freebsd-dev/sys/dev/iwi/if_iwi.c

2596 lines
66 KiB
C
Raw Normal View History

/* $FreeBSD$ */
/*-
* Copyright (c) 2004-2006
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/iwi/if_iwivar.h>
#include <dev/iwi/if_iwireg.h>
#ifdef IWI_DEBUG
#define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0)
int iwi_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(iwi, pci, 1, 1, 1);
MODULE_DEPEND(iwi, wlan, 1, 1, 1);
struct iwi_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct iwi_ident iwi_ident_table[] = {
{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
{ 0, 0, NULL }
};
static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
int);
static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
int, bus_addr_t, bus_addr_t);
static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
int);
static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
static void iwi_node_free(struct ieee80211_node *);
static int iwi_media_change(struct ifnet *);
static void iwi_media_status(struct ifnet *, struct ifmediareq *);
static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static int iwi_wme_update(struct ieee80211com *);
static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
static void iwi_fix_channel(struct ieee80211com *, struct mbuf *);
static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
struct iwi_frame *);
static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
static void iwi_rx_intr(struct iwi_softc *);
static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
static void iwi_intr(void *);
static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int);
static void iwi_write_ibssnode(struct iwi_softc *, const struct iwi_node *);
static int iwi_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *, int);
static void iwi_start(struct ifnet *);
static void iwi_watchdog(struct ifnet *);
static int iwi_ioctl(struct ifnet *, u_long, caddr_t);
static void iwi_stop_master(struct iwi_softc *);
static int iwi_reset(struct iwi_softc *);
static int iwi_load_ucode(struct iwi_softc *, const char *, int);
static int iwi_load_firmware(struct iwi_softc *, const char *, int);
static int iwi_config(struct iwi_softc *);
static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *);
static int iwi_scan(struct iwi_softc *);
static int iwi_auth_and_assoc(struct iwi_softc *);
static void iwi_init(void *);
static void iwi_stop(void *);
static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS);
static int iwi_probe(device_t);
static int iwi_attach(device_t);
static int iwi_detach(device_t);
static int iwi_shutdown(device_t);
static int iwi_suspend(device_t);
static int iwi_resume(device_t);
static device_method_t iwi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwi_probe),
DEVMETHOD(device_attach, iwi_attach),
DEVMETHOD(device_detach, iwi_detach),
DEVMETHOD(device_shutdown, iwi_shutdown),
DEVMETHOD(device_suspend, iwi_suspend),
DEVMETHOD(device_resume, iwi_resume),
{ 0, 0 }
};
static driver_t iwi_driver = {
"iwi",
iwi_methods,
sizeof (struct iwi_softc)
};
static devclass_t iwi_devclass;
DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwi_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwi_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwi_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static int
iwi_probe(device_t dev)
{
const struct iwi_ident *ident;
for (ident = iwi_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
/* Base Address Register */
#define IWI_PCI_BAR0 0x10
static int
iwi_attach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error, i;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
sc->sc_unr = new_unrhdr(0, IWI_MAX_IBSSNODE, &sc->sc_mtx);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
sc->mem_rid = IWI_PCI_BAR0;
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
goto fail;
}
if (iwi_reset(sc) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail;
}
/*
* Allocate rings.
