freebsd-dev/sys/arm/ti/ti_spi.c

595 lines
16 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/spibus/spi.h>
#include <dev/spibus/spibusvar.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_hwmods.h>
#include <arm/ti/ti_spireg.h>
#include <arm/ti/ti_spivar.h>
#include "spibus_if.h"
static void ti_spi_intr(void *);
static int ti_spi_detach(device_t);
#undef TI_SPI_DEBUG
#ifdef TI_SPI_DEBUG
#define IRQSTATUSBITS \
"\020\1TX0_EMPTY\2TX0_UNDERFLOW\3RX0_FULL\4RX0_OVERFLOW" \
"\5TX1_EMPTY\6TX1_UNDERFLOW\7RX1_FULL\11TX2_EMPTY" \
"\12TX1_UNDERFLOW\13RX2_FULL\15TX3_EMPTY\16TX3_UNDERFLOW" \
"\17RX3_FULL\22EOW"
#define CONFBITS \
"\020\1PHA\2POL\7EPOL\17DMAW\20DMAR\21DPE0\22DPE1\23IS" \
"\24TURBO\25FORCE\30SBE\31SBPOL\34FFEW\35FFER\36CLKG"
#define STATBITS \
"\020\1RXS\2TXS\3EOT\4TXFFE\5TXFFF\6RXFFE\7RXFFFF"
#define MODULCTRLBITS \
"\020\1SINGLE\2NOSPIEN\3SLAVE\4SYST\10MOA\11FDAA"
#define CTRLBITS \
"\020\1ENABLED"
static void
ti_spi_printr(device_t dev)
{
int clk, conf, ctrl, div, i, j, wl;
struct ti_spi_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
reg = TI_SPI_READ(sc, MCSPI_SYSCONFIG);
device_printf(dev, "SYSCONFIG: %#x\n", reg);
reg = TI_SPI_READ(sc, MCSPI_SYSSTATUS);
device_printf(dev, "SYSSTATUS: %#x\n", reg);
reg = TI_SPI_READ(sc, MCSPI_IRQSTATUS);
device_printf(dev, "IRQSTATUS: 0x%b\n", reg, IRQSTATUSBITS);
reg = TI_SPI_READ(sc, MCSPI_IRQENABLE);
device_printf(dev, "IRQENABLE: 0x%b\n", reg, IRQSTATUSBITS);
reg = TI_SPI_READ(sc, MCSPI_MODULCTRL);
device_printf(dev, "MODULCTRL: 0x%b\n", reg, MODULCTRLBITS);
for (i = 0; i < sc->sc_numcs; i++) {
ctrl = TI_SPI_READ(sc, MCSPI_CTRL_CH(i));
conf = TI_SPI_READ(sc, MCSPI_CONF_CH(i));
device_printf(dev, "CH%dCONF: 0x%b\n", i, conf, CONFBITS);
if (conf & MCSPI_CONF_CLKG) {
div = (conf >> MCSPI_CONF_CLK_SHIFT) & MCSPI_CONF_CLK_MSK;
div |= ((ctrl >> MCSPI_CTRL_EXTCLK_SHIFT) & MCSPI_CTRL_EXTCLK_MSK) << 4;
} else {
div = 1;
j = (conf >> MCSPI_CONF_CLK_SHIFT) & MCSPI_CONF_CLK_MSK;
while (j-- > 0)
div <<= 1;
}
clk = TI_SPI_GCLK / div;
wl = ((conf >> MCSPI_CONF_WL_SHIFT) & MCSPI_CONF_WL_MSK) + 1;
device_printf(dev, "wordlen: %-2d clock: %d\n", wl, clk);
reg = TI_SPI_READ(sc, MCSPI_STAT_CH(i));
device_printf(dev, "CH%dSTAT: 0x%b\n", i, reg, STATBITS);
device_printf(dev, "CH%dCTRL: 0x%b\n", i, ctrl, CTRLBITS);
}
reg = TI_SPI_READ(sc, MCSPI_XFERLEVEL);
device_printf(dev, "XFERLEVEL: %#x\n", reg);
}
#endif
static void
ti_spi_set_clock(struct ti_spi_softc *sc, int ch, int freq)
{
uint32_t clkdiv, conf, div, extclk, reg;
clkdiv = TI_SPI_GCLK / freq;
if (clkdiv > MCSPI_EXTCLK_MSK) {
extclk = 0;
clkdiv = 0;
div = 1;
while (TI_SPI_GCLK / div > freq && clkdiv <= 0xf) {
clkdiv++;
div <<= 1;
}
conf = clkdiv << MCSPI_CONF_CLK_SHIFT;
} else {
extclk = clkdiv >> 4;
clkdiv &= MCSPI_CONF_CLK_MSK;
conf = MCSPI_CONF_CLKG | clkdiv << MCSPI_CONF_CLK_SHIFT;
}
reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(ch));
reg &= ~(MCSPI_CTRL_EXTCLK_MSK << MCSPI_CTRL_EXTCLK_SHIFT);
reg |= extclk << MCSPI_CTRL_EXTCLK_SHIFT;
TI_SPI_WRITE(sc, MCSPI_CTRL_CH(ch), reg);
reg = TI_SPI_READ(sc, MCSPI_CONF_CH(ch));
reg &= ~(MCSPI_CONF_CLKG | MCSPI_CONF_CLK_MSK << MCSPI_CONF_CLK_SHIFT);
TI_SPI_WRITE(sc, MCSPI_CONF_CH(ch), reg | conf);
}
static int
ti_spi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "ti,omap4-mcspi"))
return (ENXIO);
device_set_desc(dev, "TI McSPI controller");
return (BUS_PROBE_DEFAULT);
}
static int
ti_spi_attach(device_t dev)
{
int clk_id, err, i, rid, timeout;
struct ti_spi_softc *sc;
uint32_t rev;
sc = device_get_softc(dev);
sc->sc_dev = dev;
/*
* Get the MMCHS device id from FDT. If it's not there use the newbus
* unit number (which will work as long as the devices are in order and
* none are skipped in the fdt). Note that this is a property we made
* up and added in freebsd, it doesn't exist in the published bindings.
