freebsd-dev/usr.sbin/bhyve/pci_lpc.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

618 lines
14 KiB
C
Raw Normal View History

Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* Copyright (c) 2013 Tycho Nightingale <tycho.nightingale@pluribusnetworks.com>
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/types.h>
#include <machine/vmm.h>
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
#include <machine/vmm_snapshot.h>
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
#include <err.h>
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vmmapi.h>
#include "acpi.h"
#include "debug.h"
#include "bootrom.h"
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
#include "config.h"
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
#include "inout.h"
#include "pci_emul.h"
2014-05-15 14:16:55 +00:00
#include "pci_irq.h"
#include "pci_lpc.h"
#include "pci_passthru.h"
#include "pctestdev.h"
#include "tpm_device.h"
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
#include "uart_emul.h"
#define IO_ICU1 0x20
#define IO_ICU2 0xA0
SET_DECLARE(lpc_dsdt_set, struct lpc_dsdt);
SET_DECLARE(lpc_sysres_set, struct lpc_sysres);
#define ELCR_PORT 0x4d0
SYSRES_IO(ELCR_PORT, 2);
#define IO_TIMER1_PORT 0x40
#define NMISC_PORT 0x61
SYSRES_IO(NMISC_PORT, 1);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
static struct pci_devinst *lpc_bridge;
#define LPC_UART_NUM 4
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
static struct lpc_uart_softc {
struct uart_softc *uart_softc;
int iobase;
int irq;
int enabled;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
} lpc_uart_softc[LPC_UART_NUM];
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
static const char *lpc_uart_names[LPC_UART_NUM] = {
"com1", "com2", "com3", "com4"
};
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
static const char *lpc_uart_acpi_names[LPC_UART_NUM] = {
"COM1", "COM2", "COM3", "COM4"
};
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/*
* LPC device configuration is in the following form:
* <lpc_device_name>[,<options>]
* For e.g. "com1,stdio" or "bootrom,/var/romfile"
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
*/
int
lpc_device_parse(const char *opts)
{
int unit, error;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
char *str, *cpy, *lpcdev, *node_name;
const char *romfile, *varfile, *tpm_type, *tpm_path;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
error = -1;
str = cpy = strdup(opts);
lpcdev = strsep(&str, ",");
if (lpcdev != NULL) {
if (strcasecmp(lpcdev, "bootrom") == 0) {
romfile = strsep(&str, ",");
if (romfile == NULL) {
errx(4, "invalid bootrom option \"%s\"", opts);
}
set_config_value("lpc.bootrom", romfile);
varfile = strsep(&str, ",");
if (varfile == NULL) {
error = 0;
goto done;
}
if (strchr(varfile, '=') == NULL) {
set_config_value("lpc.bootvars", varfile);
} else {
/* varfile doesn't exist, it's another config
* option */
pci_parse_legacy_config(find_config_node("lpc"),
varfile);
}
pci_parse_legacy_config(find_config_node("lpc"), str);
error = 0;
goto done;
}
if (strcasecmp(lpcdev, "tpm") == 0) {
nvlist_t *nvl = create_config_node("tpm");
tpm_type = strsep(&str, ",");
if (tpm_type == NULL) {
errx(4, "invalid tpm type \"%s\"", opts);
}
set_config_value_node(nvl, "type", tpm_type);
tpm_path = strsep(&str, ",");
if (tpm_path == NULL) {
errx(4, "invalid tpm path \"%s\"", opts);
}
set_config_value_node(nvl, "path", tpm_path);
pci_parse_legacy_config(find_config_node("tpm"), str);
set_config_value_node_if_unset(nvl, "version", "2.0");
error = 0;
goto done;
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
for (unit = 0; unit < LPC_UART_NUM; unit++) {
if (strcasecmp(lpcdev, lpc_uart_names[unit]) == 0) {
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
asprintf(&node_name, "lpc.%s.path",
lpc_uart_names[unit]);
set_config_value(node_name, str);
free(node_name);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
error = 0;
goto done;
}
}
if (strcasecmp(lpcdev, pctestdev_getname()) == 0) {
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
asprintf(&node_name, "lpc.%s", pctestdev_getname());
set_config_bool(node_name, true);
free(node_name);
error = 0;
goto done;
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
}
done:
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
free(cpy);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (error);
}
void
lpc_print_supported_devices(void)
{
size_t i;
printf("bootrom\n");
for (i = 0; i < LPC_UART_NUM; i++)
printf("%s\n", lpc_uart_names[i]);
printf("tpm\n");
printf("%s\n", pctestdev_getname());
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
const char *
lpc_bootrom(void)
{
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
return (get_config_value("lpc.bootrom"));
}
const char *
lpc_fwcfg(void)
{
return (get_config_value("lpc.fwcfg"));
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
static void
lpc_uart_intr_assert(void *arg)
{
struct lpc_uart_softc *sc = arg;
assert(sc->irq >= 0);
vm_isa_pulse_irq(lpc_bridge->pi_vmctx, sc->irq, sc->irq);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
}
static void
lpc_uart_intr_deassert(void *arg __unused)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
/*
* The COM devices on the LPC bus generate edge triggered interrupts,
* so nothing more to do here.