*/
if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Cmd ring\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT,
IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 1\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT,
IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 2\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT,
IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 3\n");
goto fail;
}
error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT,
IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX);
if (error != 0) {
device_printf(dev, "could not allocate Tx ring 4\n");
goto fail;
}
if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
device_printf(dev, "could not allocate Rx ring\n");
goto fail;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwi_init;
ifp->if_ioctl = iwi_ioctl;
ifp->if_start = iwi_start;
ifp->if_watchdog = iwi_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_wme.wme_update = iwi_wme_update;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_WME; /* 802.11e */
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
if (pci_get_device(dev) >= 0x4223) {
/* set supported .11a rates (2915ABG only) */
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = iwi_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = iwi_node_free;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwi_newstate;
ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
sc->dwelltime = 100;
sc->bluetooth = 1;
sc->antenna = 0;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
"radio transmitter switch state (0=off, 1=on)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
"statistics");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
CTLFLAG_RW, &sc->dwelltime, 0,
"channel dwell time (ms) for AP/station scanning");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "bluetooth",
CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "antenna",
CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
iwi_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail: iwi_detach(dev);
return ENXIO;
}
static int
iwi_detach(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
iwi_stop(sc);
if (ifp != NULL) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
}
iwi_free_cmd_ring(sc, &sc->cmdq);
iwi_free_tx_ring(sc, &sc->txq[0]);
iwi_free_tx_ring(sc, &sc->txq[1]);
iwi_free_tx_ring(sc, &sc->txq[2]);
iwi_free_tx_ring(sc, &sc->txq[3]);
iwi_free_rx_ring(sc, &sc->rxq);
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
}
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
if (sc->sc_unr != NULL)
delete_unrhdr(sc->sc_unr);
mtx_destroy(&sc->sc_mtx);
return 0;
}
static void
iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
{
int error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1,
count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
return 0;
fail: iwi_free_cmd_ring(sc, ring);
return error;
}
static void
iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
}
static int
iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
bus_addr_t csr_ridx, bus_addr_t csr_widx)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->csr_ridx = csr_ridx;
ring->csr_widx = csr_widx;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG - 2,
MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: iwi_free_tx_ring(sc, ring);
return error;
}
static void
iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
{
struct iwi_rx_data *data;
int i, error;
ring->count = count;
ring->cur = 0;
ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
data->reg = IWI_CSR_RX_BASE + i * 4;
}
return 0;
fail: iwi_free_rx_ring(sc, ring);
return error;
}
static void
iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
ring->cur = 0;
}
static void
iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
struct iwi_rx_data *data;
int i;
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
iwi_shutdown(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
iwi_stop(sc);
return 0;
}
static int
iwi_suspend(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
iwi_stop(sc);
return 0;
}
static int
iwi_resume(device_t dev)
{
struct iwi_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP) {
ifp->if_init(ifp->if_softc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_start(ifp);
}
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return 0;
}
static struct ieee80211_node *
iwi_node_alloc(struct ieee80211_node_table *nt)
{
struct iwi_node *in;
in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
if (in == NULL)
return NULL;
in->in_station = -1;
return &in->in_node;
}
static void
iwi_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct iwi_softc *sc = ic->ic_ifp->if_softc;
struct iwi_node *in = (struct iwi_node *)ni;
if (in->in_station != -1)
free_unr(sc->sc_unr, in->in_station);
sc->sc_node_free(ni);
}
static int
iwi_media_change(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
int error;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
error = ieee80211_media_change(ifp);
if (error != ENETRESET) {
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return error;
}
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
iwi_init(sc);
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
#define N(a) (sizeof (a) / sizeof (a[0]))
static const struct {
uint32_t val;
int rate;
} rates[] = {
{ IWI_RATE_DS1, 2 },
{ IWI_RATE_DS2, 4 },
{ IWI_RATE_DS5, 11 },
{ IWI_RATE_DS11, 22 },
{ IWI_RATE_OFDM6, 12 },
{ IWI_RATE_OFDM9, 18 },
{ IWI_RATE_OFDM12, 24 },
{ IWI_RATE_OFDM18, 36 },
{ IWI_RATE_OFDM24, 48 },
{ IWI_RATE_OFDM36, 72 },
{ IWI_RATE_OFDM48, 96 },
{ IWI_RATE_OFDM54, 108 },
};
uint32_t val;
int rate, i;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
/* convert rate to 802.11 rate */
for (i = 0; i < N(rates) && rates[i].val != val; i++);
rate = (i < N(rates)) ? rates[i].rate : 0;
imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
/* should not get there */
break;
}
#undef N
}
static int
iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwi_softc *sc = ifp->if_softc;
enum ieee80211_state ostate;
uint32_t tmp;
ostate = ic->ic_state;
switch (nstate) {
case IEEE80211_S_SCAN:
if (sc->flags & IWI_FLAG_SCANNING)
break;
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
sc->flags |= IWI_FLAG_SCANNING;
iwi_scan(sc);
break;
case IEEE80211_S_AUTH:
iwi_auth_and_assoc(sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_IBSS)
iwi_auth_and_assoc(sc);
else if (ic->ic_opmode == IEEE80211_M_MONITOR)
iwi_set_chan(sc, ic->ic_ibss_chan);
/* assoc led on */
tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK;
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp | IWI_LED_ASSOC);
return sc->sc_newstate(ic, nstate,
IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_INIT:
sc->flags &= ~IWI_FLAG_SCANNING;
if (ostate != IEEE80211_S_RUN)
break;
/* assoc led off */
tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK;
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp & ~IWI_LED_ASSOC);
break;
}
ic->ic_state = nstate;
return 0;
}
2005-08-21 09:52:18 +00:00
/*
* WME parameters coming from IEEE 802.11e specification. These values are
* already declared in ieee80211_proto.c, but they are static so they can't
* be reused here.