*/
clk_id = ti_hwmods_get_clock(dev);
if (clk_id == INVALID_CLK_IDENT) {
device_printf(dev,
"failed to get clock based on hwmods property\n");
return (EINVAL);
}
/* Activate the McSPI module. */
err = ti_prcm_clk_enable(clk_id);
if (err) {
device_printf(dev, "Error: failed to activate source clock\n");
return (err);
}
/* Get the number of available channels. */
if ((OF_getencprop(ofw_bus_get_node(dev), "ti,spi-num-cs",
&sc->sc_numcs, sizeof(sc->sc_numcs))) <= 0) {
sc->sc_numcs = 2;
}
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
return (ENXIO);
}
sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->sc_irq_res) {
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "cannot allocate interrupt\n");
return (ENXIO);
}
/* Hook up our interrupt handler. */
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ti_spi_intr, sc, &sc->sc_intrhand)) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "cannot setup the interrupt handler\n");
return (ENXIO);
}
mtx_init(&sc->sc_mtx, "ti_spi", NULL, MTX_DEF);
/* Issue a softreset to the controller */
TI_SPI_WRITE(sc, MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
timeout = 1000;
while (!(TI_SPI_READ(sc, MCSPI_SYSSTATUS) &
MCSPI_SYSSTATUS_RESETDONE)) {
if (--timeout == 0) {
device_printf(dev,
"Error: Controller reset operation timed out\n");
ti_spi_detach(dev);
return (ENXIO);
}
DELAY(100);
}
/* Print the McSPI module revision. */
rev = TI_SPI_READ(sc, MCSPI_REVISION);
device_printf(dev,
"scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n",
(rev >> MCSPI_REVISION_SCHEME_SHIFT) & MCSPI_REVISION_SCHEME_MSK,
(rev >> MCSPI_REVISION_FUNC_SHIFT) & MCSPI_REVISION_FUNC_MSK,
(rev >> MCSPI_REVISION_RTL_SHIFT) & MCSPI_REVISION_RTL_MSK,
(rev >> MCSPI_REVISION_MAJOR_SHIFT) & MCSPI_REVISION_MAJOR_MSK,
(rev >> MCSPI_REVISION_MINOR_SHIFT) & MCSPI_REVISION_MINOR_MSK,
(rev >> MCSPI_REVISION_CUSTOM_SHIFT) & MCSPI_REVISION_CUSTOM_MSK);
/* Set Master mode, single channel. */
TI_SPI_WRITE(sc, MCSPI_MODULCTRL, MCSPI_MODULCTRL_SINGLE);
/* Clear pending interrupts and disable interrupts. */
TI_SPI_WRITE(sc, MCSPI_IRQENABLE, 0x0);
TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xffff);
for (i = 0; i < sc->sc_numcs; i++) {
/*
* Default to SPI mode 0, CS active low, 8 bits word length and
* 500kHz clock.