*/
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
}
static int
lpc_uart_io_handler(struct vmctx *ctx __unused, int in,
int port, int bytes, uint32_t *eax, void *arg)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
int offset;
struct lpc_uart_softc *sc = arg;
offset = port - sc->iobase;
switch (bytes) {
case 1:
if (in)
*eax = uart_read(sc->uart_softc, offset);
else
uart_write(sc->uart_softc, offset, *eax);
break;
case 2:
if (in) {
*eax = uart_read(sc->uart_softc, offset);
*eax |= uart_read(sc->uart_softc, offset + 1) << 8;
} else {
uart_write(sc->uart_softc, offset, *eax);
uart_write(sc->uart_softc, offset + 1, *eax >> 8);
}
break;
default:
return (-1);
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (0);
}
static int
lpc_init(struct vmctx *ctx)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
struct lpc_uart_softc *sc;
struct inout_port iop;
const char *backend, *name;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
char *node_name;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
int unit, error;
const nvlist_t *nvl;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
nvl = find_config_node("lpc");
if (nvl != NULL && nvlist_exists(nvl, "bootrom")) {
error = bootrom_loadrom(ctx, nvl);
if (error)
return (error);
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/* COM1 and COM2 */
for (unit = 0; unit < LPC_UART_NUM; unit++) {
sc = &lpc_uart_softc[unit];
name = lpc_uart_names[unit];
if (uart_legacy_alloc(unit, &sc->iobase, &sc->irq) != 0) {
EPRINTLN("Unable to allocate resources for "
"LPC device %s", name);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (-1);
}
2014-05-15 14:16:55 +00:00
pci_irq_reserve(sc->irq);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
sc->uart_softc = uart_init(lpc_uart_intr_assert,
lpc_uart_intr_deassert, sc);
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
asprintf(&node_name, "lpc.%s.path", name);
backend = get_config_value(node_name);
free(node_name);
if (uart_set_backend(sc->uart_softc, backend) != 0) {
EPRINTLN("Unable to initialize backend '%s' "
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
"for LPC device %s", backend, name);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (-1);
}
bzero(&iop, sizeof(struct inout_port));
iop.name = name;
iop.port = sc->iobase;
iop.size = UART_IO_BAR_SIZE;
iop.flags = IOPORT_F_INOUT;
iop.handler = lpc_uart_io_handler;
iop.arg = sc;
error = register_inout(&iop);
assert(error == 0);
sc->enabled = 1;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
}
/* pc-testdev */
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
asprintf(&node_name, "lpc.%s", pctestdev_getname());
if (get_config_bool_default(node_name, false)) {
error = pctestdev_init(ctx);
if (error)
return (error);
}
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
free(node_name);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (0);
}
static void
pci_lpc_write_dsdt(struct pci_devinst *pi)
{
struct lpc_dsdt **ldpp, *ldp;
dsdt_line("");
dsdt_line("Device (ISA)");
dsdt_line("{");
dsdt_line(" Name (_ADR, 0x%04X%04X)", pi->pi_slot, pi->pi_func);
2014-05-15 14:16:55 +00:00
dsdt_line(" OperationRegion (LPCR, PCI_Config, 0x00, 0x100)");
dsdt_line(" Field (LPCR, AnyAcc, NoLock, Preserve)");
dsdt_line(" {");
dsdt_line(" Offset (0x60),");
dsdt_line(" PIRA, 8,");
dsdt_line(" PIRB, 8,");
dsdt_line(" PIRC, 8,");
dsdt_line(" PIRD, 8,");
dsdt_line(" Offset (0x68),");
dsdt_line(" PIRE, 8,");
dsdt_line(" PIRF, 8,");
dsdt_line(" PIRG, 8,");
dsdt_line(" PIRH, 8");
dsdt_line(" }");
dsdt_line("");
dsdt_indent(1);
SET_FOREACH(ldpp, lpc_dsdt_set) {
ldp = *ldpp;
ldp->handler();
}
dsdt_line("");
dsdt_line("Device (PIC)");
dsdt_line("{");
dsdt_line(" Name (_HID, EisaId (\"PNP0000\"))");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_indent(2);