*/
static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
{ 0, 3, 5, 7, 0 }, /* WME_AC_BE */
{ 0, 3, 5, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 4, 5, 188 }, /* WME_AC_VI */
{ 0, 2, 3, 4, 102 } /* WME_AC_VO */
};
static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
{ 0, 3, 4, 6, 0 }, /* WME_AC_BE */
{ 0, 3, 4, 10, 0 }, /* WME_AC_BK */
{ 0, 2, 3, 4, 94 }, /* WME_AC_VI */
{ 0, 2, 2, 3, 47 } /* WME_AC_VO */
};
static int
iwi_wme_update(struct ieee80211com *ic)
{
2005-08-21 09:52:18 +00:00
#define IWI_EXP2(v) htole16((1 << (v)) - 1)
#define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct iwi_softc *sc = ic->ic_ifp->if_softc;
struct iwi_wme_params wme[3];
const struct wmeParams *wmep;
int ac;
2005-08-21 09:52:18 +00:00
/*
* We shall not override firmware default WME values if WME is not
* actually enabled.
*/
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
/* set WME values for current operating mode */
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
wme[0].aifsn[ac] = wmep->wmep_aifsn;
wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[0].acm[ac] = wmep->wmep_acm;
/* set WME values for CCK modulation */
wmep = &iwi_wme_cck_params[ac];
wme[1].aifsn[ac] = wmep->wmep_aifsn;
wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[1].acm[ac] = wmep->wmep_acm;
/* set WME values for OFDM modulation */
wmep = &iwi_wme_ofdm_params[ac];
wme[2].aifsn[ac] = wmep->wmep_aifsn;
wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
wme[2].acm[ac] = wmep->wmep_acm;
}
DPRINTF(("Setting WME parameters\n"));
return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, wme, sizeof wme, 1);
#undef IWI_USEC
#undef IWI_EXP2
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return val;
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
struct iwi_frame *frame)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct mbuf *mnew, *m;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n",
le16toh(frame->len), frame->chan, frame->rssi_dbm));
if (le16toh(frame->len) < sizeof (struct ieee80211_frame))
return;
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
&data->physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
CSR_WRITE_4(sc, data->reg, data->physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + le16toh(frame->len);
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
if (ic->ic_state == IEEE80211_S_SCAN)
iwi_fix_channel(ic, m);
if (sc->sc_drvbpf != NULL) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = frame->rate;
tap->wr_chan_freq =
htole16(ic->ic_channels[frame->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[frame->chan].ic_flags);
tap->wr_antsignal = frame->signal;
tap->wr_antenna = frame->antenna;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
}
static void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_notif_scan_channel *chan;
struct iwi_notif_scan_complete *scan;
struct iwi_notif_authentication *auth;
struct iwi_notif_association *assoc;
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
chan = (struct iwi_notif_scan_channel *)(notif + 1);
DPRINTFN(2, ("Scanning channel (%u)\n", chan->nchan));
break;
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
scan = (struct iwi_notif_scan_complete *)(notif + 1);
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
/* monitor mode uses scan to set the channel ... */
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
sc->flags &= ~IWI_FLAG_SCANNING;
ieee80211_end_scan(ic);
} else
iwi_set_chan(sc, ic->ic_ibss_chan);
break;
case IWI_NOTIF_TYPE_AUTHENTICATION:
auth = (struct iwi_notif_authentication *)(notif + 1);
DPRINTFN(2, ("Authentication (%u)\n", auth->state));
switch (auth->state) {
case IWI_AUTHENTICATED:
ieee80211_node_authorize(ic->ic_bss);
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
break;
case IWI_DEAUTHENTICATED:
break;
default:
device_printf(sc->sc_dev,
"unknown authentication state %u\n", auth->state);
}
break;
case IWI_NOTIF_TYPE_ASSOCIATION:
assoc = (struct iwi_notif_association *)(notif + 1);
DPRINTFN(2, ("Association (%u, %u)\n", assoc->state,
assoc->status));
switch (assoc->state) {
case IWI_AUTHENTICATED:
/* re-association, do nothing */
break;
case IWI_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IWI_DEASSOCIATED:
ieee80211_begin_scan(ic, 1);
break;
default:
device_printf(sc->sc_dev,
"unknown association state %u\n", assoc->state);
