_SIZE+1];
phy->flags &= ~ELINK_FLAGS_SFP_NOT_APPROVED;
val = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].config));
if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) ==
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_NO_ENFORCEMENT) {
ELINK_DEBUG_P0(sc, "NOT enforcing module verification\n");
return ELINK_STATUS_OK;
}
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY) {
/* Use specific phy request */
cmd = DRV_MSG_CODE_VRFY_SPECIFIC_PHY_OPT_MDL;
} else if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY) {
/* Use first phy request only in case of non-dual media*/
if (ELINK_DUAL_MEDIA(params)) {
ELINK_DEBUG_P0(sc,
"FW does not support OPT MDL verification\n");
return ELINK_STATUS_ERROR;
}
cmd = DRV_MSG_CODE_VRFY_FIRST_PHY_OPT_MDL;
} else {
/* No support in OPT MDL detection */
ELINK_DEBUG_P0(sc,
"FW does not support OPT MDL verification\n");
return ELINK_STATUS_ERROR;
}
fw_cmd_param = ELINK_FW_PARAM_SET(phy->addr, phy->type, phy->mdio_ctrl);
fw_resp = elink_cb_fw_command(sc, cmd, fw_cmd_param);
if (fw_resp == FW_MSG_CODE_VRFY_OPT_MDL_SUCCESS) {
ELINK_DEBUG_P0(sc, "Approved module\n");
return ELINK_STATUS_OK;
}
/* Format the warning message */
if (elink_read_sfp_module_eeprom(phy,
params,
ELINK_I2C_DEV_ADDR_A0,
ELINK_SFP_EEPROM_VENDOR_NAME_ADDR,
ELINK_SFP_EEPROM_VENDOR_NAME_SIZE,
(uint8_t *)vendor_name))
vendor_name[0] = '\0';
else
vendor_name[ELINK_SFP_EEPROM_VENDOR_NAME_SIZE] = '\0';
if (elink_read_sfp_module_eeprom(phy,
params,
ELINK_I2C_DEV_ADDR_A0,
ELINK_SFP_EEPROM_PART_NO_ADDR,
ELINK_SFP_EEPROM_PART_NO_SIZE,
(uint8_t *)vendor_pn))
vendor_pn[0] = '\0';
else
vendor_pn[ELINK_SFP_EEPROM_PART_NO_SIZE] = '\0';
elink_cb_event_log(sc, ELINK_LOG_ID_UNQUAL_IO_MODULE, params->port, vendor_name, vendor_pn); // "Warning: Unqualified SFP+ module detected,"
// " Port %d from %s part number %s\n",
if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) !=
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_WARNING_MSG)
phy->flags |= ELINK_FLAGS_SFP_NOT_APPROVED;
return ELINK_STATUS_ERROR;
}
static elink_status_t elink_wait_for_sfp_module_initialized(struct elink_phy *phy,
struct elink_params *params)
{
uint8_t val;
elink_status_t rc;
struct bxe_softc *sc = params->sc;
uint16_t timeout;
/* Initialization time after hot-plug may take up to 300ms for
* some phys type ( e.g. JDSU )
*/
for (timeout = 0; timeout < 60; timeout++) {
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
rc = elink_warpcore_read_sfp_module_eeprom(
phy, params, ELINK_I2C_DEV_ADDR_A0, 1, 1, &val,
1);
else
rc = elink_read_sfp_module_eeprom(phy, params,
ELINK_I2C_DEV_ADDR_A0,
1, 1, &val);
if (rc == 0) {
ELINK_DEBUG_P1(sc,
"SFP+ module initialization took %d ms\n",
timeout * 5);
return ELINK_STATUS_OK;
}
DELAY(1000 * 5);
}
rc = elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0,
1, 1, &val);
return rc;
}
static void elink_8727_power_module(struct bxe_softc *sc,
struct elink_phy *phy,
uint8_t is_power_up) {
/* Make sure GPIOs are not using for LED mode */
uint16_t val;
/* In the GPIO register, bit 4 is use to determine if the GPIOs are
* operating as INPUT or as OUTPUT. Bit 1 is for input, and 0 for
* output
* Bits 0-1 determine the GPIOs value for OUTPUT in case bit 4 val is 0
* Bits 8-9 determine the GPIOs value for INPUT in case bit 4 val is 1
* where the 1st bit is the over-current(only input), and 2nd bit is
* for power( only output )
*
* In case of NOC feature is disabled and power is up, set GPIO control
* as input to enable listening of over-current indication
*/
if (phy->flags & ELINK_FLAGS_NOC)
return;
if (is_power_up)
val = (1<<4);
else
/* Set GPIO control to OUTPUT, and set the power bit
* to according to the is_power_up
*/
val = (1<<1);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_GPIO_CTRL,
val);
}
static elink_status_t elink_8726_set_limiting_mode(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t edc_mode)
{
uint16_t cur_limiting_mode;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2,
&cur_limiting_mode);
ELINK_DEBUG_P1(sc, "Current Limiting mode is 0x%x\n",
cur_limiting_mode);
if (edc_mode == ELINK_EDC_MODE_LIMITING) {
ELINK_DEBUG_P0(sc, "Setting LIMITING MODE\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2,
ELINK_EDC_MODE_LIMITING);
} else { /* LRM mode ( default )*/
ELINK_DEBUG_P0(sc, "Setting LRM MODE\n");
/* Changing to LRM mode takes quite few seconds. So do it only
* if current mode is limiting (default is LRM)
*/
if (cur_limiting_mode != ELINK_EDC_MODE_LIMITING)
return ELINK_STATUS_OK;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_LRM_MODE,
0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2,
0x128);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL0,
0x4008);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_LRM_MODE,
0xaaaa);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_8727_set_limiting_mode(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t edc_mode)
{
uint16_t phy_identifier;
uint16_t rom_ver2_val;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
&phy_identifier);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
(phy_identifier & ~(1<<9)));
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2,
&rom_ver2_val);
/* Keep the MSB 8-bits, and set the LSB 8-bits with the edc_mode */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2,
(rom_ver2_val & 0xff00) | (edc_mode & 0x00ff));
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
(phy_identifier | (1<<9)));
return ELINK_STATUS_OK;
}
static void elink_8727_specific_func(struct elink_phy *phy,
struct elink_params *params,
uint32_t action)
{
struct bxe_softc *sc = params->sc;
uint16_t val;
switch (action) {
case ELINK_DISABLE_TX:
elink_sfp_set_transmitter(params, phy, 0);
break;
case ELINK_ENABLE_TX:
if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED))
elink_sfp_set_transmitter(params, phy, 1);
break;
case ELINK_PHY_INIT:
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL,
(1<<2) | (1<<5));
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXCTRL,
0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x0006);
/* Make MOD_ABS give interrupt on change */
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_OPT_CTRL,
&val);
val |= (1<<12);
if (phy->flags & ELINK_FLAGS_NOC)
val |= (3<<5);
/* Set 8727 GPIOs to input to allow reading from the 8727 GPIO0
* status which reflect SFP+ module over-current
*/
if (!(phy->flags & ELINK_FLAGS_NOC))
val &= 0xff8f; /* Reset bits 4-6 */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_OPT_CTRL,
val);
break;
default:
ELINK_DEBUG_P1(sc, "Function 0x%x not supported by 8727\n",
action);
return;
}
}
static void elink_set_e1e2_module_fault_led(struct elink_params *params,
uint8_t gpio_mode)
{
struct bxe_softc *sc = params->sc;
uint32_t fault_led_gpio = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].sfp_ctrl)) &
PORT_HW_CFG_FAULT_MODULE_LED_MASK;
switch (fault_led_gpio) {
case PORT_HW_CFG_FAULT_MODULE_LED_DISABLED:
return;
case PORT_HW_CFG_FAULT_MODULE_LED_GPIO0:
case PORT_HW_CFG_FAULT_MODULE_LED_GPIO1:
case PORT_HW_CFG_FAULT_MODULE_LED_GPIO2:
case PORT_HW_CFG_FAULT_MODULE_LED_GPIO3:
{
uint8_t gpio_port = elink_get_gpio_port(params);
uint16_t gpio_pin = fault_led_gpio -
PORT_HW_CFG_FAULT_MODULE_LED_GPIO0;
ELINK_DEBUG_P3(sc, "Set fault module-detected led "
"pin %x port %x mode %x\n",
gpio_pin, gpio_port, gpio_mode);
elink_cb_gpio_write(sc, gpio_pin, gpio_mode, gpio_port);
}
break;
default:
ELINK_DEBUG_P1(sc, "Error: Invalid fault led mode 0x%x\n",
fault_led_gpio);
}
}
static void elink_set_e3_module_fault_led(struct elink_params *params,
uint8_t gpio_mode)
{
uint32_t pin_cfg;
uint8_t port = params->port;
struct bxe_softc *sc = params->sc;
pin_cfg = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_sfp_ctrl)) &
PORT_HW_CFG_E3_FAULT_MDL_LED_MASK) >>
PORT_HW_CFG_E3_FAULT_MDL_LED_SHIFT;
ELINK_DEBUG_P2(sc, "Setting Fault LED to %d using pin cfg %d\n",
gpio_mode, pin_cfg);
elink_set_cfg_pin(sc, pin_cfg, gpio_mode);
}
static void elink_set_sfp_module_fault_led(struct elink_params *params,
uint8_t gpio_mode)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P1(sc, "Setting SFP+ module fault LED to %d\n", gpio_mode);
if (CHIP_IS_E3(sc)) {
/* Low ==> if SFP+ module is supported otherwise
* High ==> if SFP+ module is not on the approved vendor list
*/
elink_set_e3_module_fault_led(params, gpio_mode);
} else
elink_set_e1e2_module_fault_led(params, gpio_mode);
}
static void elink_warpcore_hw_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
elink_warpcore_power_module(params, 0);
/* Put Warpcore in low power mode */
REG_WR(sc, MISC_REG_WC0_RESET, 0x0c0e);
/* Put LCPLL in low power mode */
REG_WR(sc, MISC_REG_LCPLL_E40_PWRDWN, 1);
REG_WR(sc, MISC_REG_LCPLL_E40_RESETB_ANA, 0);
REG_WR(sc, MISC_REG_LCPLL_E40_RESETB_DIG, 0);
}
static void elink_power_sfp_module(struct elink_params *params,
struct elink_phy *phy,
uint8_t power)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P1(sc, "Setting SFP+ power to %x\n", power);
switch (phy->type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722:
elink_8727_power_module(params->sc, phy, power);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
elink_warpcore_power_module(params, power);
break;
default:
break;
}
}
static void elink_warpcore_set_limiting_mode(struct elink_params *params,
struct elink_phy *phy,
uint16_t edc_mode)
{
uint16_t val = 0;
uint16_t mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT;
struct bxe_softc *sc = params->sc;
uint8_t lane = elink_get_warpcore_lane(phy, params);
/* This is a global register which controls all lanes */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, &val);
val &= ~(0xf << (lane << 2));
switch (edc_mode) {
case ELINK_EDC_MODE_LINEAR:
case ELINK_EDC_MODE_LIMITING:
mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT;
break;
case ELINK_EDC_MODE_PASSIVE_DAC:
case ELINK_EDC_MODE_ACTIVE_DAC:
mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_DAC;
break;
default:
break;
}
val |= (mode << (lane << 2));
elink_cl45_write(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, val);
/* A must read */
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, &val);
/* Restart microcode to re-read the new mode */
elink_warpcore_reset_lane(sc, phy, 1);
elink_warpcore_reset_lane(sc, phy, 0);
}
static void elink_set_limiting_mode(struct elink_params *params,
struct elink_phy *phy,
uint16_t edc_mode)
{
switch (phy->type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
elink_8726_set_limiting_mode(params->sc, phy, edc_mode);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722:
elink_8727_set_limiting_mode(params->sc, phy, edc_mode);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
elink_warpcore_set_limiting_mode(params, phy, edc_mode);
break;
}
}
elink_status_t elink_sfp_module_detection(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t edc_mode;
elink_status_t rc = ELINK_STATUS_OK;
uint32_t val = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].config));
/* Enabled transmitter by default */
elink_sfp_set_transmitter(params, phy, 1);
ELINK_DEBUG_P1(sc, "SFP+ module plugged in/out detected on port %d\n",
params->port);
/* Power up module */
elink_power_sfp_module(params, phy, 1);
if (elink_get_edc_mode(phy, params, &edc_mode) != 0) {
ELINK_DEBUG_P0(sc, "Failed to get valid module type\n");
return ELINK_STATUS_ERROR;
} else if (elink_verify_sfp_module(phy, params) != 0) {
/* Check SFP+ module compatibility */
ELINK_DEBUG_P0(sc, "Module verification failed!!\n");
rc = ELINK_STATUS_ERROR;
/* Turn on fault module-detected led */
elink_set_sfp_module_fault_led(params,
MISC_REGISTERS_GPIO_HIGH);
/* Check if need to power down the SFP+ module */
if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) ==
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_POWER_DOWN) {
ELINK_DEBUG_P0(sc, "Shutdown SFP+ module!!\n");
elink_power_sfp_module(params, phy, 0);
return rc;
}
} else {
/* Turn off fault module-detected led */
elink_set_sfp_module_fault_led(params, MISC_REGISTERS_GPIO_LOW);
}
/* Check and set limiting mode / LRM mode on 8726. On 8727 it
* is done automatically
*/
elink_set_limiting_mode(params, phy, edc_mode);
/* Disable transmit for this module if the module is not approved, and
* laser needs to be disabled.
*/
if ((rc != 0) &&
((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) ==
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_DISABLE_TX_LASER))
elink_sfp_set_transmitter(params, phy, 0);
return rc;
}
void elink_handle_module_detect_int(struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
struct elink_phy *phy;
uint32_t gpio_val;
uint8_t gpio_num, gpio_port;
if (CHIP_IS_E3(sc)) {
phy = &params->phy[ELINK_INT_PHY];
/* Always enable TX laser,will be disabled in case of fault */
elink_sfp_set_transmitter(params, phy, 1);
} else {
phy = &params->phy[ELINK_EXT_PHY1];
}
if (elink_get_mod_abs_int_cfg(sc, params->chip_id, params->shmem_base,
params->port, &gpio_num, &gpio_port) ==
ELINK_STATUS_ERROR) {
ELINK_DEBUG_P0(sc, "Failed to get MOD_ABS interrupt config\n");
return;
}
/* Set valid module led off */
elink_set_sfp_module_fault_led(params, MISC_REGISTERS_GPIO_HIGH);
/* Get current gpio val reflecting module plugged in / out*/
gpio_val = elink_cb_gpio_read(sc, gpio_num, gpio_port);
/* Call the handling function in case module is detected */
if (gpio_val == 0) {
elink_set_mdio_emac_per_phy(sc, params);
elink_set_aer_mmd(params, phy);
elink_power_sfp_module(params, phy, 1);
elink_cb_gpio_int_write(sc, gpio_num,
MISC_REGISTERS_GPIO_INT_OUTPUT_CLR,
gpio_port);
if (elink_wait_for_sfp_module_initialized(phy, params) == 0) {
elink_sfp_module_detection(phy, params);
if (CHIP_IS_E3(sc)) {
uint16_t rx_tx_in_reset;
/* In case WC is out of reset, reconfigure the
* link speed while taking into account 1G
* module limitation.
*/
elink_cl45_read(sc, phy,
MDIO_WC_DEVAD,
MDIO_WC_REG_DIGITAL5_MISC6,
&rx_tx_in_reset);
if ((!rx_tx_in_reset) &&
(params->link_flags &
ELINK_PHY_INITIALIZED)) {
elink_warpcore_reset_lane(sc, phy, 1);
elink_warpcore_config_sfi(phy, params);
elink_warpcore_reset_lane(sc, phy, 0);
}
}
} else {
ELINK_DEBUG_P0(sc, "SFP+ module is not initialized\n");
}
} else {
elink_cb_gpio_int_write(sc, gpio_num,
MISC_REGISTERS_GPIO_INT_OUTPUT_SET,
gpio_port);
/* Module was plugged out.