*/
TI_SPI_WRITE(sc, MCSPI_CONF_CH(i),
MCSPI_CONF_DPE0 | MCSPI_CONF_EPOL |
(8 - 1) << MCSPI_CONF_WL_SHIFT);
/* Set initial clock - 500kHz. */
ti_spi_set_clock(sc, i, 500000);
}
#ifdef TI_SPI_DEBUG
ti_spi_printr(dev);
#endif
device_add_child(dev, "spibus", -1);
return (bus_generic_attach(dev));
}
static int
ti_spi_detach(device_t dev)
{
struct ti_spi_softc *sc;
sc = device_get_softc(dev);
/* Clear pending interrupts and disable interrupts. */
TI_SPI_WRITE(sc, MCSPI_IRQENABLE, 0);
TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xffff);
/* Reset controller. */
TI_SPI_WRITE(sc, MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
bus_generic_detach(dev);
mtx_destroy(&sc->sc_mtx);
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (0);
}
static int
ti_spi_fill_fifo(struct ti_spi_softc *sc)
{
int bytes, timeout;
struct spi_command *cmd;
uint32_t written;
uint8_t *data;
cmd = sc->sc_cmd;
bytes = min(sc->sc_len - sc->sc_written, sc->sc_fifolvl);
while (bytes-- > 0) {
data = (uint8_t *)cmd->tx_cmd;
written = sc->sc_written++;
if (written >= cmd->tx_cmd_sz) {
data = (uint8_t *)cmd->tx_data;
written -= cmd->tx_cmd_sz;
}
if (sc->sc_fifolvl == 1) {
/* FIFO disabled. */
timeout = 1000;
while (--timeout > 0 && (TI_SPI_READ(sc,
MCSPI_STAT_CH(sc->sc_cs)) & MCSPI_STAT_TXS) == 0) {
DELAY(100);
}
if (timeout == 0)
return (-1);
}
TI_SPI_WRITE(sc, MCSPI_TX_CH(sc->sc_cs), data[written]);
}
return (0);
}
static int
ti_spi_drain_fifo(struct ti_spi_softc *sc)
{
int bytes, timeout;
struct spi_command *cmd;
uint32_t read;
uint8_t *data;
cmd = sc->sc_cmd;
bytes = min(sc->sc_len - sc->sc_read, sc->sc_fifolvl);
while (bytes-- > 0) {
data = (uint8_t *)cmd->rx_cmd;
read = sc->sc_read++;
if (read >= cmd->rx_cmd_sz) {
data = (uint8_t *)cmd->rx_data;
read -= cmd->rx_cmd_sz;
}
if (sc->sc_fifolvl == 1) {
/* FIFO disabled. */
timeout = 1000;
while (--timeout > 0 && (TI_SPI_READ(sc,
MCSPI_STAT_CH(sc->sc_cs)) & MCSPI_STAT_RXS) == 0) {
DELAY(100);
}
if (timeout == 0)
return (-1);
}
data[read] = TI_SPI_READ(sc, MCSPI_RX_CH(sc->sc_cs));
}
return (0);
}
static void
ti_spi_intr(void *arg)
{
int eow;
struct ti_spi_softc *sc;
uint32_t status;
eow = 0;
sc = (struct ti_spi_softc *)arg;
TI_SPI_LOCK(sc);
status = TI_SPI_READ(sc, MCSPI_IRQSTATUS);
/*
* No new TX_empty or RX_full event will be asserted while the CPU has
* not performed the number of writes or reads defined by
* MCSPI_XFERLEVEL[AEL] and MCSPI_XFERLEVEL[AFL]. It is responsibility
* of CPU perform the right number of writes and reads.
*/
if (status & MCSPI_IRQ_TX0_EMPTY)
ti_spi_fill_fifo(sc);
if (status & MCSPI_IRQ_RX0_FULL)
ti_spi_drain_fifo(sc);
if (status & MCSPI_IRQ_EOW)
eow = 1;
/* Clear interrupt status. */
TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, status);
/* Check for end of transfer. */
if (sc->sc_written == sc->sc_len && sc->sc_read == sc->sc_len) {
sc->sc_flags |= TI_SPI_DONE;
wakeup(sc->sc_dev);
}
TI_SPI_UNLOCK(sc);
}
static int
ti_spi_pio_transfer(struct ti_spi_softc *sc)
{
while (sc->sc_len - sc->sc_written > 0) {
if (ti_spi_fill_fifo(sc) == -1)
return (EIO);
if (ti_spi_drain_fifo(sc) == -1)
return (EIO);
}
return (0);
}
static int
ti_spi_gcd(int a, int b)
{
int m;
while ((m = a % b) != 0) {
a = b;
b = m;
}
return (b);
}
static int
ti_spi_transfer(device_t dev, device_t child, struct spi_command *cmd)
{
int err;
struct ti_spi_softc *sc;
uint32_t clockhz, cs, mode, reg;
sc = device_get_softc(dev);
KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
("TX/RX command sizes should be equal"));
KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
("TX/RX data sizes should be equal"));