}
break;
default:
DPRINTFN(5, ("Notification (%u)\n", notif->type));
}
}
static void
iwi_rx_intr(struct iwi_softc *sc)
{
struct iwi_rx_data *data;
struct iwi_hdr *hdr;
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
for (; sc->rxq.cur != hw;) {
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
hdr = mtod(data->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, data, sc->rxq.cur,
(struct iwi_frame *)(hdr + 1));
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc,
(struct iwi_notif *)(hdr + 1));
break;
default:
device_printf(sc->sc_dev, "unknown hdr type %u\n",
hdr->type);
}
DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
}
static void
iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_tx_data *data;
uint32_t hw;
hw = CSR_READ_4(sc, txq->csr_ridx);
for (; txq->next != hw;) {
data = &txq->data[txq->next];
bus_dmamap_sync(txq->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
DPRINTFN(15, ("tx done idx=%u\n", txq->next));
ifp->if_opackets++;
txq->queued--;
txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
iwi_start(ifp);
}
static void
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
uint32_t r;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return;
}
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
if (r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)) {
device_printf(sc->sc_dev, "fatal error\n");
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
iwi_stop(sc);
}
if (r & IWI_INTR_FW_INITED) {
if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IWI_INTR_RADIO_OFF) {
DPRINTF(("radio transmitter turned off\n"));
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
iwi_stop(sc);
}
if (r & IWI_INTR_CMD_DONE)
wakeup(sc);
if (r & IWI_INTR_TX1_DONE)
iwi_tx_intr(sc, &sc->txq[0]);
if (r & IWI_INTR_TX2_DONE)
iwi_tx_intr(sc, &sc->txq[1]);
if (r & IWI_INTR_TX3_DONE)
iwi_tx_intr(sc, &sc->txq[2]);
if (r & IWI_INTR_TX4_DONE)
iwi_tx_intr(sc, &sc->txq[3]);
if (r & IWI_INTR_RX_DONE)
iwi_rx_intr(sc);
/* acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
/* re-enable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
}
static int
iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len, int async)
{
struct iwi_cmd_desc *desc;
desc = &sc->cmdq.desc[sc->cmdq.cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
memcpy(desc->data, data, len);
bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
type, len));
sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
return async ? 0 : msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
}
static void
iwi_write_ibssnode(struct iwi_softc *sc, const struct iwi_node *in)
{
struct iwi_ibssnode node;
/* write node information into NIC memory */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, in->in_node.ni_macaddr);
CSR_WRITE_REGION_1(sc,
IWI_CSR_NODE_BASE + in->in_station * sizeof node,
(uint8_t *)&node, sizeof node);
}
static int
iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_node *in = (struct iwi_node *)ni;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct iwi_tx_ring *txq = &sc->txq[ac];
struct iwi_tx_data *data;
struct iwi_tx_desc *desc;
struct mbuf *mnew;
bus_dma_segment_t segs[IWI_MAX_NSEG];
int error, nsegs, hdrlen, i, noack = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
hdrlen = sizeof (struct ieee80211_qosframe);
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
} else
hdrlen = sizeof (struct ieee80211_frame);
/*
* This is only used in IBSS mode where the firmware expect an index
* in a h/w table instead of a destination address.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS && in->in_station == -1) {
in->in_station = alloc_unr(sc->sc_unr);
if (in->in_station == -1) { /* h/w table is full */
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
return 0;
}
iwi_write_ibssnode(sc, in);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (sc->sc_drvbpf != NULL) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->station =
(ic->ic_opmode == IEEE80211_M_IBSS) ? in->in_station : 0;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->flags = 0;
desc->xflags = 0;
if (!noack && !IEEE80211_IS_MULTICAST(desc->wh.i_addr1))
desc->flags |= IWI_DATA_FLAG_NEED_ACK;
#if 0
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
desc->wh.i_fc[1] |= IEEE80211_FC1_WEP;
desc->weptxkey = ic->ic_crypto.cs_def_txkey;
} else
#endif