* Disable transmit for this module
*/
phy->media_type = ELINK_ETH_PHY_NOT_PRESENT;
}
}
/******************************************************************/
/* Used by 8706 and 8727 */
/******************************************************************/
static void elink_sfp_mask_fault(struct bxe_softc *sc,
struct elink_phy *phy,
uint16_t alarm_status_offset,
uint16_t alarm_ctrl_offset)
{
uint16_t alarm_status, val;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, alarm_status_offset,
&alarm_status);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, alarm_status_offset,
&alarm_status);
/* Mask or enable the fault event. */
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, alarm_ctrl_offset, &val);
if (alarm_status & (1<<0))
val &= ~(1<<0);
else
val |= (1<<0);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, alarm_ctrl_offset, val);
}
/******************************************************************/
/* common BCM8706/BCM8726 PHY SECTION */
/******************************************************************/
static uint8_t elink_8706_8726_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint8_t link_up = 0;
uint16_t val1, val2, rx_sd, pcs_status;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "XGXS 8706/8726\n");
/* Clear RX Alarm*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &val2);
elink_sfp_mask_fault(sc, phy, MDIO_PMA_LASI_TXSTAT,
MDIO_PMA_LASI_TXCTRL);
/* Clear LASI indication*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val2);
ELINK_DEBUG_P2(sc, "8706/8726 LASI status 0x%x--> 0x%x\n", val1, val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_RX_SD, &rx_sd);
elink_cl45_read(sc, phy,
MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &pcs_status);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &val2);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &val2);
ELINK_DEBUG_P3(sc, "8706/8726 rx_sd 0x%x pcs_status 0x%x 1Gbps"
" link_status 0x%x\n", rx_sd, pcs_status, val2);
/* Link is up if both bit 0 of pmd_rx_sd and bit 0 of pcs_status
* are set, or if the autoneg bit 1 is set
*/
link_up = ((rx_sd & pcs_status & 0x1) || (val2 & (1<<1)));
if (link_up) {
if (val2 & (1<<1))
vars->line_speed = ELINK_SPEED_1000;
else
vars->line_speed = ELINK_SPEED_10000;
elink_ext_phy_resolve_fc(phy, params, vars);
vars->duplex = DUPLEX_FULL;
}
/* Capture 10G link fault. Read twice to clear stale value. */
if (vars->line_speed == ELINK_SPEED_10000) {
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_LASI_TXSTAT, &val1);
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_LASI_TXSTAT, &val1);
if (val1 & (1<<0))
vars->fault_detected = 1;
}
return link_up;
}
/******************************************************************/
/* BCM8706 PHY SECTION */
/******************************************************************/
static uint8_t elink_8706_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint32_t tx_en_mode;
uint16_t cnt, val, tmp1;
struct bxe_softc *sc = params->sc;
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port);
/* HW reset */
elink_ext_phy_hw_reset(sc, params->port);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0xa040);
elink_wait_reset_complete(sc, phy, params);
/* Wait until fw is loaded */
for (cnt = 0; cnt < 100; cnt++) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER1, &val);
if (val)
break;
DELAY(1000 * 10);
}
ELINK_DEBUG_P1(sc, "XGXS 8706 is initialized after %d ms\n", cnt);
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) {
uint8_t i;
uint16_t reg;
for (i = 0; i < 4; i++) {
reg = MDIO_XS_8706_REG_BANK_RX0 +
i*(MDIO_XS_8706_REG_BANK_RX1 -
MDIO_XS_8706_REG_BANK_RX0);
elink_cl45_read(sc, phy, MDIO_XS_DEVAD, reg, &val);
/* Clear first 3 bits of the control */
val &= ~0x7;
/* Set control bits according to configuration */
val |= (phy->rx_preemphasis[i] & 0x7);
ELINK_DEBUG_P2(sc, "Setting RX Equalizer to BCM8706"
" reg 0x%x <-- val 0x%x\n", reg, val);
elink_cl45_write(sc, phy, MDIO_XS_DEVAD, reg, val);
}
}
/* Force speed */
if (phy->req_line_speed == ELINK_SPEED_10000) {
ELINK_DEBUG_P0(sc, "XGXS 8706 force 10Gbps\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_DIGITAL_CTRL, 0x400);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXCTRL,
0);
/* Arm LASI for link and Tx fault. */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 3);
} else {
/* Force 1Gbps using autoneg with 1G advertisement */
/* Allow CL37 through CL73 */
ELINK_DEBUG_P0(sc, "XGXS 8706 AutoNeg\n");
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_CL73, 0x040c);
/* Enable Full-Duplex advertisement on CL37 */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LP, 0x0020);
/* Enable CL37 AN */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000);
/* 1G support */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_ADV, (1<<5));
/* Enable clause 73 AN */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL,
0x0400);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL,
0x0004);
}
elink_save_bcm_spirom_ver(sc, phy, params->port);
/* If TX Laser is controlled by GPIO_0, do not let PHY go into low
* power mode, if TX Laser is disabled
*/
tx_en_mode = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].sfp_ctrl))
& PORT_HW_CFG_TX_LASER_MASK;
if (tx_en_mode == PORT_HW_CFG_TX_LASER_GPIO0) {
ELINK_DEBUG_P0(sc, "Enabling TXONOFF_PWRDN_DIS\n");
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_DIGITAL_CTRL, &tmp1);
tmp1 |= 0x1;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_DIGITAL_CTRL, tmp1);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_8706_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
return elink_8706_8726_read_status(phy, params, vars);
}
/******************************************************************/
/* BCM8726 PHY SECTION */
/******************************************************************/
static void elink_8726_config_loopback(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "PMA/PMD ext_phy_loopback: 8726\n");
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x0001);
}
static void elink_8726_external_rom_boot(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
/* Need to wait 100ms after reset */
DELAY(1000 * 100);
/* Micro controller re-boot */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x018B);
/* Set soft reset */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0001);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* Wait for 150ms for microcode load */
DELAY(1000 * 150);
/* Disable serial boot control, tristates pins SS_N, SCK, MOSI, MISO */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0000);
DELAY(1000 * 200);
elink_save_bcm_spirom_ver(sc, phy, params->port);
}
static uint8_t elink_8726_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t val1;
uint8_t link_up = elink_8706_8726_read_status(phy, params, vars);
if (link_up) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER,
&val1);
if (val1 & (1<<15)) {
ELINK_DEBUG_P0(sc, "Tx is disabled\n");
link_up = 0;
vars->line_speed = 0;
}
}
return link_up;
}
static elink_status_t elink_8726_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "Initializing BCM8726\n");
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15);
elink_wait_reset_complete(sc, phy, params);
elink_8726_external_rom_boot(phy, params);
/* Need to call module detected on initialization since the module
* detection triggered by actual module insertion might occur before
* driver is loaded, and when driver is loaded, it reset all
* registers, including the transmitter
*/
elink_sfp_module_detection(phy, params);
if (phy->req_line_speed == ELINK_SPEED_1000) {
ELINK_DEBUG_P0(sc, "Setting 1G force\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x40);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0xD);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x5);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL,
0x400);
} else if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G) &&
((phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) !=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
ELINK_DEBUG_P0(sc, "Setting 1G clause37\n");
/* Set Flow control */
elink_ext_phy_set_pause(params, phy, vars);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_ADV, 0x20);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_CL73, 0x040c);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, 0x0020);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200);
/* Enable RX-ALARM control to receive interrupt for 1G speed
* change
*/
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x4);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL,
0x400);
} else { /* Default 10G. Set only LASI control */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 1);
}
/* Set TX PreEmphasis if needed */
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) {
ELINK_DEBUG_P2(sc,
"Setting TX_CTRL1 0x%x, TX_CTRL2 0x%x\n",
phy->tx_preemphasis[0],
phy->tx_preemphasis[1]);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8726_TX_CTRL1,
phy->tx_preemphasis[0]);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8726_TX_CTRL2,
phy->tx_preemphasis[1]);
}
return ELINK_STATUS_OK;
}
static void elink_8726_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P1(sc, "elink_8726_link_reset port %d\n", params->port);
/* Set serial boot control for external load */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL, 0x0001);
}
/******************************************************************/
/* BCM8727 PHY SECTION */
/******************************************************************/
static void elink_8727_set_link_led(struct elink_phy *phy,
struct elink_params *params, uint8_t mode)
{
struct bxe_softc *sc = params->sc;
uint16_t led_mode_bitmask = 0;
uint16_t gpio_pins_bitmask = 0;
uint16_t val;
/* Only NOC flavor requires to set the LED specifically */
if (!(phy->flags & ELINK_FLAGS_NOC))
return;
switch (mode) {
case ELINK_LED_MODE_FRONT_PANEL_OFF:
case ELINK_LED_MODE_OFF:
led_mode_bitmask = 0;
gpio_pins_bitmask = 0x03;
break;
case ELINK_LED_MODE_ON:
led_mode_bitmask = 0;
gpio_pins_bitmask = 0x02;
break;
case ELINK_LED_MODE_OPER:
led_mode_bitmask = 0x60;
gpio_pins_bitmask = 0x11;
break;
}
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_OPT_CTRL,
&val);
val &= 0xff8f;
val |= led_mode_bitmask;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_OPT_CTRL,
val);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_GPIO_CTRL,
&val);
val &= 0xffe0;
val |= gpio_pins_bitmask;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_GPIO_CTRL,
val);
}
static void elink_8727_hw_reset(struct elink_phy *phy,
struct elink_params *params) {
uint32_t swap_val, swap_override;
uint8_t port;
/* The PHY reset is controlled by GPIO 1. Fake the port number
* to cancel the swap done in set_gpio()
*/
struct bxe_softc *sc = params->sc;
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
port = (swap_val && swap_override) ^ 1;
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
}
static void elink_8727_config_speed(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t tmp1, val;
/* Set option 1G speed */
if ((phy->req_line_speed == ELINK_SPEED_1000) ||
(phy->media_type == ELINK_ETH_PHY_SFP_1G_FIBER)) {
ELINK_DEBUG_P0(sc, "Setting 1G force\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x40);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0xD);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, &tmp1);
ELINK_DEBUG_P1(sc, "1.7 = 0x%x\n", tmp1);
/* Power down the XAUI until link is up in case of dual-media
* and 1G
*/
if (ELINK_DUAL_MEDIA(params)) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_GP, &val);
val |= (3<<10);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_GP, val);
}
} else if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
((phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) &&
((phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) !=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
ELINK_DEBUG_P0(sc, "Setting 1G clause37\n");
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8727_MISC_CTRL, 0);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1300);
} else {
/* Since the 8727 has only single reset pin, need to set the 10G
* registers although it is default
*/
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8727_MISC_CTRL,
0x0020);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x0100);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x2040);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2,
0x0008);
}
}
static elink_status_t elink_8727_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint32_t tx_en_mode;
uint16_t tmp1, mod_abs, tmp2;
struct bxe_softc *sc = params->sc;
/* Enable PMD link, MOD_ABS_FLT, and 1G link alarm */
elink_wait_reset_complete(sc, phy, params);
ELINK_DEBUG_P0(sc, "Initializing BCM8727\n");
elink_8727_specific_func(phy, params, ELINK_PHY_INIT);
/* Initially configure MOD_ABS to interrupt when module is
* presence( bit 8)
*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &mod_abs);
/* Set EDC off by setting OPTXLOS signal input to low (bit 9).
* When the EDC is off it locks onto a reference clock and avoids
* becoming 'lost'
*/
mod_abs &= ~(1<<8);
if (!(phy->flags & ELINK_FLAGS_NOC))
mod_abs &= ~(1<<9);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs);
/* Enable/Disable PHY transmitter output */
elink_set_disable_pmd_transmit(params, phy, 0);
elink_8727_power_module(sc, phy, 1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &tmp1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &tmp1);
elink_8727_config_speed(phy, params);
/* Set TX PreEmphasis if needed */
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) {
ELINK_DEBUG_P2(sc, "Setting TX_CTRL1 0x%x, TX_CTRL2 0x%x\n",
phy->tx_preemphasis[0],
phy->tx_preemphasis[1]);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TX_CTRL1,
phy->tx_preemphasis[0]);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TX_CTRL2,
phy->tx_preemphasis[1]);
}
/* If TX Laser is controlled by GPIO_0, do not let PHY go into low
* power mode, if TX Laser is disabled
*/
tx_en_mode = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].sfp_ctrl))
& PORT_HW_CFG_TX_LASER_MASK;
if (tx_en_mode == PORT_HW_CFG_TX_LASER_GPIO0) {
ELINK_DEBUG_P0(sc, "Enabling TXONOFF_PWRDN_DIS\n");
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_OPT_CFG_REG, &tmp2);
tmp2 |= 0x1000;
tmp2 &= 0xFFEF;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_OPT_CFG_REG, tmp2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER,
&tmp2);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER,
(tmp2 & 0x7fff));
}
return ELINK_STATUS_OK;
}
static void elink_8727_handle_mod_abs(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t mod_abs, rx_alarm_status;
uint32_t val = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].
config));
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER, &mod_abs);
if (mod_abs & (1<<8)) {
/* Module is absent */
ELINK_DEBUG_P0(sc,
"MOD_ABS indication show module is absent\n");
phy->media_type = ELINK_ETH_PHY_NOT_PRESENT;
/* 1. Set mod_abs to detect next module
* presence event
* 2. Set EDC off by setting OPTXLOS signal input to low
* (bit 9).
* When the EDC is off it locks onto a reference clock and
* avoids becoming 'lost'.
*/
mod_abs &= ~(1<<8);
if (!(phy->flags & ELINK_FLAGS_NOC))
mod_abs &= ~(1<<9);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs);
/* Clear RX alarm since it stays up as long as
* the mod_abs wasn't changed
*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_LASI_RXSTAT, &rx_alarm_status);
} else {
/* Module is present */
ELINK_DEBUG_P0(sc,
"MOD_ABS indication show module is present\n");
/* First disable transmitter, and if the module is ok, the
* module_detection will enable it
* 1. Set mod_abs to detect next module absent event ( bit 8)
* 2. Restore the default polarity of the OPRXLOS signal and
* this signal will then correctly indicate the presence or
* absence of the Rx signal. (bit 9)
*/
mod_abs |= (1<<8);
if (!(phy->flags & ELINK_FLAGS_NOC))
mod_abs |= (1<<9);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs);
/* Clear RX alarm since it stays up as long as the mod_abs
* wasn't changed. This is need to be done before calling the
* module detection, otherwise it will clear* the link update
* alarm
*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_LASI_RXSTAT, &rx_alarm_status);
if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) ==
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_DISABLE_TX_LASER)
elink_sfp_set_transmitter(params, phy, 0);
if (elink_wait_for_sfp_module_initialized(phy, params) == 0)
elink_sfp_module_detection(phy, params);
else
ELINK_DEBUG_P0(sc, "SFP+ module is not initialized\n");
/* Reconfigure link speed based on module type limitations */
elink_8727_config_speed(phy, params);
}
ELINK_DEBUG_P1(sc, "8727 RX_ALARM_STATUS 0x%x\n",
rx_alarm_status);
/* No need to check link status in case of module plugged in/out */
}
static uint8_t elink_8727_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t link_up = 0;
uint16_t link_status = 0;
uint16_t rx_alarm_status, lasi_ctrl, val1;
/* If PHY is not initialized, do not check link status */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL,
&lasi_ctrl);
if (!lasi_ctrl)
return 0;
/* Check the LASI on Rx */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT,
&rx_alarm_status);
vars->line_speed = 0;
ELINK_DEBUG_P1(sc, "8727 RX_ALARM_STATUS 0x%x\n", rx_alarm_status);
elink_sfp_mask_fault(sc, phy, MDIO_PMA_LASI_TXSTAT,
MDIO_PMA_LASI_TXCTRL);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1);
ELINK_DEBUG_P1(sc, "8727 LASI status 0x%x\n", val1);
/* Clear MSG-OUT */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &val1);
/* If a module is present and there is need to check
* for over current
*/
if (!(phy->flags & ELINK_FLAGS_NOC) && !(rx_alarm_status & (1<<5))) {
/* Check over-current using 8727 GPIO0 input*/
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_GPIO_CTRL,
&val1);
if ((val1 & (1<<8)) == 0) {
uint8_t oc_port = params->port;
if (!CHIP_IS_E1x(sc))
oc_port = SC_PATH(sc) + (params->port << 1);
ELINK_DEBUG_P1(sc,
"8727 Power fault has been detected on port %d\n",
oc_port);
elink_cb_event_log(sc, ELINK_LOG_ID_OVER_CURRENT, oc_port); //"Error: Power fault on Port %d has "
// "been detected and the power to "
// "that SFP+ module has been removed "
// "to prevent failure of the card. "
// "Please remove the SFP+ module and "
// "restart the system to clear this "
// "error.\n",
/* Disable all RX_ALARMs except for mod_abs */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_LASI_RXCTRL, (1<<5));
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER, &val1);
/* Wait for module_absent_event */
val1 |= (1<<8);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER, val1);
/* Clear RX alarm */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_LASI_RXSTAT, &rx_alarm_status);
elink_8727_power_module(params->sc, phy, 0);
return 0;
}
} /* Over current check */
/* When module absent bit is set, check module */
if (rx_alarm_status & (1<<5)) {
elink_8727_handle_mod_abs(phy, params);
/* Enable all mod_abs and link detection bits */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL,
((1<<5) | (1<<2)));
}
if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED)) {
ELINK_DEBUG_P0(sc, "Enabling 8727 TX laser\n");
elink_sfp_set_transmitter(params, phy, 1);
} else {
ELINK_DEBUG_P0(sc, "Tx is disabled\n");
return 0;
}
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_SPEED_LINK_STATUS, &link_status);
/* Bits 0..2 --> speed detected,
* Bits 13..15--> link is down
*/
if ((link_status & (1<<2)) && (!(link_status & (1<<15)))) {
link_up = 1;
vars->line_speed = ELINK_SPEED_10000;
ELINK_DEBUG_P1(sc, "port %x: External link up in 10G\n",
params->port);
} else if ((link_status & (1<<0)) && (!(link_status & (1<<13)))) {
link_up = 1;
vars->line_speed = ELINK_SPEED_1000;
ELINK_DEBUG_P1(sc, "port %x: External link up in 1G\n",
params->port);
} else {
link_up = 0;
ELINK_DEBUG_P1(sc, "port %x: External link is down\n",
params->port);
}
/* Capture 10G link fault. */
if (vars->line_speed == ELINK_SPEED_10000) {
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_LASI_TXSTAT, &val1);
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD,
MDIO_PMA_LASI_TXSTAT, &val1);
if (val1 & (1<<0)) {
vars->fault_detected = 1;
}
}
if (link_up) {
elink_ext_phy_resolve_fc(phy, params, vars);
vars->duplex = DUPLEX_FULL;
ELINK_DEBUG_P1(sc, "duplex = 0x%x\n", vars->duplex);
}
if ((ELINK_DUAL_MEDIA(params)) &&
(phy->req_line_speed == ELINK_SPEED_1000)) {
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_GP, &val1);
/* In case of dual-media board and 1G, power up the XAUI side,
* otherwise power it down. For 10G it is done automatically
*/
if (link_up)
val1 &= ~(3<<10);
else
val1 |= (3<<10);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_PCS_GP, val1);
}
return link_up;
}
static void elink_8727_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
/* Enable/Disable PHY transmitter output */
elink_set_disable_pmd_transmit(params, phy, 1);
/* Disable Transmitter */
elink_sfp_set_transmitter(params, phy, 0);
/* Clear LASI */
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0);
}
/******************************************************************/
/* BCM8481/BCM84823/BCM84833 PHY SECTION */
/******************************************************************/
static int elink_is_8483x_8485x(struct elink_phy *phy)
{
return ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) ||
(phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) ||
(phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858));
}
static void elink_save_848xx_spirom_version(struct elink_phy *phy,
struct bxe_softc *sc,
uint8_t port)
{
uint16_t val, fw_ver2, cnt, i;
static struct elink_reg_set reg_set[] = {
{MDIO_PMA_DEVAD, 0xA819, 0x0014},
{MDIO_PMA_DEVAD, 0xA81A, 0xc200},
{MDIO_PMA_DEVAD, 0xA81B, 0x0000},
{MDIO_PMA_DEVAD, 0xA81C, 0x0300},
{MDIO_PMA_DEVAD, 0xA817, 0x0009}
};
uint16_t fw_ver1;
if (elink_is_8483x_8485x(phy)) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, 0x400f, &fw_ver1);
elink_save_spirom_version(sc, port, fw_ver1 & 0xfff,
phy->ver_addr);
} else {
/* For 32-bit registers in 848xx, access via MDIO2ARM i/f. */
/* (1) set reg 0xc200_0014(SPI_BRIDGE_CTRL_2) to 0x03000000 */
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad,
reg_set[i].reg, reg_set[i].val);
for (cnt = 0; cnt < 100; cnt++) {
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA818, &val);
if (val & 1)
break;
DELAY(5);
}
if (cnt == 100) {
ELINK_DEBUG_P0(sc, "Unable to read 848xx "
"phy fw version(1)\n");
elink_save_spirom_version(sc, port, 0,
phy->ver_addr);
return;
}
/* 2) read register 0xc200_0000 (SPI_FW_STATUS) */
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA819, 0x0000);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA81A, 0xc200);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA817, 0x000A);
for (cnt = 0; cnt < 100; cnt++) {
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA818, &val);
if (val & 1)
break;
DELAY(5);
}
if (cnt == 100) {
ELINK_DEBUG_P0(sc, "Unable to read 848xx phy fw "
"version(2)\n");
elink_save_spirom_version(sc, port, 0,
phy->ver_addr);
return;
}
/* lower 16 bits of the register SPI_FW_STATUS */
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA81B, &fw_ver1);
/* upper 16 bits of register SPI_FW_STATUS */
elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA81C, &fw_ver2);
elink_save_spirom_version(sc, port, (fw_ver2<<16) | fw_ver1,
phy->ver_addr);
}
}
static void elink_848xx_set_led(struct bxe_softc *sc,
struct elink_phy *phy)
{
uint16_t val, offset, i;
static struct elink_reg_set reg_set[] = {
{MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0080},
{MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x0018},
{MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x0006},
{MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_BLINK, 0x0000},
{MDIO_PMA_DEVAD, MDIO_PMA_REG_84823_CTL_SLOW_CLK_CNT_HIGH,
MDIO_PMA_REG_84823_BLINK_RATE_VAL_15P9HZ},
{MDIO_AN_DEVAD, 0xFFFB, 0xFFFD}
};
/* PHYC_CTL_LED_CTL */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL, &val);
val &= 0xFE00;
val |= 0x0092;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL, val);
for (i = 0; i < ARRAY_SIZE(reg_set); i++)
elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg,
reg_set[i].val);
if (elink_is_8483x_8485x(phy))
offset = MDIO_PMA_REG_84833_CTL_LED_CTL_1;
else
offset = MDIO_PMA_REG_84823_CTL_LED_CTL_1;
/* stretch_en for LED3*/
elink_cl45_read_or_write(sc, phy,
MDIO_PMA_DEVAD, offset,
MDIO_PMA_REG_84823_LED3_STRETCH_EN);
}
static void elink_848xx_specific_func(struct elink_phy *phy,
struct elink_params *params,
uint32_t action)
{
struct bxe_softc *sc = params->sc;
switch (action) {
case ELINK_PHY_INIT:
if (!elink_is_8483x_8485x(phy)) {
/* Save spirom version */
elink_save_848xx_spirom_version(phy, sc, params->port);
}
/* This phy uses the NIG latch mechanism since link indication
* arrives through its LED4 and not via its LASI signal, so we
* get steady signal instead of clear on read
*/
elink_bits_en(sc, NIG_REG_LATCH_BC_0 + params->port*4,
1 << ELINK_NIG_LATCH_BC_ENABLE_MI_INT);
elink_848xx_set_led(sc, phy);
break;
}
}
static elink_status_t elink_848xx_cmn_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t autoneg_val, an_1000_val, an_10_100_val;
elink_848xx_specific_func(phy, params, ELINK_PHY_INIT);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x0000);
/* set 1000 speed advertisement */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_1000T_CTRL,
&an_1000_val);
elink_ext_phy_set_pause(params, phy, vars);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_AN_ADV,
&an_10_100_val);
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_CTRL,
&autoneg_val);
/* Disable forced speed */
autoneg_val &= ~((1<<6) | (1<<8) | (1<<9) | (1<<12) | (1<<13));
an_10_100_val &= ~((1<<5) | (1<<6) | (1<<7) | (1<<8));
if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) ||
(phy->req_line_speed == ELINK_SPEED_1000)) {
an_1000_val |= (1<<8);
autoneg_val |= (1<<9 | 1<<12);
if (phy->req_duplex == DUPLEX_FULL)
an_1000_val |= (1<<9);
ELINK_DEBUG_P0(sc, "Advertising 1G\n");
} else
an_1000_val &= ~((1<<8) | (1<<9));
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_1000T_CTRL,
an_1000_val);
/* Set 10/100 speed advertisement */
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) {
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL) {
/* Enable autoneg and restart autoneg for legacy speeds
*/
autoneg_val |= (1<<9 | 1<<12);
an_10_100_val |= (1<<8);
ELINK_DEBUG_P0(sc, "Advertising 100M-FD\n");
}
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF) {
/* Enable autoneg and restart autoneg for legacy speeds
*/
autoneg_val |= (1<<9 | 1<<12);
an_10_100_val |= (1<<7);
ELINK_DEBUG_P0(sc, "Advertising 100M-HD\n");
}
if ((phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) &&
(phy->supported & ELINK_SUPPORTED_10baseT_Full)) {
an_10_100_val |= (1<<6);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 10M-FD\n");
}
if ((phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF) &&
(phy->supported & ELINK_SUPPORTED_10baseT_Half)) {
an_10_100_val |= (1<<5);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 10M-HD\n");
}
}
/* Only 10/100 are allowed to work in FORCE mode */
if ((phy->req_line_speed == ELINK_SPEED_100) &&
(phy->supported &
(ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full))) {
autoneg_val |= (1<<13);
/* Enabled AUTO-MDIX when autoneg is disabled */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_AUX_CTRL,
(1<<15 | 1<<9 | 7<<0));
/* The PHY needs this set even for forced link. */
an_10_100_val |= (1<<8) | (1<<7);
ELINK_DEBUG_P0(sc, "Setting 100M force\n");
}
if ((phy->req_line_speed == ELINK_SPEED_10) &&
(phy->supported &
(ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full))) {
/* Enabled AUTO-MDIX when autoneg is disabled */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_AUX_CTRL,
(1<<15 | 1<<9 | 7<<0));
ELINK_DEBUG_P0(sc, "Setting 10M force\n");
}
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_AN_ADV,
an_10_100_val);
if (phy->req_duplex == DUPLEX_FULL)
autoneg_val |= (1<<8);
/* Always write this if this is not 84833/4.