dsdt_fixed_ioport(IO_ICU1, 2);
dsdt_fixed_ioport(IO_ICU2, 2);
dsdt_fixed_irq(2);
dsdt_unindent(2);
dsdt_line(" })");
dsdt_line("}");
dsdt_line("");
dsdt_line("Device (TIMR)");
dsdt_line("{");
dsdt_line(" Name (_HID, EisaId (\"PNP0100\"))");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_indent(2);
dsdt_fixed_ioport(IO_TIMER1_PORT, 4);
dsdt_fixed_irq(0);
dsdt_unindent(2);
dsdt_line(" })");
dsdt_line("}");
dsdt_unindent(1);
dsdt_line("}");
}
static void
pci_lpc_sysres_dsdt(void)
{
struct lpc_sysres **lspp, *lsp;
dsdt_line("");
dsdt_line("Device (SIO)");
dsdt_line("{");
dsdt_line(" Name (_HID, EisaId (\"PNP0C02\"))");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_indent(2);
SET_FOREACH(lspp, lpc_sysres_set) {
lsp = *lspp;
switch (lsp->type) {
case LPC_SYSRES_IO:
dsdt_fixed_ioport(lsp->base, lsp->length);
break;
case LPC_SYSRES_MEM:
dsdt_fixed_mem32(lsp->base, lsp->length);
break;
}
}
dsdt_unindent(2);
dsdt_line(" })");
dsdt_line("}");
}
LPC_DSDT(pci_lpc_sysres_dsdt);
static void
pci_lpc_uart_dsdt(void)
{
struct lpc_uart_softc *sc;
int unit;
for (unit = 0; unit < LPC_UART_NUM; unit++) {
sc = &lpc_uart_softc[unit];
if (!sc->enabled)
continue;
dsdt_line("");
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
dsdt_line("Device (%s)", lpc_uart_acpi_names[unit]);
dsdt_line("{");
dsdt_line(" Name (_HID, EisaId (\"PNP0501\"))");
dsdt_line(" Name (_UID, %d)", unit + 1);
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_indent(2);
dsdt_fixed_ioport(sc->iobase, UART_IO_BAR_SIZE);
dsdt_fixed_irq(sc->irq);
dsdt_unindent(2);
dsdt_line(" })");
dsdt_line("}");
}
}
LPC_DSDT(pci_lpc_uart_dsdt);
2014-05-15 14:16:55 +00:00
static int
pci_lpc_cfgwrite(struct pci_devinst *pi, int coff, int bytes, uint32_t val)
2014-05-15 14:16:55 +00:00
{
int pirq_pin;
if (bytes == 1) {
pirq_pin = 0;
if (coff >= 0x60 && coff <= 0x63)
pirq_pin = coff - 0x60 + 1;
if (coff >= 0x68 && coff <= 0x6b)
pirq_pin = coff - 0x68 + 5;
if (pirq_pin != 0) {
pirq_write(pi->pi_vmctx, pirq_pin, val);
2014-05-15 14:16:55 +00:00
pci_set_cfgdata8(pi, coff, pirq_read(pirq_pin));
return (0);
}
}
return (-1);
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
static void
pci_lpc_write(struct pci_devinst *pi __unused, int baridx __unused,
uint64_t offset __unused, int size __unused, uint64_t value __unused)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
}
2014-05-15 14:16:55 +00:00
static uint64_t
pci_lpc_read(struct pci_devinst *pi __unused, int baridx __unused,
uint64_t offset __unused, int size __unused)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
return (0);
}
#define LPC_DEV 0x7000
#define LPC_VENDOR 0x8086
#define LPC_REVID 0x00
#define LPC_SUBVEND_0 0x0000
#define LPC_SUBDEV_0 0x0000
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
static int
pci_lpc_get_sel(struct pcisel *const sel)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
{
assert(sel != NULL);
memset(sel, 0, sizeof(*sel));
for (uint8_t slot = 0; slot <= PCI_SLOTMAX; ++slot) {
uint8_t max_func = 0;
sel->pc_dev = slot;
sel->pc_func = 0;
if (read_config(sel, PCIR_HDRTYPE, 1) & PCIM_MFDEV)
max_func = PCI_FUNCMAX;
for (uint8_t func = 0; func <= max_func; ++func) {
sel->pc_func = func;
if ((read_config(sel, PCIR_CLASS, 1) == PCIC_BRIDGE) &&
(read_config(sel, PCIR_SUBCLASS, 1) ==
PCIS_BRIDGE_ISA)) {
return (0);
}
}
}
warnx("%s: Unable to find host selector of LPC bridge.", __func__);
return (-1);
}
static int
pci_lpc_init(struct pci_devinst *pi, nvlist_t *nvl)
{
struct pcisel sel = { 0 };
struct pcisel *selp = NULL;
uint16_t device, subdevice, subvendor, vendor;
uint8_t revid;
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/*
* Do not allow more than one LPC bridge to be configured.