desc->flags |= IWI_DATA_FLAG_NO_WEP;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
desc->flags |= IWI_DATA_FLAG_SHPREAMBLE;
if (desc->wh.i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS)
desc->xflags |= IWI_DATA_XFLAG_QOS;
desc->nseg = htole32(nsegs);
for (i = 0; i < nsegs; i++) {
desc->seg_addr[i] = htole32(segs[i].ds_addr);
desc->seg_len[i] = htole16(segs[i].ds_len);
}
bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
ac, txq->cur, le16toh(desc->len), nsegs));
txq->queued++;
txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
return 0;
}
static void
iwi_start(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
int ac;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
if (ic->ic_state != IEEE80211_S_RUN) {
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return;
}
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (struct ether_header) &&
(m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
/* there is no place left in this ring */
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
}
static void
iwi_watchdog(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_UP;
iwi_stop(sc);
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
}
static int
iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
iwi_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
iwi_stop(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
iwi_init(sc);
error = 0;
}
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
return error;
}
static void
iwi_stop_master(struct iwi_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5)
device_printf(sc->sc_dev, "timeout waiting for master\n");
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
sc->flags &= ~IWI_FLAG_FW_INITED;
}
static int
iwi_reset(struct iwi_softc *sc)
{
uint32_t tmp;
int i, ntries;
iwi_stop_master(sc);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return EIO;
}
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
/* clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
static int
iwi_load_ucode(struct iwi_softc *sc, const char *data, int size)
{
const uint16_t *w;
uint32_t tmp;
int i, ntries;
CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
device_printf(sc->sc_dev, "timeout waiting for master\n");
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~IWI_RST_PRINCETON_RESET;
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 1);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
DELAY(1000);
/* write microcode into adapter memory */
for (w = (const uint16_t *)data; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, htole16(*w));
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* wait until we get an answer */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
return EIO;
}
/* read the answer or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
return 0;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
static int
iwi_load_firmware(struct iwi_softc *sc, const char *data, int size)
{
bus_dma_tag_t dmat;
bus_dmamap_t map;
bus_addr_t physaddr;
void *virtaddr;
u_char *p, *end;
uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2005-11-20 04:27:24 +00:00
int ntries, error;
2006-03-10 18:55:30 +00:00
/* drop the driver's lock before doing any DMA operation */
mtx_unlock(&sc->sc_mtx);
/* allocate DMA memory for mapping firmware image */
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create firmware DMA tag\n");
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
goto fail1;
}
error = bus_dmamem_alloc(dmat, &virtaddr, BUS_DMA_NOWAIT, &map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate firmware DMA memory\n");
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
goto fail2;
}
error = bus_dmamap_load(dmat, map, virtaddr, size, iwi_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load firmware DMA map\n");
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
goto fail3;
}
/* copy firmware image to DMA memory */
memcpy(virtaddr, data, size);
/* make sure the adapter will get up-to-date values */
bus_dmamap_sync(dmat, map, BUS_DMASYNC_PREWRITE);
2006-03-10 18:55:30 +00:00
/* reacquire the driver's lock before kicking the hardware */
mtx_lock(&sc->sc_mtx);
/* tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
src = physaddr;
p = virtaddr;
end = p + size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
while (p < end) {
dst = GETLE32(p); p += 4; src += 4;