* For 84833/4, write it only when it's a forced speed.
*/
if (!elink_is_8483x_8485x(phy) ||
((autoneg_val & (1<<12)) == 0))
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_MII_CTRL, autoneg_val);
if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) ||
(phy->req_line_speed == ELINK_SPEED_10000)) {
ELINK_DEBUG_P0(sc, "Advertising 10G\n");
/* Restart autoneg for 10G*/
elink_cl45_read_or_write(
sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_10GBASE_T_AN_CTRL,
0x1000);
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL,
0x3200);
} else
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_10GBASE_T_AN_CTRL,
1);
return ELINK_STATUS_OK;
}
static elink_status_t elink_8481_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
/* Restore normal power mode*/
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port);
/* HW reset */
elink_ext_phy_hw_reset(sc, params->port);
elink_wait_reset_complete(sc, phy, params);
elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15);
return elink_848xx_cmn_config_init(phy, params, vars);
}
#define PHY848xx_CMDHDLR_WAIT 300
#define PHY848xx_CMDHDLR_MAX_ARGS 5
static elink_status_t elink_84858_cmd_hdlr(struct elink_phy *phy,
struct elink_params *params,
uint16_t fw_cmd,
uint16_t cmd_args[], int argc)
{
int idx;
uint16_t val;
struct bxe_softc *sc = params->sc;
/* Step 1: Poll the STATUS register to see whether the previous command
* is in progress or the system is busy (CMD_IN_PROGRESS or
* SYSTEM_BUSY). If previous command is in progress or system is busy,
* check again until the previous command finishes execution and the
* system is available for taking command
*/
for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS, &val);
if ((val != PHY84858_STATUS_CMD_IN_PROGRESS) &&
(val != PHY84858_STATUS_CMD_SYSTEM_BUSY))
break;
DELAY(1000 * 1);
}
if (idx >= PHY848xx_CMDHDLR_WAIT) {
ELINK_DEBUG_P0(sc, "FW cmd: FW not ready.\n");
return ELINK_STATUS_ERROR;
}
/* Step2: If any parameters are required for the function, write them
* to the required DATA registers
*/
for (idx = 0; idx < argc; idx++) {
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_DATA1 + idx,
cmd_args[idx]);
}
/* Step3: When the firmware is ready for commands, write the 'Command
* code' to the CMD register
*/
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_COMMAND, fw_cmd);
/* Step4: Once the command has been written, poll the STATUS register
* to check whether the command has completed (CMD_COMPLETED_PASS/
* CMD_FOR_CMDS or CMD_COMPLETED_ERROR).
*/
for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS, &val);
if ((val == PHY84858_STATUS_CMD_COMPLETE_PASS) ||
(val == PHY84858_STATUS_CMD_COMPLETE_ERROR))
break;
DELAY(1000 * 1);
}
if ((idx >= PHY848xx_CMDHDLR_WAIT) ||
(val == PHY84858_STATUS_CMD_COMPLETE_ERROR)) {
ELINK_DEBUG_P0(sc, "FW cmd failed.\n");
return ELINK_STATUS_ERROR;
}
/* Step5: Once the command has completed, read the specficied DATA
* registers for any saved results for the command, if applicable
*/
/* Gather returning data */
for (idx = 0; idx < argc; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_DATA1 + idx,
&cmd_args[idx]);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_84833_cmd_hdlr(struct elink_phy *phy,
struct elink_params *params, uint16_t fw_cmd,
uint16_t cmd_args[], int argc, int process)
{
int idx;
uint16_t val;
struct bxe_softc *sc = params->sc;
elink_status_t rc = ELINK_STATUS_OK;
if (process == PHY84833_MB_PROCESS2) {
/* Write CMD_OPEN_OVERRIDE to STATUS reg */
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS,
PHY84833_STATUS_CMD_OPEN_OVERRIDE);
}
for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS, &val);
if (val == PHY84833_STATUS_CMD_OPEN_FOR_CMDS)
break;
DELAY(1000 * 1);
}
if (idx >= PHY848xx_CMDHDLR_WAIT) {
ELINK_DEBUG_P0(sc, "FW cmd: FW not ready.\n");
/* if the status is CMD_COMPLETE_PASS or CMD_COMPLETE_ERROR
* clear the status to CMD_CLEAR_COMPLETE
*/
if (val == PHY84833_STATUS_CMD_COMPLETE_PASS ||
val == PHY84833_STATUS_CMD_COMPLETE_ERROR) {
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS,
PHY84833_STATUS_CMD_CLEAR_COMPLETE);
}
return ELINK_STATUS_ERROR;
}
if (process == PHY84833_MB_PROCESS1 ||
process == PHY84833_MB_PROCESS2) {
/* Prepare argument(s) */
for (idx = 0; idx < argc; idx++) {
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_DATA1 + idx,
cmd_args[idx]);
}
}
/* Issue command */
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_COMMAND, fw_cmd);
for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS, &val);
if ((val == PHY84833_STATUS_CMD_COMPLETE_PASS) ||
(val == PHY84833_STATUS_CMD_COMPLETE_ERROR))
break;
DELAY(1000 * 1);
}
if ((idx >= PHY848xx_CMDHDLR_WAIT) ||
(val == PHY84833_STATUS_CMD_COMPLETE_ERROR)) {
ELINK_DEBUG_P0(sc, "FW cmd failed.\n");
rc = ELINK_STATUS_ERROR;
}
if (process == PHY84833_MB_PROCESS3 && rc == ELINK_STATUS_OK) {
/* Gather returning data */
for (idx = 0; idx < argc; idx++) {
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_DATA1 + idx,
&cmd_args[idx]);
}
}
if (val == PHY84833_STATUS_CMD_COMPLETE_ERROR ||
val == PHY84833_STATUS_CMD_COMPLETE_PASS) {
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_848xx_CMD_HDLR_STATUS,
PHY84833_STATUS_CMD_CLEAR_COMPLETE);
}
return rc;
}
static elink_status_t elink_848xx_cmd_hdlr(struct elink_phy *phy,
struct elink_params *params,
uint16_t fw_cmd,
uint16_t cmd_args[], int argc,
int process)
{
struct bxe_softc *sc = params->sc;
if ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858) ||
(REG_RD(sc, params->shmem2_base +
offsetof(struct shmem2_region,
link_attr_sync[params->port])) & LINK_ATTR_84858)) {
return elink_84858_cmd_hdlr(phy, params, fw_cmd, cmd_args,
argc);
} else {
return elink_84833_cmd_hdlr(phy, params, fw_cmd, cmd_args,
argc, process);
}
}
static elink_status_t elink_848xx_pair_swap_cfg(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint32_t pair_swap;
uint16_t data[PHY848xx_CMDHDLR_MAX_ARGS];
elink_status_t status;
struct bxe_softc *sc = params->sc;
/* Check for configuration. */
pair_swap = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].xgbt_phy_cfg)) &
PORT_HW_CFG_RJ45_PAIR_SWAP_MASK;
if (pair_swap == 0)
return ELINK_STATUS_OK;
/* Only the second argument is used for this command */
data[1] = (uint16_t)pair_swap;
status = elink_848xx_cmd_hdlr(phy, params,
PHY848xx_CMD_SET_PAIR_SWAP, data,
2, PHY84833_MB_PROCESS2);
if (status == ELINK_STATUS_OK)
ELINK_DEBUG_P1(sc, "Pairswap OK, val=0x%x\n", data[1]);
return status;
}
static uint8_t elink_84833_get_reset_gpios(struct bxe_softc *sc,
uint32_t shmem_base_path[],
uint32_t chip_id)
{
uint32_t reset_pin[2];
uint32_t idx;
uint8_t reset_gpios;
if (CHIP_IS_E3(sc)) {
/* Assume that these will be GPIOs, not EPIOs. */
for (idx = 0; idx < 2; idx++) {
/* Map config param to register bit. */
reset_pin[idx] = REG_RD(sc, shmem_base_path[idx] +
offsetof(struct shmem_region,
dev_info.port_hw_config[0].e3_cmn_pin_cfg));
reset_pin[idx] = (reset_pin[idx] &
PORT_HW_CFG_E3_PHY_RESET_MASK) >>
PORT_HW_CFG_E3_PHY_RESET_SHIFT;
reset_pin[idx] -= PIN_CFG_GPIO0_P0;
reset_pin[idx] = (1 << reset_pin[idx]);
}
reset_gpios = (uint8_t)(reset_pin[0] | reset_pin[1]);
} else {
/* E2, look from diff place of shmem. */
for (idx = 0; idx < 2; idx++) {
reset_pin[idx] = REG_RD(sc, shmem_base_path[idx] +
offsetof(struct shmem_region,
dev_info.port_hw_config[0].default_cfg));
reset_pin[idx] &= PORT_HW_CFG_EXT_PHY_GPIO_RST_MASK;
reset_pin[idx] -= PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO0_P0;
reset_pin[idx] >>= PORT_HW_CFG_EXT_PHY_GPIO_RST_SHIFT;
reset_pin[idx] = (1 << reset_pin[idx]);
}
reset_gpios = (uint8_t)(reset_pin[0] | reset_pin[1]);
}
return reset_gpios;
}
static elink_status_t elink_84833_hw_reset_phy(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t reset_gpios;
uint32_t other_shmem_base_addr = REG_RD(sc, params->shmem2_base +
offsetof(struct shmem2_region,
other_shmem_base_addr));
uint32_t shmem_base_path[2];
/* Work around for 84833 LED failure inside RESET status */
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_MII_CTRL,
MDIO_AN_REG_8481_MII_CTRL_FORCE_1G);
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_8481_1G_100T_EXT_CTRL,
MIDO_AN_REG_8481_EXT_CTRL_FORCE_LEDS_OFF);
shmem_base_path[0] = params->shmem_base;
shmem_base_path[1] = other_shmem_base_addr;
reset_gpios = elink_84833_get_reset_gpios(sc, shmem_base_path,
params->chip_id);
elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_LOW);
DELAY(10);
ELINK_DEBUG_P1(sc, "84833 hw reset on pin values 0x%x\n",
reset_gpios);
return ELINK_STATUS_OK;
}
static elink_status_t elink_8483x_disable_eee(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
elink_status_t rc;
struct bxe_softc *sc = params->sc;
uint16_t cmd_args = 0;
ELINK_DEBUG_P0(sc, "Don't Advertise 10GBase-T EEE\n");
/* Prevent Phy from working in EEE and advertising it */
rc = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_EEE_MODE,
&cmd_args, 1, PHY84833_MB_PROCESS1);
if (rc != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "EEE disable failed.\n");
return rc;
}
return elink_eee_disable(phy, params, vars);
}
static elink_status_t elink_8483x_enable_eee(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
elink_status_t rc;
struct bxe_softc *sc = params->sc;
uint16_t cmd_args = 1;
rc = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_EEE_MODE,
&cmd_args, 1, PHY84833_MB_PROCESS1);
if (rc != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "EEE enable failed.\n");
return rc;
}
return elink_eee_advertise(phy, params, vars, SHMEM_EEE_10G_ADV);
}
#define PHY84833_CONSTANT_LATENCY 1193
static elink_status_t elink_848x3_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t port, initialize = 1;
uint16_t val;
uint32_t actual_phy_selection;
uint16_t cmd_args[PHY848xx_CMDHDLR_MAX_ARGS];
elink_status_t rc = ELINK_STATUS_OK;
DELAY(1000 * 1);
if (!(CHIP_IS_E1x(sc)))
port = SC_PATH(sc);
else
port = params->port;
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) {
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_3,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
port);
} else {
/* MDIO reset */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL, 0x8000);
}
elink_wait_reset_complete(sc, phy, params);
/* Wait for GPHY to come out of reset */
DELAY(1000 * 50);
if (!elink_is_8483x_8485x(phy)) {
/* BCM84823 requires that XGXS links up first @ 10G for normal
* behavior.
*/
uint16_t temp;
temp = vars->line_speed;
vars->line_speed = ELINK_SPEED_10000;
elink_set_autoneg(&params->phy[ELINK_INT_PHY], params, vars, 0);
elink_program_serdes(&params->phy[ELINK_INT_PHY], params, vars);
vars->line_speed = temp;
}
/* Check if this is actually BCM84858 */
if (phy->type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858) {
uint16_t hw_rev;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_848xx_ID_MSB, &hw_rev);
if (hw_rev == BCM84858_PHY_ID) {
params->link_attr_sync |= LINK_ATTR_84858;
elink_update_link_attr(params, params->link_attr_sync);
}
}
/* Set dual-media configuration according to configuration */
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_CTL_REG_84823_MEDIA, &val);
val &= ~(MDIO_CTL_REG_84823_MEDIA_MAC_MASK |
MDIO_CTL_REG_84823_MEDIA_LINE_MASK |
MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN |
MDIO_CTL_REG_84823_MEDIA_PRIORITY_MASK |
MDIO_CTL_REG_84823_MEDIA_FIBER_1G);
if (CHIP_IS_E3(sc)) {
val &= ~(MDIO_CTL_REG_84823_MEDIA_MAC_MASK |
MDIO_CTL_REG_84823_MEDIA_LINE_MASK);
} else {
val |= (MDIO_CTL_REG_84823_CTRL_MAC_XFI |
MDIO_CTL_REG_84823_MEDIA_LINE_XAUI_L);
}
actual_phy_selection = elink_phy_selection(params);
switch (actual_phy_selection) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
/* Do nothing. Essentially this is like the priority copper */
break;
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
val |= MDIO_CTL_REG_84823_MEDIA_PRIORITY_COPPER;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
val |= MDIO_CTL_REG_84823_MEDIA_PRIORITY_FIBER;
break;
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
/* Do nothing here. The first PHY won't be initialized at all */
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
val |= MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN;
initialize = 0;
break;
}
if (params->phy[ELINK_EXT_PHY2].req_line_speed == ELINK_SPEED_1000)
val |= MDIO_CTL_REG_84823_MEDIA_FIBER_1G;
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_CTL_REG_84823_MEDIA, val);
ELINK_DEBUG_P2(sc, "Multi_phy config = 0x%x, Media control = 0x%x\n",
params->multi_phy_config, val);
if (elink_is_8483x_8485x(phy)) {
elink_848xx_pair_swap_cfg(phy, params, vars);
/* Keep AutogrEEEn disabled. */
cmd_args[0] = 0x0;
cmd_args[1] = 0x0;
cmd_args[2] = PHY84833_CONSTANT_LATENCY + 1;
cmd_args[3] = PHY84833_CONSTANT_LATENCY;
rc = elink_848xx_cmd_hdlr(phy, params,
PHY848xx_CMD_SET_EEE_MODE, cmd_args,
4, PHY84833_MB_PROCESS1);
if (rc != ELINK_STATUS_OK)
ELINK_DEBUG_P0(sc, "Cfg AutogrEEEn failed.\n");
}
if (initialize)
rc = elink_848xx_cmn_config_init(phy, params, vars);
else
elink_save_848xx_spirom_version(phy, sc, params->port);
/* 84833 PHY has a better feature and doesn't need to support this. */
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) {
uint32_t cms_enable = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].default_cfg)) &
PORT_HW_CFG_ENABLE_CMS_MASK;
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_CTL_REG_84823_USER_CTRL_REG, &val);
if (cms_enable)
val |= MDIO_CTL_REG_84823_USER_CTRL_CMS;
else
val &= ~MDIO_CTL_REG_84823_USER_CTRL_CMS;
elink_cl45_write(sc, phy, MDIO_CTL_DEVAD,
MDIO_CTL_REG_84823_USER_CTRL_REG, val);
}
elink_cl45_read(sc, phy, MDIO_CTL_DEVAD,
MDIO_84833_TOP_CFG_FW_REV, &val);
/* Configure EEE support */
if ((val >= MDIO_84833_TOP_CFG_FW_EEE) &&
(val != MDIO_84833_TOP_CFG_FW_NO_EEE) &&
elink_eee_has_cap(params)) {
rc = elink_eee_initial_config(params, vars, SHMEM_EEE_10G_ADV);
if (rc != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "Failed to configure EEE timers\n");
elink_8483x_disable_eee(phy, params, vars);
return rc;
}
if ((phy->req_duplex == DUPLEX_FULL) &&
(params->eee_mode & ELINK_EEE_MODE_ADV_LPI) &&
(elink_eee_calc_timer(params) ||
!(params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI)))
rc = elink_8483x_enable_eee(phy, params, vars);
else
rc = elink_8483x_disable_eee(phy, params, vars);
if (rc != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "Failed to set EEE advertisement\n");
return rc;
}
} else {
vars->eee_status &= ~SHMEM_EEE_SUPPORTED_MASK;
}
if (elink_is_8483x_8485x(phy)) {
/* Bring PHY out of super isolate mode as the final step. */
elink_cl45_read_and_write(sc, phy,
MDIO_CTL_DEVAD,
MDIO_84833_TOP_CFG_XGPHY_STRAP1,
(uint16_t)~MDIO_84833_SUPER_ISOLATE);
}
return rc;
}
static uint8_t elink_848xx_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t val, val1, val2;
uint8_t link_up = 0;
/* Check 10G-BaseT link status */
/* Check PMD signal ok */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, 0xFFFA, &val1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_PMD_SIGNAL,
&val2);
ELINK_DEBUG_P1(sc, "BCM848xx: PMD_SIGNAL 1.a811 = 0x%x\n", val2);
/* Check link 10G */
if (val2 & (1<<11)) {
vars->line_speed = ELINK_SPEED_10000;
vars->duplex = DUPLEX_FULL;
link_up = 1;
elink_ext_phy_10G_an_resolve(sc, phy, vars);
} else { /* Check Legacy speed link */
uint16_t legacy_status, legacy_speed;
/* Enable expansion register 0x42 (Operation mode status) */
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_EXPANSION_REG_ACCESS, 0xf42);
/* Get legacy speed operation status */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_EXPANSION_REG_RD_RW,
&legacy_status);
ELINK_DEBUG_P1(sc, "Legacy speed status = 0x%x\n",
legacy_status);
link_up = ((legacy_status & (1<<11)) == (1<<11));
legacy_speed = (legacy_status & (3<<9));
if (legacy_speed == (0<<9))
vars->line_speed = ELINK_SPEED_10;
else if (legacy_speed == (1<<9))
vars->line_speed = ELINK_SPEED_100;
else if (legacy_speed == (2<<9))
vars->line_speed = ELINK_SPEED_1000;
else { /* Should not happen: Treat as link down */
vars->line_speed = 0;
link_up = 0;
}
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_IEEE_PHY_TEST) {
uint16_t mii_ctrl;
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_MII_CTRL,
&mii_ctrl);
/* For IEEE testing, check for a fake link. */
link_up |= ((mii_ctrl & 0x3040) == 0x40);
}
if (link_up) {
if (legacy_status & (1<<8))
vars->duplex = DUPLEX_FULL;
else
vars->duplex = DUPLEX_HALF;
ELINK_DEBUG_P2(sc,
"Link is up in %dMbps, is_duplex_full= %d\n",
vars->line_speed,
(vars->duplex == DUPLEX_FULL));
/* Check legacy speed AN resolution */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_MII_STATUS,
&val);
if (val & (1<<5))
vars->link_status |=
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD,
MDIO_AN_REG_8481_LEGACY_AN_EXPANSION,
&val);
if ((val & (1<<0)) == 0)
vars->link_status |=
LINK_STATUS_PARALLEL_DETECTION_USED;
}
}
if (link_up) {
ELINK_DEBUG_P1(sc, "BCM848x3: link speed is %d\n",
vars->line_speed);
elink_ext_phy_resolve_fc(phy, params, vars);
/* Read LP advertised speeds */
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LP, &val);
if (val & (1<<5))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10THD_CAPABLE;
if (val & (1<<6))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE;
if (val & (1<<7))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE;
if (val & (1<<8))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE;
if (val & (1<<9))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100T4_CAPABLE;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_1000T_STATUS, &val);
if (val & (1<<10))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE;
if (val & (1<<11))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE;
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_MASTER_STATUS, &val);
if (val & (1<<11))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
/* Determine if EEE was negotiated */
if (elink_is_8483x_8485x(phy))
elink_eee_an_resolve(phy, params, vars);
}
return link_up;
}
static elink_status_t elink_848xx_format_ver(uint32_t raw_ver, uint8_t *str, uint16_t *len)
{
elink_status_t status = ELINK_STATUS_OK;
uint32_t spirom_ver;
spirom_ver = ((raw_ver & 0xF80) >> 7) << 16 | (raw_ver & 0x7F);
status = elink_format_ver(spirom_ver, str, len);
return status;
}
static void elink_8481_hw_reset(struct elink_phy *phy,
struct elink_params *params)
{
elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, 0);
elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, 1);
}
static void elink_8481_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
elink_cl45_write(params->sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x0000);
elink_cl45_write(params->sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1);
}
static void elink_848x3_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint8_t port;
uint16_t val16;
if (!(CHIP_IS_E1x(sc)))
port = SC_PATH(sc);
else
port = params->port;
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) {
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_3,
MISC_REGISTERS_GPIO_OUTPUT_LOW,
port);
} else {
elink_cl45_read(sc, phy,
MDIO_CTL_DEVAD,
MDIO_84833_TOP_CFG_XGPHY_STRAP1, &val16);
val16 |= MDIO_84833_SUPER_ISOLATE;
elink_cl45_write(sc, phy,
MDIO_CTL_DEVAD,
MDIO_84833_TOP_CFG_XGPHY_STRAP1, val16);
}
}
static void elink_848xx_set_link_led(struct elink_phy *phy,
struct elink_params *params, uint8_t mode)
{
struct bxe_softc *sc = params->sc;
uint16_t val;
uint8_t port;
if (!(CHIP_IS_E1x(sc)))
port = SC_PATH(sc);
else
port = params->port;
switch (mode) {
case ELINK_LED_MODE_OFF:
ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE OFF\n", port);
if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY1) {
/* Set LED masks */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED2_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED3_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED5_MASK,
0x0);
} else {
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x0);
}
break;
case ELINK_LED_MODE_FRONT_PANEL_OFF:
ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE FRONT PANEL OFF\n",
port);
if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY1) {
/* Set LED masks */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED2_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED3_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED5_MASK,
0x20);
} else {
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x0);
if (phy->type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) {
/* Disable MI_INT interrupt before setting LED4
* source to constant off.