/* Get the proper chip select for this child. */
spibus_get_cs(child, &cs);
spibus_get_clock(child, &clockhz);
spibus_get_mode(child, &mode);
cs &= ~SPIBUS_CS_HIGH;
if (cs > sc->sc_numcs) {
device_printf(dev, "Invalid chip select %d requested by %s\n",
cs, device_get_nameunit(child));
return (EINVAL);
}
if (mode > 3)
{
device_printf(dev, "Invalid mode %d requested by %s\n", mode,
device_get_nameunit(child));
return (EINVAL);
}
TI_SPI_LOCK(sc);
/* If the controller is in use wait until it is available. */
while (sc->sc_flags & TI_SPI_BUSY)
mtx_sleep(dev, &sc->sc_mtx, 0, "ti_spi", 0);
/* Now we have control over SPI controller. */
sc->sc_flags = TI_SPI_BUSY;
/* Save the SPI command data. */
sc->sc_cs = cs;
sc->sc_cmd = cmd;
sc->sc_read = 0;
sc->sc_written = 0;
sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
sc->sc_fifolvl = ti_spi_gcd(sc->sc_len, TI_SPI_FIFOSZ);
if (sc->sc_fifolvl < 2 || sc->sc_len > 0xffff)
sc->sc_fifolvl = 1; /* FIFO disabled. */
/* Disable FIFO for now. */
sc->sc_fifolvl = 1;
/* Set the bus frequency. */
ti_spi_set_clock(sc, sc->sc_cs, clockhz);
/* Disable the FIFO. */
TI_SPI_WRITE(sc, MCSPI_XFERLEVEL, 0);
/* 8 bits word, d0 miso, d1 mosi, mode 0 and CS active low. */
reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs));
reg &= ~(MCSPI_CONF_FFER | MCSPI_CONF_FFEW | MCSPI_CONF_SBPOL |
MCSPI_CONF_SBE | MCSPI_CONF_TURBO | MCSPI_CONF_IS |
MCSPI_CONF_DPE1 | MCSPI_CONF_DPE0 | MCSPI_CONF_DMAR |
MCSPI_CONF_DMAW | MCSPI_CONF_EPOL);
reg |= MCSPI_CONF_DPE0 | MCSPI_CONF_EPOL | MCSPI_CONF_WL8BITS;
reg |= mode; /* POL and PHA are the low bits, we can just OR-in mode */
TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg);
#if 0
/* Enable channel interrupts. */
reg = TI_SPI_READ(sc, MCSPI_IRQENABLE);
reg |= 0xf;
TI_SPI_WRITE(sc, MCSPI_IRQENABLE, reg);
#endif
/* Start the transfer. */
reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(sc->sc_cs));
TI_SPI_WRITE(sc, MCSPI_CTRL_CH(sc->sc_cs), reg | MCSPI_CTRL_ENABLE);
/* Force CS on. */
reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs));
TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg |= MCSPI_CONF_FORCE);
err = 0;
if (sc->sc_fifolvl == 1)
err = ti_spi_pio_transfer(sc);
/* Force CS off. */
reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs));
reg &= ~MCSPI_CONF_FORCE;
TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg);
/* Disable IRQs. */
reg = TI_SPI_READ(sc, MCSPI_IRQENABLE);
reg &= ~0xf;
TI_SPI_WRITE(sc, MCSPI_IRQENABLE, reg);
TI_SPI_WRITE(sc, MCSPI_IRQSTATUS, 0xf);
/* Disable the SPI channel. */
reg = TI_SPI_READ(sc, MCSPI_CTRL_CH(sc->sc_cs));
reg &= ~MCSPI_CTRL_ENABLE;
TI_SPI_WRITE(sc, MCSPI_CTRL_CH(sc->sc_cs), reg);
/* Disable FIFO. */
reg = TI_SPI_READ(sc, MCSPI_CONF_CH(sc->sc_cs));
reg &= ~(MCSPI_CONF_FFER | MCSPI_CONF_FFEW);
TI_SPI_WRITE(sc, MCSPI_CONF_CH(sc->sc_cs), reg);
/* Release the controller and wakeup the next thread waiting for it. */
sc->sc_flags = 0;
wakeup_one(dev);
TI_SPI_UNLOCK(sc);
return (err);
}
static phandle_t
ti_spi_get_node(device_t bus, device_t dev)
{
/* Share controller node with spibus. */
return (ofw_bus_get_node(bus));
}
static device_method_t ti_spi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ti_spi_probe),
DEVMETHOD(device_attach, ti_spi_attach),
DEVMETHOD(device_detach, ti_spi_detach),
/* SPI interface */
DEVMETHOD(spibus_transfer, ti_spi_transfer),
/* ofw_bus interface */
DEVMETHOD(ofw_bus_get_node, ti_spi_get_node),
DEVMETHOD_END
};
static devclass_t ti_spi_devclass;
static driver_t ti_spi_driver = {
"spi",
ti_spi_methods,
sizeof(struct ti_spi_softc),
};
DRIVER_MODULE(ti_spi, simplebus, ti_spi_driver, ti_spi_devclass, 0, 0);