len = GETLE32(p); p += 4; src += 4;
p += len;
while (len > 0) {
mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ src ^ dst;
/* write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
src += mlen;
dst += mlen;
len -= mlen;
}
}
/* write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
/* tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* wait until the adapter reaches the sentinel */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
if (ntries == 400) {
device_printf(sc->sc_dev,
"timeout processing command blocks\n");
error = EIO;
goto fail4;
}
/* we're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* allow interrupts so we know when the firmware is ready */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
device_printf(sc->sc_dev, "timeout waiting for firmware "
"initialization to complete\n");
}
fail4: bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dmat, map);
fail3: bus_dmamem_free(dmat, virtaddr, map);
fail2: bus_dma_tag_destroy(dmat);
fail1:
return error;
}
static int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_configuration config;
struct iwi_rateset rs;
struct iwi_txpower power;
struct ieee80211_key *wk;
struct iwi_wep_key wepkey;
uint32_t data;
int error, i;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN, 0);
if (error != 0)
return error;
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 0);
if (error != 0)
return error;
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
power.mode = IWI_MODE_11B;
power.nchan = 11;
for (i = 0; i < 11; i++) {
power.chan[i].chan = i + 1;
power.chan[i].power = IWI_TXPOWER_MAX;
}
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
}
rs.mode = IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
rs.nrates);
DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
rs.mode = IWI_MODE_11A;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
rs.nrates);
DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
/* if we have a desired ESSID, set it now */
if (ic->ic_des_esslen != 0) {
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting desired ESSID to ");
ieee80211_print_essid(ic->ic_des_essid,
ic->ic_des_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen, 0);
if (error != 0)
return error;
}
data = htole32(arc4random());
DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0);
if (error != 0)
return error;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &ic->ic_crypto.cs_nw_keys[i];
wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
wepkey.idx = i;
wepkey.len = wk->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
wepkey.len));
error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey, 0);
if (error != 0)
return error;
}
/* enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0);
}
static int
iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
memset(&scan, 0, sizeof scan);
memset(scan.type, IWI_SCAN_TYPE_PASSIVE, sizeof scan.type);
scan.passive = htole16(2000);
scan.channels[0] = 1 |
(IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ);
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
static int
iwi_scan(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
uint8_t *p;
int i, count;
memset(&scan, 0, sizeof scan);
if (ic->ic_des_esslen != 0) {
scan.bdirected = htole16(sc->dwelltime);
memset(scan.type, IWI_SCAN_TYPE_BDIRECTED, sizeof scan.type);
} else {
scan.broadcast = htole16(sc->dwelltime);
memset(scan.type, IWI_SCAN_TYPE_BROADCAST, sizeof scan.type);
}
p = scan.channels;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_5GHZ | count;
p = (count > 0) ? p + 1 : scan.channels;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) &&
isset(ic->ic_chan_active, i)) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_2GHZ | count;
DPRINTF(("Start scanning\n"));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
static int
iwi_auth_and_assoc(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_node *ni = ic->ic_bss;
struct ieee80211_wme_info wme;
struct iwi_configuration config;
struct iwi_associate assoc;
struct iwi_rateset rs;
uint16_t capinfo;
uint32_t data;
int error;
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
memset(&config, 0, sizeof config);
config.bluetooth_coexistence = sc->bluetooth;
config.antenna = sc->antenna;
config.multicast_enabled = 1;
config.use_protection = 1;
config.answer_pbreq =
(ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config,