*/
if (REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 +
params->port*4) &
ELINK_NIG_MASK_MI_INT) {
params->link_flags |=
ELINK_LINK_FLAGS_INT_DISABLED;
elink_bits_dis(
sc,
NIG_REG_MASK_INTERRUPT_PORT0 +
params->port*4,
ELINK_NIG_MASK_MI_INT);
}
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_SIGNAL_MASK,
0x0);
}
}
break;
case ELINK_LED_MODE_ON:
ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE ON\n", port);
if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY1) {
/* Set control reg */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
&val);
val &= 0x8000;
val |= 0x2492;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
val);
/* Set LED masks */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x0);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED2_MASK,
0x20);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED3_MASK,
0x20);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED5_MASK,
0x0);
} else {
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x20);
if (phy->type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) {
/* Disable MI_INT interrupt before setting LED4
* source to constant on.
*/
if (REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 +
params->port*4) &
ELINK_NIG_MASK_MI_INT) {
params->link_flags |=
ELINK_LINK_FLAGS_INT_DISABLED;
elink_bits_dis(
sc,
NIG_REG_MASK_INTERRUPT_PORT0 +
params->port*4,
ELINK_NIG_MASK_MI_INT);
}
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_SIGNAL_MASK,
0x20);
}
}
break;
case ELINK_LED_MODE_OPER:
ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE OPER\n", port);
if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY1) {
/* Set control reg */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
&val);
if (!((val &
MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_MASK)
>> MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_SHIFT)) {
ELINK_DEBUG_P0(sc, "Setting LINK_SIGNAL\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
0xa492);
}
/* Set LED masks */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
0x10);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED2_MASK,
0x80);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED3_MASK,
0x98);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED5_MASK,
0x40);
} else {
/* EXTPHY2 LED mode indicate that the 100M/1G/10G LED
* sources are all wired through LED1, rather than only
* 10G in other modes.
*/
val = ((params->hw_led_mode <<
SHARED_HW_CFG_LED_MODE_SHIFT) ==
SHARED_HW_CFG_LED_EXTPHY2) ? 0x98 : 0x80;
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LED1_MASK,
val);
/* Tell LED3 to blink on source */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
&val);
val &= ~(7<<6);
val |= (1<<6); /* A83B[8:6]= 1 */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_LINK_SIGNAL,
val);
if (phy->type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) {
/* Restore LED4 source to external link,
* and re-enable interrupts.
*/
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8481_SIGNAL_MASK,
0x40);
if (params->link_flags &
ELINK_LINK_FLAGS_INT_DISABLED) {
elink_link_int_enable(params);
params->link_flags &=
~ELINK_LINK_FLAGS_INT_DISABLED;
}
}
}
break;
}
/* This is a workaround for E3+84833 until autoneg
* restart is fixed in f/w
*/
if (CHIP_IS_E3(sc)) {
elink_cl45_read(sc, phy, MDIO_WC_DEVAD,
MDIO_WC_REG_GP2_STATUS_GP_2_1, &val);
}
}
/******************************************************************/
/* 54618SE PHY SECTION */
/******************************************************************/
static void elink_54618se_specific_func(struct elink_phy *phy,
struct elink_params *params,
uint32_t action)
{
struct bxe_softc *sc = params->sc;
uint16_t temp;
switch (action) {
case ELINK_PHY_INIT:
/* Configure LED4: set to INTR (0x6). */
/* Accessing shadow register 0xe. */
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_LED_SEL2);
elink_cl22_read(sc, phy,
MDIO_REG_GPHY_SHADOW,
&temp);
temp &= ~(0xf << 4);
temp |= (0x6 << 4);
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_WR_ENA | temp);
/* Configure INTR based on link status change. */
elink_cl22_write(sc, phy,
MDIO_REG_INTR_MASK,
~MDIO_REG_INTR_MASK_LINK_STATUS);
break;
}
}
static elink_status_t elink_54618se_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t port;
uint16_t autoneg_val, an_1000_val, an_10_100_val, fc_val, temp;
uint32_t cfg_pin;
ELINK_DEBUG_P0(sc, "54618SE cfg init\n");
DELAY(1000 * 1);
/* This works with E3 only, no need to check the chip
* before determining the port.
*/
port = params->port;
cfg_pin = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_cmn_pin_cfg)) &
PORT_HW_CFG_E3_PHY_RESET_MASK) >>
PORT_HW_CFG_E3_PHY_RESET_SHIFT;
/* Drive pin high to bring the GPHY out of reset. */
elink_set_cfg_pin(sc, cfg_pin, 1);
/* wait for GPHY to reset */
DELAY(1000 * 50);
/* reset phy */
elink_cl22_write(sc, phy,
MDIO_PMA_REG_CTRL, 0x8000);
elink_wait_reset_complete(sc, phy, params);
/* Wait for GPHY to reset */
DELAY(1000 * 50);
elink_54618se_specific_func(phy, params, ELINK_PHY_INIT);
/* Flip the signal detect polarity (set 0x1c.0x1e[8]). */
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_AUTO_DET_MED);
elink_cl22_read(sc, phy,
MDIO_REG_GPHY_SHADOW,
&temp);
temp |= MDIO_REG_GPHY_SHADOW_INVERT_FIB_SD;
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_WR_ENA | temp);
/* Set up fc */
/* Please refer to Table 28B-3 of 802.3ab-1999 spec. */
elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc);
fc_val = 0;
if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC)
fc_val |= MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC;
if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) ==
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH)
fc_val |= MDIO_AN_REG_ADV_PAUSE_PAUSE;
/* Read all advertisement */
elink_cl22_read(sc, phy,
0x09,
&an_1000_val);
elink_cl22_read(sc, phy,
0x04,
&an_10_100_val);
elink_cl22_read(sc, phy,
MDIO_PMA_REG_CTRL,
&autoneg_val);
/* Disable forced speed */
autoneg_val &= ~((1<<6) | (1<<8) | (1<<9) | (1<<12) | (1<<13));
an_10_100_val &= ~((1<<5) | (1<<6) | (1<<7) | (1<<8) | (1<<10) |
(1<<11));
if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) ||
(phy->req_line_speed == ELINK_SPEED_1000)) {
an_1000_val |= (1<<8);
autoneg_val |= (1<<9 | 1<<12);
if (phy->req_duplex == DUPLEX_FULL)
an_1000_val |= (1<<9);
ELINK_DEBUG_P0(sc, "Advertising 1G\n");
} else
an_1000_val &= ~((1<<8) | (1<<9));
elink_cl22_write(sc, phy,
0x09,
an_1000_val);
elink_cl22_read(sc, phy,
0x09,
&an_1000_val);
/* Advertise 10/100 link speed */
if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) {
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF) {
an_10_100_val |= (1<<5);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 10M-HD\n");
}
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) {
an_10_100_val |= (1<<6);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 10M-FD\n");
}
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF) {
an_10_100_val |= (1<<7);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 100M-HD\n");
}
if (phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL) {
an_10_100_val |= (1<<8);
autoneg_val |= (1<<9 | 1<<12);
ELINK_DEBUG_P0(sc, "Advertising 100M-FD\n");
}
}
/* Only 10/100 are allowed to work in FORCE mode */
if (phy->req_line_speed == ELINK_SPEED_100) {
autoneg_val |= (1<<13);
/* Enabled AUTO-MDIX when autoneg is disabled */
elink_cl22_write(sc, phy,
0x18,
(1<<15 | 1<<9 | 7<<0));
ELINK_DEBUG_P0(sc, "Setting 100M force\n");
}
if (phy->req_line_speed == ELINK_SPEED_10) {
/* Enabled AUTO-MDIX when autoneg is disabled */
elink_cl22_write(sc, phy,
0x18,
(1<<15 | 1<<9 | 7<<0));
ELINK_DEBUG_P0(sc, "Setting 10M force\n");
}
if ((phy->flags & ELINK_FLAGS_EEE) && elink_eee_has_cap(params)) {
elink_status_t rc;
elink_cl22_write(sc, phy, MDIO_REG_GPHY_EXP_ACCESS,
MDIO_REG_GPHY_EXP_ACCESS_TOP |
MDIO_REG_GPHY_EXP_TOP_2K_BUF);
elink_cl22_read(sc, phy, MDIO_REG_GPHY_EXP_ACCESS_GATE, &temp);
temp &= 0xfffe;
elink_cl22_write(sc, phy, MDIO_REG_GPHY_EXP_ACCESS_GATE, temp);
rc = elink_eee_initial_config(params, vars, SHMEM_EEE_1G_ADV);
if (rc != ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "Failed to configure EEE timers\n");
elink_eee_disable(phy, params, vars);
} else if ((params->eee_mode & ELINK_EEE_MODE_ADV_LPI) &&
(phy->req_duplex == DUPLEX_FULL) &&
(elink_eee_calc_timer(params) ||
!(params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI))) {
/* Need to advertise EEE only when requested,
* and either no LPI assertion was requested,
* or it was requested and a valid timer was set.
* Also notice full duplex is required for EEE.
*/
elink_eee_advertise(phy, params, vars,
SHMEM_EEE_1G_ADV);
} else {
ELINK_DEBUG_P0(sc, "Don't Advertise 1GBase-T EEE\n");
elink_eee_disable(phy, params, vars);
}
} else {
vars->eee_status &= ((uint32_t)(~SHMEM_EEE_1G_ADV) <<
SHMEM_EEE_SUPPORTED_SHIFT);
if (phy->flags & ELINK_FLAGS_EEE) {
/* Handle legacy auto-grEEEn */
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED) {
temp = 6;
ELINK_DEBUG_P0(sc, "Enabling Auto-GrEEEn\n");
} else {
temp = 0;
ELINK_DEBUG_P0(sc, "Don't Adv. EEE\n");
}
elink_cl45_write(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_EEE_ADV, temp);
}
}
elink_cl22_write(sc, phy,
0x04,
an_10_100_val | fc_val);
if (phy->req_duplex == DUPLEX_FULL)
autoneg_val |= (1<<8);
elink_cl22_write(sc, phy,
MDIO_PMA_REG_CTRL, autoneg_val);
return ELINK_STATUS_OK;
}
static void elink_5461x_set_link_led(struct elink_phy *phy,
struct elink_params *params, uint8_t mode)
{
struct bxe_softc *sc = params->sc;
uint16_t temp;
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_LED_SEL1);
elink_cl22_read(sc, phy,
MDIO_REG_GPHY_SHADOW,
&temp);
temp &= 0xff00;
ELINK_DEBUG_P1(sc, "54618x set link led (mode=%x)\n", mode);
switch (mode) {
case ELINK_LED_MODE_FRONT_PANEL_OFF:
case ELINK_LED_MODE_OFF:
temp |= 0x00ee;
break;
case ELINK_LED_MODE_OPER:
temp |= 0x0001;
break;
case ELINK_LED_MODE_ON:
temp |= 0x00ff;
break;
default:
break;
}
elink_cl22_write(sc, phy,
MDIO_REG_GPHY_SHADOW,
MDIO_REG_GPHY_SHADOW_WR_ENA | temp);
return;
}
static void elink_54618se_link_reset(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint32_t cfg_pin;
uint8_t port;
/* In case of no EPIO routed to reset the GPHY, put it
* in low power mode.
*/
elink_cl22_write(sc, phy, MDIO_PMA_REG_CTRL, 0x800);
/* This works with E3 only, no need to check the chip
* before determining the port.
*/
port = params->port;
cfg_pin = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_cmn_pin_cfg)) &
PORT_HW_CFG_E3_PHY_RESET_MASK) >>
PORT_HW_CFG_E3_PHY_RESET_SHIFT;
/* Drive pin low to put GPHY in reset. */
elink_set_cfg_pin(sc, cfg_pin, 0);
}
static uint8_t elink_54618se_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint16_t val;
uint8_t link_up = 0;
uint16_t legacy_status, legacy_speed;
/* Get speed operation status */
elink_cl22_read(sc, phy,
MDIO_REG_GPHY_AUX_STATUS,
&legacy_status);
ELINK_DEBUG_P1(sc, "54618SE read_status: 0x%x\n", legacy_status);
/* Read status to clear the PHY interrupt. */
elink_cl22_read(sc, phy,
MDIO_REG_INTR_STATUS,
&val);
link_up = ((legacy_status & (1<<2)) == (1<<2));
if (link_up) {
legacy_speed = (legacy_status & (7<<8));
if (legacy_speed == (7<<8)) {
vars->line_speed = ELINK_SPEED_1000;
vars->duplex = DUPLEX_FULL;
} else if (legacy_speed == (6<<8)) {
vars->line_speed = ELINK_SPEED_1000;
vars->duplex = DUPLEX_HALF;
} else if (legacy_speed == (5<<8)) {
vars->line_speed = ELINK_SPEED_100;
vars->duplex = DUPLEX_FULL;
}
/* Omitting 100Base-T4 for now */
else if (legacy_speed == (3<<8)) {
vars->line_speed = ELINK_SPEED_100;
vars->duplex = DUPLEX_HALF;
} else if (legacy_speed == (2<<8)) {
vars->line_speed = ELINK_SPEED_10;
vars->duplex = DUPLEX_FULL;
} else if (legacy_speed == (1<<8)) {
vars->line_speed = ELINK_SPEED_10;
vars->duplex = DUPLEX_HALF;
} else /* Should not happen */
vars->line_speed = 0;
ELINK_DEBUG_P2(sc,
"Link is up in %dMbps, is_duplex_full= %d\n",
vars->line_speed,
(vars->duplex == DUPLEX_FULL));
/* Check legacy speed AN resolution */
elink_cl22_read(sc, phy,
0x01,
&val);
if (val & (1<<5))
vars->link_status |=
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
elink_cl22_read(sc, phy,
0x06,
&val);
if ((val & (1<<0)) == 0)
vars->link_status |=
LINK_STATUS_PARALLEL_DETECTION_USED;
ELINK_DEBUG_P1(sc, "BCM54618SE: link speed is %d\n",
vars->line_speed);
elink_ext_phy_resolve_fc(phy, params, vars);
if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) {
/* Report LP advertised speeds */
elink_cl22_read(sc, phy, 0x5, &val);
if (val & (1<<5))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10THD_CAPABLE;
if (val & (1<<6))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE;
if (val & (1<<7))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE;
if (val & (1<<8))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE;
if (val & (1<<9))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_100T4_CAPABLE;
elink_cl22_read(sc, phy, 0xa, &val);
if (val & (1<<10))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE;
if (val & (1<<11))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE;
if ((phy->flags & ELINK_FLAGS_EEE) &&
elink_eee_has_cap(params))
elink_eee_an_resolve(phy, params, vars);
}
}
return link_up;
}
static void elink_54618se_config_loopback(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
uint16_t val;
uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
ELINK_DEBUG_P0(sc, "2PMA/PMD ext_phy_loopback: 54618se\n");
/* Enable master/slave manual mmode and set to master */
/* mii write 9 [bits set 11 12] */
elink_cl22_write(sc, phy, 0x09, 3<<11);
/* forced 1G and disable autoneg */
/* set val [mii read 0] */
/* set val [expr $val & [bits clear 6 12 13]] */
/* set val [expr $val | [bits set 6 8]] */
/* mii write 0 $val */
elink_cl22_read(sc, phy, 0x00, &val);
val &= ~((1<<6) | (1<<12) | (1<<13));
val |= (1<<6) | (1<<8);
elink_cl22_write(sc, phy, 0x00, val);
/* Set external loopback and Tx using 6dB coding */
/* mii write 0x18 7 */
/* set val [mii read 0x18] */
/* mii write 0x18 [expr $val | [bits set 10 15]] */
elink_cl22_write(sc, phy, 0x18, 7);
elink_cl22_read(sc, phy, 0x18, &val);
elink_cl22_write(sc, phy, 0x18, val | (1<<10) | (1<<15));
/* This register opens the gate for the UMAC despite its name */
REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 1);
/* Maximum Frame Length (RW). Defines a 14-Bit maximum frame
* length used by the MAC receive logic to check frames.