*/
if (lpc_bridge != NULL) {
EPRINTLN("Only one LPC bridge is allowed.");
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (-1);
}
/*
* Enforce that the LPC can only be configured on bus 0. This
* simplifies the ACPI DSDT because it can provide a decode for
* all legacy i/o ports behind bus 0.
*/
if (pi->pi_bus != 0) {
EPRINTLN("LPC bridge can be present only on bus 0.");
return (-1);
}
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
if (lpc_init(pi->pi_vmctx) != 0)
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
return (-1);
if (pci_lpc_get_sel(&sel) == 0)
selp = &sel;
vendor = pci_config_read_reg(selp, nvl, PCIR_VENDOR, 2, LPC_VENDOR);
device = pci_config_read_reg(selp, nvl, PCIR_DEVICE, 2, LPC_DEV);
revid = pci_config_read_reg(selp, nvl, PCIR_REVID, 1, LPC_REVID);
subvendor = pci_config_read_reg(selp, nvl, PCIR_SUBVEND_0, 2,
LPC_SUBVEND_0);
subdevice = pci_config_read_reg(selp, nvl, PCIR_SUBDEV_0, 2,
LPC_SUBDEV_0);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/* initialize config space */
pci_set_cfgdata16(pi, PCIR_VENDOR, vendor);
pci_set_cfgdata16(pi, PCIR_DEVICE, device);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_BRIDGE);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_BRIDGE_ISA);
pci_set_cfgdata8(pi, PCIR_REVID, revid);
pci_set_cfgdata16(pi, PCIR_SUBVEND_0, subvendor);
pci_set_cfgdata16(pi, PCIR_SUBDEV_0, subdevice);
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
lpc_bridge = pi;
return (0);
}
2014-05-15 14:16:55 +00:00
char *
lpc_pirq_name(int pin)
{
char *name;
if (lpc_bridge == NULL)
return (NULL);
asprintf(&name, "\\_SB.PC00.ISA.LNK%c,", 'A' + pin - 1);
return (name);
}
void
lpc_pirq_routed(void)
{
int pin;
if (lpc_bridge == NULL)
return;
for (pin = 0; pin < 4; pin++)
pci_set_cfgdata8(lpc_bridge, 0x60 + pin, pirq_read(pin + 1));
for (pin = 0; pin < 4; pin++)
pci_set_cfgdata8(lpc_bridge, 0x68 + pin, pirq_read(pin + 5));
}
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
#ifdef BHYVE_SNAPSHOT
static int
pci_lpc_snapshot(struct vm_snapshot_meta *meta)
{
int unit, ret;
struct uart_softc *sc;
for (unit = 0; unit < LPC_UART_NUM; unit++) {
sc = lpc_uart_softc[unit].uart_softc;
ret = uart_snapshot(sc, meta);
if (ret != 0)
goto done;
}
done:
return (ret);
}
#endif
static const struct pci_devemu pci_de_lpc = {
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
.pe_emu = "lpc",
.pe_init = pci_lpc_init,
.pe_write_dsdt = pci_lpc_write_dsdt,
2014-05-15 14:16:55 +00:00
.pe_cfgwrite = pci_lpc_cfgwrite,
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
.pe_barwrite = pci_lpc_write,
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
.pe_barread = pci_lpc_read,
#ifdef BHYVE_SNAPSHOT
.pe_snapshot = pci_lpc_snapshot,
#endif
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
};
PCI_EMUL_SET(pci_de_lpc);