*/
REG_WR(sc, umac_base + UMAC_REG_MAXFR, 0x2710);
}
/******************************************************************/
/* SFX7101 PHY SECTION */
/******************************************************************/
static void elink_7101_config_loopback(struct elink_phy *phy,
struct elink_params *params)
{
struct bxe_softc *sc = params->sc;
/* SFX7101_XGXS_TEST1 */
elink_cl45_write(sc, phy,
MDIO_XS_DEVAD, MDIO_XS_SFX7101_XGXS_TEST1, 0x100);
}
static elink_status_t elink_7101_config_init(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
uint16_t fw_ver1, fw_ver2, val;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "Setting the SFX7101 LASI indication\n");
/* Restore normal power mode*/
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port);
/* HW reset */
elink_ext_phy_hw_reset(sc, params->port);
elink_wait_reset_complete(sc, phy, params);
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x1);
ELINK_DEBUG_P0(sc, "Setting the SFX7101 LED to blink on traffic\n");
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_7107_LED_CNTL, (1<<3));
elink_ext_phy_set_pause(params, phy, vars);
/* Restart autoneg */
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, &val);
val |= 0x200;
elink_cl45_write(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, val);
/* Save spirom version */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_VER1, &fw_ver1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_VER2, &fw_ver2);
elink_save_spirom_version(sc, params->port,
(uint32_t)(fw_ver1<<16 | fw_ver2), phy->ver_addr);
return ELINK_STATUS_OK;
}
static uint8_t elink_7101_read_status(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint8_t link_up;
uint16_t val1, val2;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1);
ELINK_DEBUG_P2(sc, "10G-base-T LASI status 0x%x->0x%x\n",
val2, val1);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2);
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1);
ELINK_DEBUG_P2(sc, "10G-base-T PMA status 0x%x->0x%x\n",
val2, val1);
link_up = ((val1 & 4) == 4);
/* If link is up print the AN outcome of the SFX7101 PHY */
if (link_up) {
elink_cl45_read(sc, phy,
MDIO_AN_DEVAD, MDIO_AN_REG_MASTER_STATUS,
&val2);
vars->line_speed = ELINK_SPEED_10000;
vars->duplex = DUPLEX_FULL;
ELINK_DEBUG_P2(sc, "SFX7101 AN status 0x%x->Master=%x\n",
val2, (val2 & (1<<14)));
elink_ext_phy_10G_an_resolve(sc, phy, vars);
elink_ext_phy_resolve_fc(phy, params, vars);
/* Read LP advertised speeds */
if (val2 & (1<<11))
vars->link_status |=
LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE;
}
return link_up;
}
static elink_status_t elink_7101_format_ver(uint32_t spirom_ver, uint8_t *str, uint16_t *len)
{
if (*len < 5)
return ELINK_STATUS_ERROR;
str[0] = (spirom_ver & 0xFF);
str[1] = (spirom_ver & 0xFF00) >> 8;
str[2] = (spirom_ver & 0xFF0000) >> 16;
str[3] = (spirom_ver & 0xFF000000) >> 24;
str[4] = '\0';
*len -= 5;
return ELINK_STATUS_OK;
}
void elink_sfx7101_sp_sw_reset(struct bxe_softc *sc, struct elink_phy *phy)
{
uint16_t val, cnt;
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_7101_RESET, &val);
for (cnt = 0; cnt < 10; cnt++) {
DELAY(1000 * 50);
/* Writes a self-clearing reset */
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_7101_RESET,
(val | (1<<15)));
/* Wait for clear */
elink_cl45_read(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_7101_RESET, &val);
if ((val & (1<<15)) == 0)
break;
}
}
static void elink_7101_hw_reset(struct elink_phy *phy,
struct elink_params *params) {
/* Low power mode is controlled by GPIO 2 */
elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_LOW, params->port);
/* The PHY reset is controlled by GPIO 1 */
elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, params->port);
}
static void elink_7101_set_link_led(struct elink_phy *phy,
struct elink_params *params, uint8_t mode)
{
uint16_t val = 0;
struct bxe_softc *sc = params->sc;
switch (mode) {
case ELINK_LED_MODE_FRONT_PANEL_OFF:
case ELINK_LED_MODE_OFF:
val = 2;
break;
case ELINK_LED_MODE_ON:
val = 1;
break;
case ELINK_LED_MODE_OPER:
val = 0;
break;
}
elink_cl45_write(sc, phy,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_7107_LINK_LED_CNTL,
val);
}
/******************************************************************/
/* STATIC PHY DECLARATION */
/******************************************************************/
static const struct elink_phy phy_null = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN,
.addr = 0,
.def_md_devad = 0,
.flags = ELINK_FLAGS_INIT_XGXS_FIRST,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = 0,
.media_type = ELINK_ETH_PHY_NOT_PRESENT,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)NULL,
.read_status = (read_status_t)NULL,
.link_reset = (link_reset_t)NULL,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)NULL,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_serdes = {
.type = PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT,
.addr = 0xff,
.def_md_devad = 0,
.flags = 0,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_xgxs_config_init,
.read_status = (read_status_t)elink_link_settings_status,
.link_reset = (link_reset_t)elink_int_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)NULL,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_xgxs = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT,
.addr = 0xff,
.def_md_devad = 0,
.flags = 0,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_CX4,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_xgxs_config_init,
.read_status = (read_status_t)elink_link_settings_status,
.link_reset = (link_reset_t)elink_int_link_reset,
.config_loopback = (config_loopback_t)elink_set_xgxs_loopback,
.format_fw_ver = (format_fw_ver_t)NULL,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)elink_xgxs_specific_func
};
static const struct elink_phy phy_warpcore = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_TX_ERROR_CHECK,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_1000baseKX_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_10000baseKR_Full |
ELINK_SUPPORTED_20000baseKR2_Full |
ELINK_SUPPORTED_20000baseMLD2_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_UNSPECIFIED,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
/* req_duplex = */0,
/* rsrv = */0,
.config_init = (config_init_t)elink_warpcore_config_init,
.read_status = (read_status_t)elink_warpcore_read_status,
.link_reset = (link_reset_t)elink_warpcore_link_reset,
.config_loopback = (config_loopback_t)elink_set_warpcore_loopback,
.format_fw_ver = (format_fw_ver_t)NULL,
.hw_reset = (hw_reset_t)elink_warpcore_hw_reset,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_7101 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_7101_config_init,
.read_status = (read_status_t)elink_7101_read_status,
.link_reset = (link_reset_t)elink_common_ext_link_reset,
.config_loopback = (config_loopback_t)elink_7101_config_loopback,
.format_fw_ver = (format_fw_ver_t)elink_7101_format_ver,
.hw_reset = (hw_reset_t)elink_7101_hw_reset,
.set_link_led = (set_link_led_t)elink_7101_set_link_led,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_8073 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
.addr = 0xff,
.def_md_devad = 0,
.flags = 0,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_KR,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8073_config_init,
.read_status = (read_status_t)elink_8073_read_status,
.link_reset = (link_reset_t)elink_8073_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_format_ver,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)elink_8073_specific_func
};
static const struct elink_phy phy_8705 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_INIT_XGXS_FIRST,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_XFP_FIBER,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8705_config_init,
.read_status = (read_status_t)elink_8705_read_status,
.link_reset = (link_reset_t)elink_common_ext_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_null_format_ver,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_8706 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_INIT_XGXS_FIRST,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_SFPP_10G_FIBER,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8706_config_init,
.read_status = (read_status_t)elink_8706_read_status,
.link_reset = (link_reset_t)elink_common_ext_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_format_ver,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_8726 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726,
.addr = 0xff,
.def_md_devad = 0,
.flags = (ELINK_FLAGS_INIT_XGXS_FIRST |
ELINK_FLAGS_TX_ERROR_CHECK),
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_NOT_PRESENT,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8726_config_init,
.read_status = (read_status_t)elink_8726_read_status,
.link_reset = (link_reset_t)elink_8726_link_reset,
.config_loopback = (config_loopback_t)elink_8726_config_loopback,
.format_fw_ver = (format_fw_ver_t)elink_format_ver,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)NULL,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_8727 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727,
.addr = 0xff,
.def_md_devad = 0,
.flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_TX_ERROR_CHECK),
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_NOT_PRESENT,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8727_config_init,
.read_status = (read_status_t)elink_8727_read_status,
.link_reset = (link_reset_t)elink_8727_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_format_ver,
.hw_reset = (hw_reset_t)elink_8727_hw_reset,
.set_link_led = (set_link_led_t)elink_8727_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_8727_specific_func
};
static const struct elink_phy phy_8481 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_REARM_LATCH_SIGNAL,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_8481_config_init,
.read_status = (read_status_t)elink_848xx_read_status,
.link_reset = (link_reset_t)elink_8481_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver,
.hw_reset = (hw_reset_t)elink_8481_hw_reset,
.set_link_led = (set_link_led_t)elink_848xx_set_link_led,
.phy_specific_func = (phy_specific_func_t)NULL
};
static const struct elink_phy phy_84823 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823,
.addr = 0xff,
.def_md_devad = 0,
.flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_REARM_LATCH_SIGNAL |
ELINK_FLAGS_TX_ERROR_CHECK),
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_848x3_config_init,
.read_status = (read_status_t)elink_848xx_read_status,
.link_reset = (link_reset_t)elink_848x3_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)elink_848xx_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func
};
static const struct elink_phy phy_84833 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833,
.addr = 0xff,
.def_md_devad = 0,
.flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_REARM_LATCH_SIGNAL |
ELINK_FLAGS_TX_ERROR_CHECK |
ELINK_FLAGS_TEMPERATURE),
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_848x3_config_init,
.read_status = (read_status_t)elink_848xx_read_status,
.link_reset = (link_reset_t)elink_848x3_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver,
.hw_reset = (hw_reset_t)elink_84833_hw_reset_phy,
.set_link_led = (set_link_led_t)elink_848xx_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func
};
static const struct elink_phy phy_84834 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_REARM_LATCH_SIGNAL,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_848x3_config_init,
.read_status = (read_status_t)elink_848xx_read_status,
.link_reset = (link_reset_t)elink_848x3_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver,
.hw_reset = (hw_reset_t)elink_84833_hw_reset_phy,
.set_link_led = (set_link_led_t)elink_848xx_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func
};
static const struct elink_phy phy_84858 = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ |
ELINK_FLAGS_REARM_LATCH_SIGNAL,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
.req_duplex = 0,
.rsrv = 0,
.config_init = (config_init_t)elink_848x3_config_init,
.read_status = (read_status_t)elink_848xx_read_status,
.link_reset = (link_reset_t)elink_848x3_link_reset,
.config_loopback = (config_loopback_t)NULL,
.format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver,
.hw_reset = (hw_reset_t)elink_84833_hw_reset_phy,
.set_link_led = (set_link_led_t)elink_848xx_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func
};
static const struct elink_phy phy_54618se = {
.type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE,
.addr = 0xff,
.def_md_devad = 0,
.flags = ELINK_FLAGS_INIT_XGXS_FIRST,
.rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff},
.mdio_ctrl = 0,
.supported = (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause),
.media_type = ELINK_ETH_PHY_BASE_T,
.ver_addr = 0,
.req_flow_ctrl = 0,
.req_line_speed = 0,
.speed_cap_mask = 0,
/* req_duplex = */0,
/* rsrv = */0,
.config_init = (config_init_t)elink_54618se_config_init,
.read_status = (read_status_t)elink_54618se_read_status,
.link_reset = (link_reset_t)elink_54618se_link_reset,
.config_loopback = (config_loopback_t)elink_54618se_config_loopback,
.format_fw_ver = (format_fw_ver_t)NULL,
.hw_reset = (hw_reset_t)NULL,
.set_link_led = (set_link_led_t)elink_5461x_set_link_led,
.phy_specific_func = (phy_specific_func_t)elink_54618se_specific_func
};
/*****************************************************************/
/* */
/* Populate the phy according. Main function: elink_populate_phy */
/* */
/*****************************************************************/
static void elink_populate_preemphasis(struct bxe_softc *sc, uint32_t shmem_base,
struct elink_phy *phy, uint8_t port,
uint8_t phy_index)
{
/* Get the 4 lanes xgxs config rx and tx */
uint32_t rx = 0, tx = 0, i;
for (i = 0; i < 2; i++) {
/* INT_PHY and ELINK_EXT_PHY1 share the same value location in
* the shmem. When num_phys is greater than 1, than this value
* applies only to ELINK_EXT_PHY1
*/
if (phy_index == ELINK_INT_PHY || phy_index == ELINK_EXT_PHY1) {
rx = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].xgxs_config_rx[i<<1]));
tx = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].xgxs_config_tx[i<<1]));
} else {
rx = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].xgxs_config2_rx[i<<1]));
tx = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].xgxs_config2_rx[i<<1]));
}
phy->rx_preemphasis[i << 1] = ((rx>>16) & 0xffff);
phy->rx_preemphasis[(i << 1) + 1] = (rx & 0xffff);
phy->tx_preemphasis[i << 1] = ((tx>>16) & 0xffff);
phy->tx_preemphasis[(i << 1) + 1] = (tx & 0xffff);
ELINK_DEBUG_P2(sc,"phy->rx_preemphasis = %x, phy->tx_preemphasis = %x\n",
phy->rx_preemphasis[i << 1], phy->tx_preemphasis[i << 1]);
}
}
static uint32_t elink_get_ext_phy_config(struct bxe_softc *sc, uint32_t shmem_base,
uint8_t phy_index, uint8_t port)
{
uint32_t ext_phy_config = 0;
switch (phy_index) {
case ELINK_EXT_PHY1:
ext_phy_config = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].external_phy_config));
break;
case ELINK_EXT_PHY2:
ext_phy_config = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].external_phy_config2));
break;
default:
ELINK_DEBUG_P1(sc, "Invalid phy_index %d\n", phy_index);
return ELINK_STATUS_ERROR;
}
return ext_phy_config;
}
static elink_status_t elink_populate_int_phy(struct bxe_softc *sc, uint32_t shmem_base, uint8_t port,
struct elink_phy *phy)
{
uint32_t phy_addr;
uint32_t chip_id;
uint32_t switch_cfg = (REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_feature_config[port].link_config)) &
PORT_FEATURE_CONNECTED_SWITCH_MASK);
chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12);
ELINK_DEBUG_P1(sc, ":chip_id = 0x%x\n", chip_id);
if (USES_WARPCORE(sc)) {
uint32_t serdes_net_if;
phy_addr = REG_RD(sc,
MISC_REG_WC0_CTRL_PHY_ADDR);
*phy = phy_warpcore;
if (REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR) == 0x3)
phy->flags |= ELINK_FLAGS_4_PORT_MODE;
else
phy->flags &= ~ELINK_FLAGS_4_PORT_MODE;
/* Check Dual mode */
serdes_net_if = (REG_RD(sc, shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[port].default_cfg)) &
PORT_HW_CFG_NET_SERDES_IF_MASK);
/* Set the appropriate supported and flags indications per
* interface type of the chip
*/
switch (serdes_net_if) {
case PORT_HW_CFG_NET_SERDES_IF_SGMII:
phy->supported &= (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
phy->media_type = ELINK_ETH_PHY_BASE_T;
break;
case PORT_HW_CFG_NET_SERDES_IF_XFI:
phy->supported &= (ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
phy->media_type = ELINK_ETH_PHY_XFP_FIBER;
break;
case PORT_HW_CFG_NET_SERDES_IF_SFI:
phy->supported &= (ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
phy->media_type = ELINK_ETH_PHY_SFPP_10G_FIBER;
break;
case PORT_HW_CFG_NET_SERDES_IF_KR:
phy->media_type = ELINK_ETH_PHY_KR;
phy->supported &= (ELINK_SUPPORTED_1000baseKX_Full |
ELINK_SUPPORTED_10000baseKR_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_NET_SERDES_IF_DXGXS:
phy->media_type = ELINK_ETH_PHY_KR;
phy->flags |= ELINK_FLAGS_WC_DUAL_MODE;
phy->supported &= (ELINK_SUPPORTED_20000baseMLD2_Full |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_NET_SERDES_IF_KR2:
phy->media_type = ELINK_ETH_PHY_KR;
phy->flags |= ELINK_FLAGS_WC_DUAL_MODE;
phy->supported &= (ELINK_SUPPORTED_20000baseKR2_Full |
ELINK_SUPPORTED_10000baseKR_Full |
ELINK_SUPPORTED_1000baseKX_Full |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
phy->flags &= ~ELINK_FLAGS_TX_ERROR_CHECK;
break;
default:
ELINK_DEBUG_P1(sc, "Unknown WC interface type 0x%x\n",
serdes_net_if);
break;
}
/* Enable MDC/MDIO work-around for E3 A0 since free running MDC
* was not set as expected. For B0, ECO will be enabled so there
* won't be an issue there
*/
if (CHIP_REV(sc) == CHIP_REV_Ax)
phy->flags |= ELINK_FLAGS_MDC_MDIO_WA;
else
phy->flags |= ELINK_FLAGS_MDC_MDIO_WA_B0;
ELINK_DEBUG_P3(sc, "media_type = %x, flags = %x, supported = %x\n",
phy->media_type, phy->flags, phy->supported);
} else
{
switch (switch_cfg) {
case ELINK_SWITCH_CFG_1G:
phy_addr = REG_RD(sc,
NIG_REG_SERDES0_CTRL_PHY_ADDR +
port * 0x10);
*phy = phy_serdes;
break;
case ELINK_SWITCH_CFG_10G:
phy_addr = REG_RD(sc,
NIG_REG_XGXS0_CTRL_PHY_ADDR +
port * 0x18);
*phy = phy_xgxs;
break;
default:
ELINK_DEBUG_P0(sc, "Invalid switch_cfg\n");
return ELINK_STATUS_ERROR;
}
}
phy->addr = (uint8_t)phy_addr;
phy->mdio_ctrl = elink_get_emac_base(sc,
SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH,
port);
if (CHIP_IS_E2(sc))
phy->def_md_devad = ELINK_E2_DEFAULT_PHY_DEV_ADDR;
else
phy->def_md_devad = ELINK_DEFAULT_PHY_DEV_ADDR;
ELINK_DEBUG_P3(sc, "Internal phy port=%d, addr=0x%x, mdio_ctl=0x%x\n",
port, phy->addr, phy->mdio_ctrl);
elink_populate_preemphasis(sc, shmem_base, phy, port, ELINK_INT_PHY);
return ELINK_STATUS_OK;
}
static elink_status_t elink_populate_ext_phy(struct bxe_softc *sc,
uint8_t phy_index,
uint32_t shmem_base,
uint32_t shmem2_base,
uint8_t port,
struct elink_phy *phy)
{
uint32_t ext_phy_config, phy_type, config2;
uint32_t mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH;
ext_phy_config = elink_get_ext_phy_config(sc, shmem_base,
phy_index, port);
phy_type = ELINK_XGXS_EXT_PHY_TYPE(ext_phy_config);
/* Select the phy type */
switch (phy_type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_SWAPPED;
*phy = phy_8073;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705:
*phy = phy_8705;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706:
*phy = phy_8706;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1;
*phy = phy_8726;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC:
/* BCM8727_NOC => BCM8727 no over current */
mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1;
*phy = phy_8727;
phy->flags |= ELINK_FLAGS_NOC;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1;
*phy = phy_8727;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481:
*phy = phy_8481;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823:
*phy = phy_84823;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833:
*phy = phy_84833;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834:
*phy = phy_84834;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858:
*phy = phy_84858;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54616:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE:
*phy = phy_54618se;
if (phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE)
phy->flags |= ELINK_FLAGS_EEE;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
*phy = phy_7101;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE:
*phy = phy_null;
return ELINK_STATUS_ERROR;
default:
*phy = phy_null;
/* In case external PHY wasn't found */
if ((phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) &&
(phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
return ELINK_STATUS_ERROR;
return ELINK_STATUS_OK;
}
phy->addr = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
elink_populate_preemphasis(sc, shmem_base, phy, port, phy_index);
/* The shmem address of the phy version is located on different
* structures. In case this structure is too old, do not set
* the address
*/
config2 = REG_RD(sc, shmem_base + offsetof(struct shmem_region,
dev_info.shared_hw_config.config2));
if (phy_index == ELINK_EXT_PHY1) {
phy->ver_addr = shmem_base + offsetof(struct shmem_region,
port_mb[port].ext_phy_fw_version);
/* Check specific mdc mdio settings */
if (config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS1_MASK)
mdc_mdio_access = config2 &
SHARED_HW_CFG_MDC_MDIO_ACCESS1_MASK;
} else {
uint32_t size = REG_RD(sc, shmem2_base);
if (size >
offsetof(struct shmem2_region, ext_phy_fw_version2)) {
phy->ver_addr = shmem2_base +
offsetof(struct shmem2_region,
ext_phy_fw_version2[port]);
}
/* Check specific mdc mdio settings */
if (config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS2_MASK)
mdc_mdio_access = (config2 &
SHARED_HW_CFG_MDC_MDIO_ACCESS2_MASK) >>
(SHARED_HW_CFG_MDC_MDIO_ACCESS2_SHIFT -
SHARED_HW_CFG_MDC_MDIO_ACCESS1_SHIFT);
}
phy->mdio_ctrl = elink_get_emac_base(sc, mdc_mdio_access, port);
if (elink_is_8483x_8485x(phy) && (phy->ver_addr)) {
/* Remove 100Mb link supported for BCM84833/4 when phy fw
* version lower than or equal to 1.39
*/
uint32_t raw_ver = REG_RD(sc, phy->ver_addr);
if (((raw_ver & 0x7F) <= 39) &&
(((raw_ver & 0xF80) >> 7) <= 1))
phy->supported &= ~(ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full);
}
ELINK_DEBUG_P3(sc, "phy_type 0x%x port %d found in index %d\n",
phy_type, port, phy_index);
ELINK_DEBUG_P2(sc, " addr=0x%x, mdio_ctl=0x%x\n",
phy->addr, phy->mdio_ctrl);
return ELINK_STATUS_OK;
}
static elink_status_t elink_populate_phy(struct bxe_softc *sc, uint8_t phy_index, uint32_t shmem_base,
uint32_t shmem2_base, uint8_t port, struct elink_phy *phy)
{
elink_status_t status = ELINK_STATUS_OK;
phy->type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN;
if (phy_index == ELINK_INT_PHY)
return elink_populate_int_phy(sc, shmem_base, port, phy);
status = elink_populate_ext_phy(sc, phy_index, shmem_base, shmem2_base,
port, phy);
return status;
}
static void elink_phy_def_cfg(struct elink_params *params,
struct elink_phy *phy,
uint8_t phy_index)
{
struct bxe_softc *sc = params->sc;
uint32_t link_config;
/* Populate the default phy configuration for MF mode */
if (phy_index == ELINK_EXT_PHY2) {
link_config = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].link_config2));
phy->speed_cap_mask = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.
port_hw_config[params->port].speed_capability_mask2));
} else {
link_config = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].link_config));
phy->speed_cap_mask = REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.
port_hw_config[params->port].speed_capability_mask));
}
ELINK_DEBUG_P3(sc,
"Default config phy idx %x cfg 0x%x speed_cap_mask 0x%x\n",
phy_index, link_config, phy->speed_cap_mask);
phy->req_duplex = DUPLEX_FULL;
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_10M_HALF:
phy->req_duplex = DUPLEX_HALF;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
phy->req_line_speed = ELINK_SPEED_10;
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
phy->req_duplex = DUPLEX_HALF;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
phy->req_line_speed = ELINK_SPEED_100;
break;
case PORT_FEATURE_LINK_SPEED_1G:
phy->req_line_speed = ELINK_SPEED_1000;
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
phy->req_line_speed = ELINK_SPEED_2500;
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
phy->req_line_speed = ELINK_SPEED_10000;
break;
default:
phy->req_line_speed = ELINK_SPEED_AUTO_NEG;
break;
}
ELINK_DEBUG_P2(sc, "Default config phy idx %x, req_duplex config %x\n",
phy_index, phy->req_duplex);
switch (link_config & PORT_FEATURE_FLOW_CONTROL_MASK) {
case PORT_FEATURE_FLOW_CONTROL_AUTO:
phy->req_flow_ctrl = ELINK_FLOW_CTRL_AUTO;
break;
case PORT_FEATURE_FLOW_CONTROL_TX:
phy->req_flow_ctrl = ELINK_FLOW_CTRL_TX;
break;
case PORT_FEATURE_FLOW_CONTROL_RX:
phy->req_flow_ctrl = ELINK_FLOW_CTRL_RX;
break;
case PORT_FEATURE_FLOW_CONTROL_BOTH:
phy->req_flow_ctrl = ELINK_FLOW_CTRL_BOTH;
break;
default:
phy->req_flow_ctrl = ELINK_FLOW_CTRL_NONE;
break;
}
ELINK_DEBUG_P3(sc, "Requested Duplex = %x, line_speed = %x, flow_ctrl = %x\n",
phy->req_duplex, phy->req_line_speed, phy->req_flow_ctrl);
}
uint32_t elink_phy_selection(struct elink_params *params)
{
uint32_t phy_config_swapped, prio_cfg;
uint32_t return_cfg = PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT;
phy_config_swapped = params->multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED;
prio_cfg = params->multi_phy_config &
PORT_HW_CFG_PHY_SELECTION_MASK;
if (phy_config_swapped) {
switch (prio_cfg) {
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
return_cfg = PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
return_cfg = PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
return_cfg = PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
break;
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
return_cfg = PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
break;
}
} else
return_cfg = prio_cfg;
return return_cfg;
}
elink_status_t elink_phy_probe(struct elink_params *params)
{
uint8_t phy_index, actual_phy_idx;
uint32_t phy_config_swapped, sync_offset, media_types;
struct bxe_softc *sc = params->sc;
struct elink_phy *phy;
params->num_phys = 0;
ELINK_DEBUG_P0(sc, "Begin phy probe\n");
#ifdef ELINK_INCLUDE_EMUL
if (CHIP_REV_IS_EMUL(sc))
return ELINK_STATUS_OK;
#endif
phy_config_swapped = params->multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED;
for (phy_index = ELINK_INT_PHY; phy_index < ELINK_MAX_PHYS;
phy_index++) {
actual_phy_idx = phy_index;
if (phy_config_swapped) {
if (phy_index == ELINK_EXT_PHY1)
actual_phy_idx = ELINK_EXT_PHY2;
else if (phy_index == ELINK_EXT_PHY2)
actual_phy_idx = ELINK_EXT_PHY1;
}
ELINK_DEBUG_P3(sc, "phy_config_swapped %x, phy_index %x,"
" actual_phy_idx %x\n", phy_config_swapped,
phy_index, actual_phy_idx);
phy = &params->phy[actual_phy_idx];
if (elink_populate_phy(sc, phy_index, params->shmem_base,
params->shmem2_base, params->port,
phy) != ELINK_STATUS_OK) {
params->num_phys = 0;
ELINK_DEBUG_P1(sc, "phy probe failed in phy index %d\n",
phy_index);
for (phy_index = ELINK_INT_PHY;
phy_index < ELINK_MAX_PHYS;
phy_index++)
*phy = phy_null;
return ELINK_STATUS_ERROR;
}
if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)
break;
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_DISABLE_REMOTE_FAULT_DET)
phy->flags &= ~ELINK_FLAGS_TX_ERROR_CHECK;
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_MT_SUPPORT))
phy->flags |= ELINK_FLAGS_MDC_MDIO_WA_G;
sync_offset = params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[params->port].media_type);
media_types = REG_RD(sc, sync_offset);
/* Update media type for non-PMF sync only for the first time
* In case the media type changes afterwards, it will be updated
* using the update_status function
*/
if ((media_types & (PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK <<
(PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT *
actual_phy_idx))) == 0) {
media_types |= ((phy->media_type &
PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) <<
(PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT *
actual_phy_idx));
}
REG_WR(sc, sync_offset, media_types);
elink_phy_def_cfg(params, phy, phy_index);
params->num_phys++;
}
ELINK_DEBUG_P1(sc, "End phy probe. #phys found %x\n", params->num_phys);
return ELINK_STATUS_OK;
}
#ifdef ELINK_INCLUDE_EMUL
static elink_status_t elink_init_e3_emul_mac(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->line_speed = params->req_line_speed[0];
/* In case link speed is auto, set speed the highest as possible */
if (params->req_line_speed[0] == ELINK_SPEED_AUTO_NEG) {
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC)
vars->line_speed = ELINK_SPEED_2500;
else if (elink_is_4_port_mode(sc))
vars->line_speed = ELINK_SPEED_10000;
else
vars->line_speed = ELINK_SPEED_20000;
}
if (vars->line_speed < ELINK_SPEED_10000) {
if ((params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC)) {
ELINK_DEBUG_P1(sc, "Invalid line speed %d while UMAC is"
" disabled!\n", params->req_line_speed[0]);
return ELINK_STATUS_ERROR;
}
switch (vars->line_speed) {
case ELINK_SPEED_10:
vars->link_status = ELINK_LINK_10TFD;
break;
case ELINK_SPEED_100:
vars->link_status = ELINK_LINK_100TXFD;
break;
case ELINK_SPEED_1000:
vars->link_status = ELINK_LINK_1000TFD;
break;
case ELINK_SPEED_2500:
vars->link_status = ELINK_LINK_2500TFD;
break;
default:
ELINK_DEBUG_P1(sc, "Invalid line speed %d for UMAC\n",
vars->line_speed);
return ELINK_STATUS_ERROR;
}
vars->link_status |= LINK_STATUS_LINK_UP;
if (params->loopback_mode == ELINK_LOOPBACK_UMAC)
elink_umac_enable(params, vars, 1);
else
elink_umac_enable(params, vars, 0);
} else {
/* Link speed >= 10000 requires XMAC enabled */
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC) {
ELINK_DEBUG_P1(sc, "Invalid line speed %d while XMAC is"
" disabled!\n", params->req_line_speed[0]);
return ELINK_STATUS_ERROR;
}
/* Check link speed */
switch (vars->line_speed) {
case ELINK_SPEED_10000:
vars->link_status = ELINK_LINK_10GTFD;
break;
case ELINK_SPEED_20000:
vars->link_status = ELINK_LINK_20GTFD;
break;
default:
ELINK_DEBUG_P1(sc, "Invalid line speed %d for XMAC\n",
vars->line_speed);
return ELINK_STATUS_ERROR;
}
vars->link_status |= LINK_STATUS_LINK_UP;
if (params->loopback_mode == ELINK_LOOPBACK_XMAC)
elink_xmac_enable(params, vars, 1);
else
elink_xmac_enable(params, vars, 0);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_init_emul(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
if (CHIP_IS_E3(sc)) {
if (elink_init_e3_emul_mac(params, vars) !=
ELINK_STATUS_OK)
return ELINK_STATUS_ERROR;
} else {
if (params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC) {
vars->line_speed = ELINK_SPEED_1000;
vars->link_status = (LINK_STATUS_LINK_UP |
ELINK_LINK_1000XFD);
if (params->loopback_mode ==
ELINK_LOOPBACK_EMAC)
elink_emac_enable(params, vars, 1);
else
elink_emac_enable(params, vars, 0);
} else {
vars->line_speed = ELINK_SPEED_10000;
vars->link_status = (LINK_STATUS_LINK_UP |
ELINK_LINK_10GTFD);
if (params->loopback_mode ==
ELINK_LOOPBACK_BMAC)
elink_bmac_enable(params, vars, 1, 1);
else
elink_bmac_enable(params, vars, 0, 1);
}
}
vars->link_up = 1;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (CHIP_IS_E1x(sc))
elink_pbf_update(params, vars->flow_ctrl,
vars->line_speed);
/* Disable drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
/* update shared memory */
elink_update_mng(params, vars->link_status);
return ELINK_STATUS_OK;
}
#endif
#ifdef ELINK_INCLUDE_FPGA
static elink_status_t elink_init_fpga(struct elink_params *params,
struct elink_vars *vars)
{
/* Enable on E1.5 FPGA */
struct bxe_softc *sc = params->sc;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (!(CHIP_IS_E1(sc))) {
vars->flow_ctrl = (ELINK_FLOW_CTRL_TX |
ELINK_FLOW_CTRL_RX);
vars->link_status |= (LINK_STATUS_TX_FLOW_CONTROL_ENABLED |
LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
}
if (CHIP_IS_E3(sc)) {
vars->line_speed = params->req_line_speed[0];
switch (vars->line_speed) {
case ELINK_SPEED_AUTO_NEG:
vars->line_speed = ELINK_SPEED_2500;
case ELINK_SPEED_2500:
vars->link_status = ELINK_LINK_2500TFD;
break;
case ELINK_SPEED_1000:
vars->link_status = ELINK_LINK_1000XFD;
break;
case ELINK_SPEED_100:
vars->link_status = ELINK_LINK_100TXFD;
break;
case ELINK_SPEED_10:
vars->link_status = ELINK_LINK_10TFD;
break;
default:
ELINK_DEBUG_P1(sc, "Invalid link speed %d\n",
params->req_line_speed[0]);
return ELINK_STATUS_ERROR;
}
vars->link_status |= LINK_STATUS_LINK_UP;
if (params->loopback_mode == ELINK_LOOPBACK_UMAC)
elink_umac_enable(params, vars, 1);
else
elink_umac_enable(params, vars, 0);
} else {
vars->line_speed = ELINK_SPEED_10000;
vars->link_status = (LINK_STATUS_LINK_UP | ELINK_LINK_10GTFD);
if (params->loopback_mode == ELINK_LOOPBACK_EMAC)
elink_emac_enable(params, vars, 1);
else
elink_emac_enable(params, vars, 0);
}
vars->link_up = 1;
if (CHIP_IS_E1x(sc))
elink_pbf_update(params, vars->flow_ctrl,
vars->line_speed);
/* Disable drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
/* Update shared memory */
elink_update_mng(params, vars->link_status);
return ELINK_STATUS_OK;
}
#endif
static void elink_init_bmac_loopback(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->link_up = 1;
vars->line_speed = ELINK_SPEED_10000;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_BMAC;
vars->phy_flags = PHY_XGXS_FLAG;
elink_xgxs_deassert(params);
/* Set bmac loopback */
elink_bmac_enable(params, vars, 1, 1);
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
}
static void elink_init_emac_loopback(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->link_up = 1;
vars->line_speed = ELINK_SPEED_1000;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_EMAC;
vars->phy_flags = PHY_XGXS_FLAG;
elink_xgxs_deassert(params);
/* Set bmac loopback */
elink_emac_enable(params, vars, 1);
elink_emac_program(params, vars);
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
}
static void elink_init_xmac_loopback(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->link_up = 1;
if (!params->req_line_speed[0])
vars->line_speed = ELINK_SPEED_10000;
else
vars->line_speed = params->req_line_speed[0];
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_XMAC;
vars->phy_flags = PHY_XGXS_FLAG;
/* Set WC to loopback mode since link is required to provide clock
* to the XMAC in 20G mode
*/
elink_set_aer_mmd(params, &params->phy[0]);
elink_warpcore_reset_lane(sc, &params->phy[0], 0);
params->phy[ELINK_INT_PHY].config_loopback(
&params->phy[ELINK_INT_PHY],
params);
elink_xmac_enable(params, vars, 1);
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
}
static void elink_init_umac_loopback(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->link_up = 1;
vars->line_speed = ELINK_SPEED_1000;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_UMAC;
vars->phy_flags = PHY_XGXS_FLAG;
elink_umac_enable(params, vars, 1);
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
}
static void elink_init_xgxs_loopback(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
struct elink_phy *int_phy = &params->phy[ELINK_INT_PHY];
vars->link_up = 1;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->duplex = DUPLEX_FULL;
if (params->req_line_speed[0] == ELINK_SPEED_1000)
vars->line_speed = ELINK_SPEED_1000;
else if ((params->req_line_speed[0] == ELINK_SPEED_20000) ||
(int_phy->flags & ELINK_FLAGS_WC_DUAL_MODE))
vars->line_speed = ELINK_SPEED_20000;
else
vars->line_speed = ELINK_SPEED_10000;
if (!USES_WARPCORE(sc))
elink_xgxs_deassert(params);
elink_link_initialize(params, vars);
if (params->req_line_speed[0] == ELINK_SPEED_1000) {
if (USES_WARPCORE(sc))
elink_umac_enable(params, vars, 0);
else {
elink_emac_program(params, vars);
elink_emac_enable(params, vars, 0);
}
} else {
if (USES_WARPCORE(sc))
elink_xmac_enable(params, vars, 0);
else
elink_bmac_enable(params, vars, 0, 1);
}
if (params->loopback_mode == ELINK_LOOPBACK_XGXS) {
/* Set 10G XGXS loopback */
int_phy->config_loopback(int_phy, params);
} else {
/* Set external phy loopback */
uint8_t phy_index;
for (phy_index = ELINK_EXT_PHY1;
phy_index < params->num_phys; phy_index++)
if (params->phy[phy_index].config_loopback)
params->phy[phy_index].config_loopback(
&params->phy[phy_index],
params);
}
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
elink_set_led(params, vars, ELINK_LED_MODE_OPER, vars->line_speed);
}
void elink_set_rx_filter(struct elink_params *params, uint8_t en)
{
struct bxe_softc *sc = params->sc;
uint8_t val = en * 0x1F;
/* Open / close the gate between the NIG and the BRB */
if (!CHIP_IS_E1x(sc))
val |= en * 0x20;
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + params->port*4, val);
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + params->port*4,
en*0x3);
}
REG_WR(sc, (params->port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), en);
}
static elink_status_t elink_avoid_link_flap(struct elink_params *params,
struct elink_vars *vars)
{
uint32_t phy_idx;
uint32_t dont_clear_stat, lfa_sts;
struct bxe_softc *sc = params->sc;
elink_set_mdio_emac_per_phy(sc, params);
/* Sync the link parameters */
elink_link_status_update(params, vars);
/*
* The module verification was already done by previous link owner,
* so this call is meant only to get warning message
*/
for (phy_idx = ELINK_INT_PHY; phy_idx < params->num_phys; phy_idx++) {
struct elink_phy *phy = &params->phy[phy_idx];
if (phy->phy_specific_func) {
ELINK_DEBUG_P0(sc, "Calling PHY specific func\n");
phy->phy_specific_func(phy, params, ELINK_PHY_INIT);
}
if ((phy->media_type == ELINK_ETH_PHY_SFPP_10G_FIBER) ||
(phy->media_type == ELINK_ETH_PHY_SFP_1G_FIBER) ||
(phy->media_type == ELINK_ETH_PHY_DA_TWINAX))
elink_verify_sfp_module(phy, params);
}
lfa_sts = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa,
lfa_sts));
dont_clear_stat = lfa_sts & SHMEM_LFA_DONT_CLEAR_STAT;
/* Re-enable the NIG/MAC */
if (CHIP_IS_E3(sc)) {
if (!dont_clear_stat) {
REG_WR(sc, GRCBASE_MISC +
MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_MSTAT0 <<
params->port));
REG_WR(sc, GRCBASE_MISC +
MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_MSTAT0 <<
params->port));
}
if (vars->line_speed < ELINK_SPEED_10000)
elink_umac_enable(params, vars, 0);
else
elink_xmac_enable(params, vars, 0);
} else {
if (vars->line_speed < ELINK_SPEED_10000)
elink_emac_enable(params, vars, 0);
else
elink_bmac_enable(params, vars, 0, !dont_clear_stat);
}
/* Increment LFA count */
lfa_sts = ((lfa_sts & ~LINK_FLAP_AVOIDANCE_COUNT_MASK) |
(((((lfa_sts & LINK_FLAP_AVOIDANCE_COUNT_MASK) >>
LINK_FLAP_AVOIDANCE_COUNT_OFFSET) + 1) & 0xff)
<< LINK_FLAP_AVOIDANCE_COUNT_OFFSET));
/* Clear link flap reason */
lfa_sts &= ~LFA_LINK_FLAP_REASON_MASK;
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, lfa_sts), lfa_sts);
/* Disable NIG DRAIN */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
/* Enable interrupts */
elink_link_int_enable(params);
return ELINK_STATUS_OK;
}
static void elink_cannot_avoid_link_flap(struct elink_params *params,
struct elink_vars *vars,
int lfa_status)
{
uint32_t lfa_sts, cfg_idx, tmp_val;
struct bxe_softc *sc = params->sc;
elink_link_reset(params, vars, 1);
if (!params->lfa_base)
return;
/* Store the new link parameters */
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_duplex),
params->req_duplex[0] | (params->req_duplex[1] << 16));
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_flow_ctrl),
params->req_flow_ctrl[0] | (params->req_flow_ctrl[1] << 16));
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, req_line_speed),
params->req_line_speed[0] | (params->req_line_speed[1] << 16));
for (cfg_idx = 0; cfg_idx < SHMEM_LINK_CONFIG_SIZE; cfg_idx++) {
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa,
speed_cap_mask[cfg_idx]),
params->speed_cap_mask[cfg_idx]);
}
tmp_val = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, additional_config));
tmp_val &= ~REQ_FC_AUTO_ADV_MASK;
tmp_val |= params->req_fc_auto_adv;
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, additional_config), tmp_val);
lfa_sts = REG_RD(sc, params->lfa_base +
offsetof(struct shmem_lfa, lfa_sts));
/* Clear the "Don't Clear Statistics" bit, and set reason */
lfa_sts &= ~SHMEM_LFA_DONT_CLEAR_STAT;
/* Set link flap reason */
lfa_sts &= ~LFA_LINK_FLAP_REASON_MASK;
lfa_sts |= ((lfa_status & LFA_LINK_FLAP_REASON_MASK) <<
LFA_LINK_FLAP_REASON_OFFSET);
/* Increment link flap counter */
lfa_sts = ((lfa_sts & ~LINK_FLAP_COUNT_MASK) |
(((((lfa_sts & LINK_FLAP_COUNT_MASK) >>
LINK_FLAP_COUNT_OFFSET) + 1) & 0xff)
<< LINK_FLAP_COUNT_OFFSET));
REG_WR(sc, params->lfa_base +
offsetof(struct shmem_lfa, lfa_sts), lfa_sts);
/* Proceed with regular link initialization */
}
elink_status_t elink_phy_init(struct elink_params *params, struct elink_vars *vars)
{
int lfa_status;
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "Phy Initialization started\n");
ELINK_DEBUG_P2(sc, "(1) req_speed %d, req_flowctrl %d\n",
params->req_line_speed[0], params->req_flow_ctrl[0]);
ELINK_DEBUG_P2(sc, "(2) req_speed %d, req_flowctrl %d\n",
params->req_line_speed[1], params->req_flow_ctrl[1]);
ELINK_DEBUG_P1(sc, "req_adv_flow_ctrl 0x%x\n", params->req_fc_auto_adv);
vars->link_status = 0;
vars->phy_link_up = 0;
vars->link_up = 0;
vars->line_speed = 0;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = ELINK_FLOW_CTRL_NONE;
vars->mac_type = ELINK_MAC_TYPE_NONE;
vars->phy_flags = 0;
vars->check_kr2_recovery_cnt = 0;
params->link_flags = ELINK_PHY_INITIALIZED;
/* Driver opens NIG-BRB filters */
elink_set_rx_filter(params, 1);
elink_chng_link_count(params, 1);
/* Check if link flap can be avoided */
lfa_status = elink_check_lfa(params);
ELINK_DEBUG_P3(sc, " params : port = %x, loopback_mode = %x req_duplex = %x\n",
params->port, params->loopback_mode, params->req_duplex[0]);
ELINK_DEBUG_P3(sc, " params : switch_cfg = %x, lane_config = %x req_duplex[1] = %x\n",
params->switch_cfg, params->lane_config, params->req_duplex[1]);
ELINK_DEBUG_P3(sc, " params : chip_id = %x, feature_config_flags = %x, num_phys = %x\n",
params->chip_id, params->feature_config_flags, params->num_phys);
ELINK_DEBUG_P3(sc, " params : rsrv = %x, eee_mode = %x, hw_led_mode = x\n",
params->rsrv, params->eee_mode, params->hw_led_mode);
ELINK_DEBUG_P3(sc, " params : multi_phy = %x, req_fc_auto_adv = %x, link_flags = %x\n",
params->multi_phy_config, params->req_fc_auto_adv, params->link_flags);
ELINK_DEBUG_P2(sc, " params : lfa_base = %x, link_attr = %x\n",
params->lfa_base, params->link_attr_sync);
if (lfa_status == 0) {
ELINK_DEBUG_P0(sc, "Link Flap Avoidance in progress\n");
return elink_avoid_link_flap(params, vars);
}
ELINK_DEBUG_P1(sc, "Cannot avoid link flap lfa_sta=0x%x\n",
lfa_status);
elink_cannot_avoid_link_flap(params, vars, lfa_status);
/* Disable attentions */
elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4,
(ELINK_NIG_MASK_XGXS0_LINK_STATUS |
ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
#ifdef ELINK_INCLUDE_EMUL
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC))
#endif
elink_emac_init(params, vars);
if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)
vars->link_status |= LINK_STATUS_PFC_ENABLED;
if ((params->num_phys == 0) &&
!CHIP_REV_IS_SLOW(sc)) {
ELINK_DEBUG_P0(sc, "No phy found for initialization !!\n");
return ELINK_STATUS_ERROR;
}
set_phy_vars(params, vars);
ELINK_DEBUG_P1(sc, "Num of phys on board: %d\n", params->num_phys);
#ifdef ELINK_INCLUDE_FPGA
if (CHIP_REV_IS_FPGA(sc)) {
return elink_init_fpga(params, vars);
} else
#endif
#ifdef ELINK_INCLUDE_EMUL
if (CHIP_REV_IS_EMUL(sc)) {
return elink_init_emul(params, vars);
} else
#endif
switch (params->loopback_mode) {
case ELINK_LOOPBACK_BMAC:
elink_init_bmac_loopback(params, vars);
break;
case ELINK_LOOPBACK_EMAC:
elink_init_emac_loopback(params, vars);
break;
case ELINK_LOOPBACK_XMAC:
elink_init_xmac_loopback(params, vars);
break;
case ELINK_LOOPBACK_UMAC:
elink_init_umac_loopback(params, vars);
break;
case ELINK_LOOPBACK_XGXS:
case ELINK_LOOPBACK_EXT_PHY:
elink_init_xgxs_loopback(params, vars);
break;
default:
if (!CHIP_IS_E3(sc)) {
if (params->switch_cfg == ELINK_SWITCH_CFG_10G)
elink_xgxs_deassert(params);
else
elink_serdes_deassert(sc, params->port);
}
elink_link_initialize(params, vars);
DELAY(1000 * 30);
elink_link_int_enable(params);
break;
}
elink_update_mng(params, vars->link_status);
elink_update_mng_eee(params, vars->eee_status);
return ELINK_STATUS_OK;
}
elink_status_t elink_link_reset(struct elink_params *params, struct elink_vars *vars,
uint8_t reset_ext_phy)
{
struct bxe_softc *sc = params->sc;
uint8_t phy_index, port = params->port, clear_latch_ind = 0;
ELINK_DEBUG_P1(sc, "Resetting the link of port %d\n", port);
/* Disable attentions */
vars->link_status = 0;
elink_chng_link_count(params, 1);
elink_update_mng(params, vars->link_status);
vars->eee_status &= ~(SHMEM_EEE_LP_ADV_STATUS_MASK |
SHMEM_EEE_ACTIVE_BIT);
elink_update_mng_eee(params, vars->eee_status);
elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4,
(ELINK_NIG_MASK_XGXS0_LINK_STATUS |
ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
/* Activate nig drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 1);
/* Disable nig egress interface */
if (!CHIP_IS_E3(sc)) {
REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0);
REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0);
}
#ifdef ELINK_INCLUDE_EMUL
/* Stop BigMac rx */
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC))
#endif
if (!CHIP_IS_E3(sc))
elink_set_bmac_rx(sc, params->chip_id, port, 0);
#ifdef ELINK_INCLUDE_EMUL
/* Stop XMAC/UMAC rx */
if (!(params->feature_config_flags &
ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC))
#endif
if (CHIP_IS_E3(sc) &&
!CHIP_REV_IS_FPGA(sc)) {
elink_set_xmac_rxtx(params, 0);
elink_set_umac_rxtx(params, 0);
}
/* Disable emac */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0);
DELAY(1000 * 10);
/* The PHY reset is controlled by GPIO 1
* Hold it as vars low
*/
/* Clear link led */
elink_set_mdio_emac_per_phy(sc, params);
elink_set_led(params, vars, ELINK_LED_MODE_OFF, 0);
if (reset_ext_phy && (!CHIP_REV_IS_SLOW(sc))) {
for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys;
phy_index++) {
if (params->phy[phy_index].link_reset) {
elink_set_aer_mmd(params,
&params->phy[phy_index]);
params->phy[phy_index].link_reset(
&params->phy[phy_index],
params);
}
if (params->phy[phy_index].flags &
ELINK_FLAGS_REARM_LATCH_SIGNAL)
clear_latch_ind = 1;
}
}
if (clear_latch_ind) {
/* Clear latching indication */
elink_rearm_latch_signal(sc, port, 0);
elink_bits_dis(sc, NIG_REG_LATCH_BC_0 + port*4,
1 << ELINK_NIG_LATCH_BC_ENABLE_MI_INT);
}
#if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA)
if (!CHIP_REV_IS_SLOW(sc))
#endif
if (params->phy[ELINK_INT_PHY].link_reset)
params->phy[ELINK_INT_PHY].link_reset(
&params->phy[ELINK_INT_PHY], params);
/* Disable nig ingress interface */
if (!CHIP_IS_E3(sc)) {
/* Reset BigMac */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0);
REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0);
} else {
uint32_t xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
elink_set_xumac_nig(params, 0, 0);
if (REG_RD(sc, MISC_REG_RESET_REG_2) &
MISC_REGISTERS_RESET_REG_2_XMAC)
REG_WR(sc, xmac_base + XMAC_REG_CTRL,
XMAC_CTRL_REG_SOFT_RESET);
}
vars->link_up = 0;
vars->phy_flags = 0;
return ELINK_STATUS_OK;
}
elink_status_t elink_lfa_reset(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
vars->link_up = 0;
vars->phy_flags = 0;
params->link_flags &= ~ELINK_PHY_INITIALIZED;
if (!params->lfa_base)
return elink_link_reset(params, vars, 1);
/*
* Activate NIG drain so that during this time the device won't send
* anything while it is unable to response.
*/
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 1);
/*
* Close gracefully the gate from BMAC to NIG such that no half packets
* are passed.
*/
if (!CHIP_IS_E3(sc))
elink_set_bmac_rx(sc, params->chip_id, params->port, 0);
if (CHIP_IS_E3(sc)) {
elink_set_xmac_rxtx(params, 0);
elink_set_umac_rxtx(params, 0);
}
/* Wait 10ms for the pipe to clean up*/
DELAY(1000 * 10);
/* Clean the NIG-BRB using the network filters in a way that will
* not cut a packet in the middle.
*/
elink_set_rx_filter(params, 0);
/*
* Re-open the gate between the BMAC and the NIG, after verifying the
* gate to the BRB is closed, otherwise packets may arrive to the
* firmware before driver had initialized it. The target is to achieve
* minimum management protocol down time.
*/
if (!CHIP_IS_E3(sc))
elink_set_bmac_rx(sc, params->chip_id, params->port, 1);
if (CHIP_IS_E3(sc)) {
elink_set_xmac_rxtx(params, 1);
elink_set_umac_rxtx(params, 1);
}
/* Disable NIG drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
return ELINK_STATUS_OK;
}
/****************************************************************************/
/* Common function */
/****************************************************************************/
static elink_status_t elink_8073_common_init_phy(struct bxe_softc *sc,
uint32_t shmem_base_path[],
uint32_t shmem2_base_path[], uint8_t phy_index,
uint32_t chip_id)
{
struct elink_phy phy[PORT_MAX];
struct elink_phy *phy_blk[PORT_MAX];
uint16_t val;
int8_t port = 0;
int8_t port_of_path = 0;
uint32_t swap_val, swap_override;
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
port ^= (swap_val && swap_override);
elink_ext_phy_hw_reset(sc, port);
/* PART1 - Reset both phys */
for (port = PORT_MAX - 1; port >= PORT_0; port--) {
uint32_t shmem_base, shmem2_base;
/* In E2, same phy is using for port0 of the two paths */
if (CHIP_IS_E1x(sc)) {
shmem_base = shmem_base_path[0];
shmem2_base = shmem2_base_path[0];
port_of_path = port;
} else {
shmem_base = shmem_base_path[port];
shmem2_base = shmem2_base_path[port];
port_of_path = 0;
}
/* Extract the ext phy address for the port */
if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base,
port_of_path, &phy[port]) !=
ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "populate_phy failed\n");
return ELINK_STATUS_ERROR;
}
/* Disable attentions */
elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 +
port_of_path*4,
(ELINK_NIG_MASK_XGXS0_LINK_STATUS |
ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
/* Need to take the phy out of low power mode in order
* to write to access its registers
*/
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
port);
/* Reset the phy */
elink_cl45_write(sc, &phy[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL,
1<<15);
}
/* Add delay of 150ms after reset */
DELAY(1000 * 150);
if (phy[PORT_0].addr & 0x1) {
phy_blk[PORT_0] = &(phy[PORT_1]);
phy_blk[PORT_1] = &(phy[PORT_0]);
} else {
phy_blk[PORT_0] = &(phy[PORT_0]);
phy_blk[PORT_1] = &(phy[PORT_1]);
}
/* PART2 - Download firmware to both phys */
for (port = PORT_MAX - 1; port >= PORT_0; port--) {
if (CHIP_IS_E1x(sc))
port_of_path = port;
else
port_of_path = 0;
ELINK_DEBUG_P1(sc, "Loading spirom for phy address 0x%x\n",
phy_blk[port]->addr);
if (elink_8073_8727_external_rom_boot(sc, phy_blk[port],
port_of_path))
return ELINK_STATUS_ERROR;
/* Only set bit 10 = 1 (Tx power down) */
elink_cl45_read(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_POWER_DOWN, &val);
/* Phase1 of TX_POWER_DOWN reset */
elink_cl45_write(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_POWER_DOWN,
(val | 1<<10));
}
/* Toggle Transmitter: Power down and then up with 600ms delay
* between
*/
DELAY(1000 * 600);
/* PART3 - complete TX_POWER_DOWN process, and set GPIO2 back to low */
for (port = PORT_MAX - 1; port >= PORT_0; port--) {
/* Phase2 of POWER_DOWN_RESET */
/* Release bit 10 (Release Tx power down) */
elink_cl45_read(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_POWER_DOWN, &val);
elink_cl45_write(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_POWER_DOWN, (val & (~(1<<10))));
DELAY(1000 * 15);
/* Read modify write the SPI-ROM version select register */
elink_cl45_read(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_EDC_FFE_MAIN, &val);
elink_cl45_write(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_EDC_FFE_MAIN, (val | (1<<12)));
/* set GPIO2 back to LOW */
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_8726_common_init_phy(struct bxe_softc *sc,
uint32_t shmem_base_path[],
uint32_t shmem2_base_path[], uint8_t phy_index,
uint32_t chip_id)
{
uint32_t val;
int8_t port;
struct elink_phy phy;
/* Use port1 because of the static port-swap */
/* Enable the module detection interrupt */
val = REG_RD(sc, MISC_REG_GPIO_EVENT_EN);
val |= ((1<<MISC_REGISTERS_GPIO_3)|
(1<<(MISC_REGISTERS_GPIO_3 + MISC_REGISTERS_GPIO_PORT_SHIFT)));
REG_WR(sc, MISC_REG_GPIO_EVENT_EN, val);
elink_ext_phy_hw_reset(sc, 0);
DELAY(1000 * 5);
for (port = 0; port < PORT_MAX; port++) {
uint32_t shmem_base, shmem2_base;
/* In E2, same phy is using for port0 of the two paths */
if (CHIP_IS_E1x(sc)) {
shmem_base = shmem_base_path[0];
shmem2_base = shmem2_base_path[0];
} else {
shmem_base = shmem_base_path[port];
shmem2_base = shmem2_base_path[port];
}
/* Extract the ext phy address for the port */
if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base,
port, &phy) !=
ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "populate phy failed\n");
return ELINK_STATUS_ERROR;
}
/* Reset phy*/
elink_cl45_write(sc, &phy,
MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x0001);
/* Set fault module detected LED on */
elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_HIGH,
port);
}
return ELINK_STATUS_OK;
}
static void elink_get_ext_phy_reset_gpio(struct bxe_softc *sc, uint32_t shmem_base,
uint8_t *io_gpio, uint8_t *io_port)
{
uint32_t phy_gpio_reset = REG_RD(sc, shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[PORT_0].default_cfg));
switch (phy_gpio_reset) {
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO0_P0:
*io_gpio = 0;
*io_port = 0;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO1_P0:
*io_gpio = 1;
*io_port = 0;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO2_P0:
*io_gpio = 2;
*io_port = 0;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO3_P0:
*io_gpio = 3;
*io_port = 0;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO0_P1:
*io_gpio = 0;
*io_port = 1;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO1_P1:
*io_gpio = 1;
*io_port = 1;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO2_P1:
*io_gpio = 2;
*io_port = 1;
break;
case PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO3_P1:
*io_gpio = 3;
*io_port = 1;
break;
default:
/* Don't override the io_gpio and io_port */
break;
}
}
static elink_status_t elink_8727_common_init_phy(struct bxe_softc *sc,
uint32_t shmem_base_path[],
uint32_t shmem2_base_path[], uint8_t phy_index,
uint32_t chip_id)
{
int8_t port, reset_gpio;
uint32_t swap_val, swap_override;
struct elink_phy phy[PORT_MAX];
struct elink_phy *phy_blk[PORT_MAX];
int8_t port_of_path;
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
reset_gpio = MISC_REGISTERS_GPIO_1;
port = 1;
/* Retrieve the reset gpio/port which control the reset.
* Default is GPIO1, PORT1
*/
elink_get_ext_phy_reset_gpio(sc, shmem_base_path[0],
(uint8_t *)&reset_gpio, (uint8_t *)&port);
/* Calculate the port based on port swap */
port ^= (swap_val && swap_override);
/* Initiate PHY reset*/
elink_cb_gpio_write(sc, reset_gpio, MISC_REGISTERS_GPIO_OUTPUT_LOW,
port);
DELAY(1000 * 1);
elink_cb_gpio_write(sc, reset_gpio, MISC_REGISTERS_GPIO_OUTPUT_HIGH,
port);
DELAY(1000 * 5);
/* PART1 - Reset both phys */
for (port = PORT_MAX - 1; port >= PORT_0; port--) {
uint32_t shmem_base, shmem2_base;
/* In E2, same phy is using for port0 of the two paths */
if (CHIP_IS_E1x(sc)) {
shmem_base = shmem_base_path[0];
shmem2_base = shmem2_base_path[0];
port_of_path = port;
} else {
shmem_base = shmem_base_path[port];
shmem2_base = shmem2_base_path[port];
port_of_path = 0;
}
/* Extract the ext phy address for the port */
if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base,
port_of_path, &phy[port]) !=
ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "populate phy failed\n");
return ELINK_STATUS_ERROR;
}
/* disable attentions */
elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 +
port_of_path*4,
(ELINK_NIG_MASK_XGXS0_LINK_STATUS |
ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
/* Reset the phy */
elink_cl45_write(sc, &phy[port],
MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15);
}
/* Add delay of 150ms after reset */
DELAY(1000 * 150);
if (phy[PORT_0].addr & 0x1) {
phy_blk[PORT_0] = &(phy[PORT_1]);
phy_blk[PORT_1] = &(phy[PORT_0]);
} else {
phy_blk[PORT_0] = &(phy[PORT_0]);
phy_blk[PORT_1] = &(phy[PORT_1]);
}
/* PART2 - Download firmware to both phys */
for (port = PORT_MAX - 1; port >= PORT_0; port--) {
if (CHIP_IS_E1x(sc))
port_of_path = port;
else
port_of_path = 0;
ELINK_DEBUG_P1(sc, "Loading spirom for phy address 0x%x\n",
phy_blk[port]->addr);
if (elink_8073_8727_external_rom_boot(sc, phy_blk[port],
port_of_path))
return ELINK_STATUS_ERROR;
/* Disable PHY transmitter output */
elink_cl45_write(sc, phy_blk[port],
MDIO_PMA_DEVAD,
MDIO_PMA_REG_TX_DISABLE, 1);
}
return ELINK_STATUS_OK;
}
static elink_status_t elink_84833_common_init_phy(struct bxe_softc *sc,
uint32_t shmem_base_path[],
uint32_t shmem2_base_path[],
uint8_t phy_index,
uint32_t chip_id)
{
uint8_t reset_gpios;
reset_gpios = elink_84833_get_reset_gpios(sc, shmem_base_path, chip_id);
elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_LOW);
DELAY(10);
elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_HIGH);
ELINK_DEBUG_P1(sc, "84833 reset pulse on pin values 0x%x\n",
reset_gpios);
return ELINK_STATUS_OK;
}
static elink_status_t elink_ext_phy_common_init(struct bxe_softc *sc, uint32_t shmem_base_path[],
uint32_t shmem2_base_path[], uint8_t phy_index,
uint32_t ext_phy_type, uint32_t chip_id)
{
elink_status_t rc = ELINK_STATUS_OK;
switch (ext_phy_type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
rc = elink_8073_common_init_phy(sc, shmem_base_path,
shmem2_base_path,
phy_index, chip_id);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC:
rc = elink_8727_common_init_phy(sc, shmem_base_path,
shmem2_base_path,
phy_index, chip_id);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
/* GPIO1 affects both ports, so there's need to pull
* it for single port alone
*/
rc = elink_8726_common_init_phy(sc, shmem_base_path,
shmem2_base_path,
phy_index, chip_id);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858:
/* GPIO3's are linked, and so both need to be toggled
* to obtain required 2us pulse.
*/
rc = elink_84833_common_init_phy(sc, shmem_base_path,
shmem2_base_path,
phy_index, chip_id);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE:
rc = ELINK_STATUS_ERROR;
break;
default:
ELINK_DEBUG_P1(sc,
"ext_phy 0x%x common init not required\n",
ext_phy_type);
break;
}
if (rc != ELINK_STATUS_OK)
elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, 0); // "Warning: PHY was not initialized,"
// " Port %d\n",
return rc;
}
elink_status_t elink_common_init_phy(struct bxe_softc *sc, uint32_t shmem_base_path[],
uint32_t shmem2_base_path[], uint32_t chip_id,
uint8_t one_port_enabled)
{
elink_status_t rc = ELINK_STATUS_OK;
uint32_t phy_ver, val;
uint8_t phy_index = 0;
uint32_t ext_phy_type, ext_phy_config;
#if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA)
if (CHIP_REV_IS_EMUL(sc) || CHIP_REV_IS_FPGA(sc))
return ELINK_STATUS_OK;
#endif
elink_set_mdio_clk(sc, chip_id, GRCBASE_EMAC0);
elink_set_mdio_clk(sc, chip_id, GRCBASE_EMAC1);
ELINK_DEBUG_P0(sc, "Begin common phy init\n");
if (CHIP_IS_E3(sc)) {
/* Enable EPIO */
val = REG_RD(sc, MISC_REG_GEN_PURP_HWG);
REG_WR(sc, MISC_REG_GEN_PURP_HWG, val | 1);
}
/* Check if common init was already done */
phy_ver = REG_RD(sc, shmem_base_path[0] +
offsetof(struct shmem_region,
port_mb[PORT_0].ext_phy_fw_version));
if (phy_ver) {
ELINK_DEBUG_P1(sc, "Not doing common init; phy ver is 0x%x\n",
phy_ver);
return ELINK_STATUS_OK;
}
/* Read the ext_phy_type for arbitrary port(0) */
for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS;
phy_index++) {
ext_phy_config = elink_get_ext_phy_config(sc,
shmem_base_path[0],
phy_index, 0);
ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(ext_phy_config);
rc |= elink_ext_phy_common_init(sc, shmem_base_path,
shmem2_base_path,
phy_index, ext_phy_type,
chip_id);
}
return rc;
}
static void elink_check_over_curr(struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint32_t cfg_pin;
uint8_t port = params->port;
uint32_t pin_val;
cfg_pin = (REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_cmn_pin_cfg1)) &
PORT_HW_CFG_E3_OVER_CURRENT_MASK) >>
PORT_HW_CFG_E3_OVER_CURRENT_SHIFT;
/* Ignore check if no external input PIN available */
if (elink_get_cfg_pin(sc, cfg_pin, &pin_val) != ELINK_STATUS_OK)
return;
if (!pin_val) {
if ((vars->phy_flags & PHY_OVER_CURRENT_FLAG) == 0) {
elink_cb_event_log(sc, ELINK_LOG_ID_OVER_CURRENT, params->port); //"Error: Power fault on Port %d has"
// " been detected and the power to "
// "that SFP+ module has been removed"
// " to prevent failure of the card."
// " Please remove the SFP+ module and"
// " restart the system to clear this"
// " error.\n",
vars->phy_flags |= PHY_OVER_CURRENT_FLAG;
elink_warpcore_power_module(params, 0);
}
} else
vars->phy_flags &= ~PHY_OVER_CURRENT_FLAG;
}
/* Returns 0 if no change occurred since last check; 1 otherwise. */
static uint8_t elink_analyze_link_error(struct elink_params *params,
struct elink_vars *vars, uint32_t status,
uint32_t phy_flag, uint32_t link_flag, uint8_t notify)
{
struct bxe_softc *sc = params->sc;
/* Compare new value with previous value */
uint8_t led_mode;
uint32_t old_status = (vars->phy_flags & phy_flag) ? 1 : 0;
if ((status ^ old_status) == 0)
return 0;
/* If values differ */
switch (phy_flag) {
case PHY_HALF_OPEN_CONN_FLAG:
ELINK_DEBUG_P0(sc, "Analyze Remote Fault\n");
break;
case PHY_SFP_TX_FAULT_FLAG:
ELINK_DEBUG_P0(sc, "Analyze TX Fault\n");
break;
default:
ELINK_DEBUG_P0(sc, "Analyze UNKNOWN\n");
}
ELINK_DEBUG_P3(sc, "Link changed:[%x %x]->%x\n", vars->link_up,
old_status, status);
/* Do not touch the link in case physical link down */
if ((vars->phy_flags & PHY_PHYSICAL_LINK_FLAG) == 0)
return 1;
/* a. Update shmem->link_status accordingly
* b. Update elink_vars->link_up
*/
if (status) {
vars->link_status &= ~LINK_STATUS_LINK_UP;
vars->link_status |= link_flag;
vars->link_up = 0;
vars->phy_flags |= phy_flag;
/* activate nig drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 1);
/* Set LED mode to off since the PHY doesn't know about these
* errors
*/
led_mode = ELINK_LED_MODE_OFF;
} else {
vars->link_status |= LINK_STATUS_LINK_UP;
vars->link_status &= ~link_flag;
vars->link_up = 1;
vars->phy_flags &= ~phy_flag;
led_mode = ELINK_LED_MODE_OPER;
/* Clear nig drain */
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0);
}
elink_sync_link(params, vars);
/* Update the LED according to the link state */
elink_set_led(params, vars, led_mode, ELINK_SPEED_10000);
/* Update link status in the shared memory */
elink_update_mng(params, vars->link_status);
/* C. Trigger General Attention */
vars->periodic_flags |= ELINK_PERIODIC_FLAGS_LINK_EVENT;
if (notify)
elink_cb_notify_link_changed(sc);
return 1;
}
/******************************************************************************
* Description:
* This function checks for half opened connection change indication.
* When such change occurs, it calls the elink_analyze_link_error
* to check if Remote Fault is set or cleared. Reception of remote fault
* status message in the MAC indicates that the peer's MAC has detected
* a fault, for example, due to break in the TX side of fiber.
*
******************************************************************************/
static
elink_status_t elink_check_half_open_conn(struct elink_params *params,
struct elink_vars *vars,
uint8_t notify)
{
struct bxe_softc *sc = params->sc;
uint32_t lss_status = 0;
uint32_t mac_base;
/* In case link status is physically up @ 10G do */
if (((vars->phy_flags & PHY_PHYSICAL_LINK_FLAG) == 0) ||
(REG_RD(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4)))
return ELINK_STATUS_OK;
if (CHIP_IS_E3(sc) &&
(REG_RD(sc, MISC_REG_RESET_REG_2) &
(MISC_REGISTERS_RESET_REG_2_XMAC))) {
/* Check E3 XMAC */
/* Note that link speed cannot be queried here, since it may be
* zero while link is down. In case UMAC is active, LSS will
* simply not be set
*/
mac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
/* Clear stick bits (Requires rising edge) */
REG_WR(sc, mac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, 0);
REG_WR(sc, mac_base + XMAC_REG_CLEAR_RX_LSS_STATUS,
XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_LOCAL_FAULT_STATUS |
XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_REMOTE_FAULT_STATUS);
if (REG_RD(sc, mac_base + XMAC_REG_RX_LSS_STATUS))
lss_status = 1;
elink_analyze_link_error(params, vars, lss_status,
PHY_HALF_OPEN_CONN_FLAG,
LINK_STATUS_NONE, notify);
} else if (REG_RD(sc, MISC_REG_RESET_REG_2) &
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << params->port)) {
/* Check E1X / E2 BMAC */
uint32_t lss_status_reg;
uint32_t wb_data[2];
mac_base = params->port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
/* Read BIGMAC_REGISTER_RX_LSS_STATUS */
if (CHIP_IS_E2(sc))
lss_status_reg = BIGMAC2_REGISTER_RX_LSS_STAT;
else
lss_status_reg = BIGMAC_REGISTER_RX_LSS_STATUS;
REG_RD_DMAE(sc, mac_base + lss_status_reg, wb_data, 2);
lss_status = (wb_data[0] > 0);
elink_analyze_link_error(params, vars, lss_status,
PHY_HALF_OPEN_CONN_FLAG,
LINK_STATUS_NONE, notify);
}
return ELINK_STATUS_OK;
}
static void elink_sfp_tx_fault_detection(struct elink_phy *phy,
struct elink_params *params,
struct elink_vars *vars)
{
struct bxe_softc *sc = params->sc;
uint32_t cfg_pin, value = 0;
uint8_t led_change, port = params->port;
/* Get The SFP+ TX_Fault controlling pin ([eg]pio) */
cfg_pin = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region,
dev_info.port_hw_config[port].e3_cmn_pin_cfg)) &
PORT_HW_CFG_E3_TX_FAULT_MASK) >>
PORT_HW_CFG_E3_TX_FAULT_SHIFT;
if (elink_get_cfg_pin(sc, cfg_pin, &value)) {
ELINK_DEBUG_P1(sc, "Failed to read pin 0x%02x\n", cfg_pin);
return;
}
led_change = elink_analyze_link_error(params, vars, value,
PHY_SFP_TX_FAULT_FLAG,
LINK_STATUS_SFP_TX_FAULT, 1);
if (led_change) {
/* Change TX_Fault led, set link status for further syncs */
uint8_t led_mode;
if (vars->phy_flags & PHY_SFP_TX_FAULT_FLAG) {
led_mode = MISC_REGISTERS_GPIO_HIGH;
vars->link_status |= LINK_STATUS_SFP_TX_FAULT;
} else {
led_mode = MISC_REGISTERS_GPIO_LOW;
vars->link_status &= ~LINK_STATUS_SFP_TX_FAULT;
}
/* If module is unapproved, led should be on regardless */
if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED)) {
ELINK_DEBUG_P1(sc, "Change TX_Fault LED: ->%x\n",
led_mode);
elink_set_e3_module_fault_led(params, led_mode);
}
}
}
static void elink_kr2_recovery(struct elink_params *params,
struct elink_vars *vars,
struct elink_phy *phy)
{
struct bxe_softc *sc = params->sc;
ELINK_DEBUG_P0(sc, "KR2 recovery\n");
elink_warpcore_enable_AN_KR2(phy, params, vars);
elink_warpcore_restart_AN_KR(phy, params);
}
static void elink_check_kr2_wa(struct elink_params *params,
struct elink_vars *vars,
struct elink_phy *phy)
{
struct bxe_softc *sc = params->sc;
uint16_t base_page, next_page, not_kr2_device, lane;
int sigdet;
/* Once KR2 was disabled, wait 5 seconds before checking KR2 recovery
* Since some switches tend to reinit the AN process and clear the
* the advertised BP/NP after ~2 seconds causing the KR2 to be disabled
* and recovered many times
*/
if (vars->check_kr2_recovery_cnt > 0) {
vars->check_kr2_recovery_cnt--;
return;
}
sigdet = elink_warpcore_get_sigdet(phy, params);
if (!sigdet) {
if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) {
elink_kr2_recovery(params, vars, phy);
ELINK_DEBUG_P0(sc, "No sigdet\n");
}
return;
}
lane = elink_get_warpcore_lane(phy, params);
CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, lane);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG, &base_page);
elink_cl45_read(sc, phy, MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG2, &next_page);
elink_set_aer_mmd(params, phy);
/* CL73 has not begun yet */
if (base_page == 0) {
if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) {
elink_kr2_recovery(params, vars, phy);
ELINK_DEBUG_P0(sc, "No BP\n");
}
return;
}
/* In case NP bit is not set in the BasePage, or it is set,
* but only KX is advertised, declare this link partner as non-KR2
* device.
*/
not_kr2_device = (((base_page & 0x8000) == 0) ||
(((base_page & 0x8000) &&
((next_page & 0xe0) == 0x20))));
/* In case KR2 is already disabled, check if we need to re-enable it */
if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) {
if (!not_kr2_device) {
ELINK_DEBUG_P2(sc, "BP=0x%x, NP=0x%x\n", base_page,
next_page);
elink_kr2_recovery(params, vars, phy);
}
return;
}
/* KR2 is enabled, but not KR2 device */
if (not_kr2_device) {
/* Disable KR2 on both lanes */
ELINK_DEBUG_P2(sc, "BP=0x%x, NP=0x%x\n", base_page, next_page);
elink_disable_kr2(params, vars, phy);
/* Restart AN on leading lane */
elink_warpcore_restart_AN_KR(phy, params);
return;
}
}
void elink_period_func(struct elink_params *params, struct elink_vars *vars)
{
uint16_t phy_idx;
struct bxe_softc *sc = params->sc;
for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) {
if (params->phy[phy_idx].flags & ELINK_FLAGS_TX_ERROR_CHECK) {
elink_set_aer_mmd(params, &params->phy[phy_idx]);
if (elink_check_half_open_conn(params, vars, 1) !=
ELINK_STATUS_OK)
ELINK_DEBUG_P0(sc, "Fault detection failed\n");
break;
}
}
if (CHIP_IS_E3(sc)) {
struct elink_phy *phy = &params->phy[ELINK_INT_PHY];
elink_set_aer_mmd(params, phy);
if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) &&
(phy->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) ||
(phy->req_line_speed == ELINK_SPEED_20000))
elink_check_kr2_wa(params, vars, phy);
elink_check_over_curr(params, vars);
if (vars->rx_tx_asic_rst)
elink_warpcore_config_runtime(phy, params, vars);
if ((REG_RD(sc, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_hw_config[params->port].default_cfg))
& PORT_HW_CFG_NET_SERDES_IF_MASK) ==
PORT_HW_CFG_NET_SERDES_IF_SFI) {
if (elink_is_sfp_module_plugged(phy, params)) {
elink_sfp_tx_fault_detection(phy, params, vars);
} else if (vars->link_status &
LINK_STATUS_SFP_TX_FAULT) {
/* Clean trail, interrupt corrects the leds */
vars->link_status &= ~LINK_STATUS_SFP_TX_FAULT;
vars->phy_flags &= ~PHY_SFP_TX_FAULT_FLAG;
/* Update link status in the shared memory */
elink_update_mng(params, vars->link_status);
}
}
}
}
uint8_t elink_fan_failure_det_req(struct bxe_softc *sc,
uint32_t shmem_base,
uint32_t shmem2_base,
uint8_t port)
{
uint8_t phy_index, fan_failure_det_req = 0;
struct elink_phy phy;
for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS;
phy_index++) {
if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base,
port, &phy)
!= ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "populate phy failed\n");
return 0;
}
fan_failure_det_req |= (phy.flags &
ELINK_FLAGS_FAN_FAILURE_DET_REQ);
}
return fan_failure_det_req;
}
void elink_hw_reset_phy(struct elink_params *params)
{
uint8_t phy_index;
struct bxe_softc *sc = params->sc;
elink_update_mng(params, 0);
elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4,
(ELINK_NIG_MASK_XGXS0_LINK_STATUS |
ELINK_NIG_MASK_XGXS0_LINK10G |
ELINK_NIG_MASK_SERDES0_LINK_STATUS |
ELINK_NIG_MASK_MI_INT));
for (phy_index = ELINK_INT_PHY; phy_index < ELINK_MAX_PHYS;
phy_index++) {
if (params->phy[phy_index].hw_reset) {
params->phy[phy_index].hw_reset(
&params->phy[phy_index],
params);
params->phy[phy_index] = phy_null;
}
}
}
void elink_init_mod_abs_int(struct bxe_softc *sc, struct elink_vars *vars,
uint32_t chip_id, uint32_t shmem_base, uint32_t shmem2_base,
uint8_t port)
{
uint8_t gpio_num = 0xff, gpio_port = 0xff, phy_index;
uint32_t val;
uint32_t offset, aeu_mask, swap_val, swap_override, sync_offset;
if (CHIP_IS_E3(sc)) {
if (elink_get_mod_abs_int_cfg(sc, chip_id,
shmem_base,
port,
&gpio_num,
&gpio_port) != ELINK_STATUS_OK)
return;
} else {
struct elink_phy phy;
for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS;
phy_index++) {
if (elink_populate_phy(sc, phy_index, shmem_base,
shmem2_base, port, &phy)
!= ELINK_STATUS_OK) {
ELINK_DEBUG_P0(sc, "populate phy failed\n");
return;
}
if (phy.type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726) {
gpio_num = MISC_REGISTERS_GPIO_3;
gpio_port = port;
break;
}
}
}
if (gpio_num == 0xff)
return;
/* Set GPIO3 to trigger SFP+ module insertion/removal */
elink_cb_gpio_write(sc, gpio_num, MISC_REGISTERS_GPIO_INPUT_HI_Z, gpio_port);
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
gpio_port ^= (swap_val && swap_override);
vars->aeu_int_mask = AEU_INPUTS_ATTN_BITS_GPIO0_FUNCTION_0 <<
(gpio_num + (gpio_port << 2));
sync_offset = shmem_base +
offsetof(struct shmem_region,
dev_info.port_hw_config[port].aeu_int_mask);
REG_WR(sc, sync_offset, vars->aeu_int_mask);
ELINK_DEBUG_P3(sc, "Setting MOD_ABS (GPIO%d_P%d) AEU to 0x%x\n",
gpio_num, gpio_port, vars->aeu_int_mask);
if (port == 0)
offset = MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
else
offset = MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0;
/* Open appropriate AEU for interrupts */
aeu_mask = REG_RD(sc, offset);
aeu_mask |= vars->aeu_int_mask;
REG_WR(sc, offset, aeu_mask);
/* Enable the GPIO to trigger interrupt */
val = REG_RD(sc, MISC_REG_GPIO_EVENT_EN);
val |= 1 << (gpio_num + (gpio_port << 2));
REG_WR(sc, MISC_REG_GPIO_EVENT_EN, val);
}