1);
if (error != 0)
return error;
}
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1);
if (error != 0)
return error;
/* the rate set has already been "negotiated" */
rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_NEGOTIATED;
rs.nrates = ni->ni_rates.rs_nrates;
memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
DPRINTF(("Setting negociated rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1);
if (error != 0)
return error;
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
wme.wme_id = IEEE80211_ELEMID_VENDOR;
wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
wme.wme_oui[0] = 0x00;
wme.wme_oui[1] = 0x50;
wme.wme_oui[2] = 0xf2;
wme.wme_type = WME_OUI_TYPE;
wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
wme.wme_version = WME_VERSION;
wme.wme_info = 0;
DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
error = iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme, 1);
if (error != 0)
return error;
}
if (ic->ic_opt_ie != NULL) {
DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
ic->ic_opt_ie_len, 1);
if (error != 0)
return error;
}
data = htole32(ni->ni_rssi);
DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi));
error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1);
if (error != 0)
return error;
memset(&assoc, 0, sizeof assoc);
assoc.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
if (ni->ni_authmode == IEEE80211_AUTH_SHARED)
assoc.auth = ic->ic_crypto.cs_def_txkey << 4 | IWI_AUTH_SHARED;
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
assoc.policy |= htole16(IWI_POLICY_WME);
if (ic->ic_flags & IEEE80211_F_WPA)
assoc.policy |= htole16(IWI_POLICY_WPA);
memcpy(assoc.tstamp, ni->ni_tstamp.data, 8);
if (ic->ic_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
assoc.capinfo = htole16(capinfo);
assoc.lintval = htole16(ic->ic_lintval);
assoc.intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid);
if (ic->ic_opmode == IEEE80211_M_IBSS)
IEEE80211_ADDR_COPY(assoc.dst, ifp->if_broadcastaddr);
else
IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid);
DPRINTF(("Trying to associate to %6D channel %u auth %u\n",
assoc.bssid, ":", assoc.chan, assoc.auth));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1);
}
static void
iwi_init(void *priv)
{
struct iwi_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwi_rx_data *data;
struct firmware *fp;
const struct iwi_firmware_hdr *hdr;
const char *imagename, *fw;
2006-03-10 18:55:30 +00:00
int owned, i;
/*
* iwi_init() is exposed through ifp->if_init so it might be called
* without the driver's lock held. Since msleep() doesn't like
* being called on a recursed mutex, we acquire the driver's lock
* only if we're not already holding it.
*/
if (!(owned = mtx_owned(&sc->sc_mtx)))
mtx_lock(&sc->sc_mtx);
/*
* Avoid re-entrant calls. We need to release the mutex in iwi_init()
* when loading the firmware and allocating DMA memory and we don't
* want to be called during these operations.
*/
if (sc->flags & IWI_FLAG_INIT_LOCKED) {
if (!owned)
mtx_unlock(&sc->sc_mtx);
return;
}
sc->flags |= IWI_FLAG_INIT_LOCKED;
iwi_stop(sc);
if (iwi_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset adapter\n");
goto fail1;
}
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
imagename = "iwi-bss";
break;
case IEEE80211_M_IBSS:
imagename = "iwi-ibss";
break;
case IEEE80211_M_MONITOR:
imagename = "iwi-monitor";
break;
default:
imagename = NULL; /* should not get there */
}
/*
* Load firmware image using the firmware(9) subsystem. We need to
* release the driver's lock first.
*/
mtx_unlock(&sc->sc_mtx);
fp = firmware_get(imagename);
mtx_lock(&sc->sc_mtx);
if (fp == NULL) {
device_printf(sc->sc_dev,
"could not load firmware image '%s'\n", imagename);
goto fail1;
}
if (fp->datasize < sizeof *hdr) {
device_printf(sc->sc_dev,
"firmware image too short: %d bytes\n", fp->datasize);
goto fail2;
}
hdr = (const struct iwi_firmware_hdr *)fp->data;
if (fp->datasize < sizeof *hdr + le32toh(hdr->bootsz) +
le32toh(hdr->ucodesz) + le32toh(hdr->fwsz)) {
device_printf(sc->sc_dev,
"firmware image too short: %d bytes\n", fp->datasize);
goto fail2;
}
fw = (const char *)fp->data + sizeof *hdr;
if (iwi_load_firmware(sc, fw, le32toh(hdr->bootsz)) != 0) {
device_printf(sc->sc_dev, "could not load boot firmware\n");
goto fail2;
}
fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->bootsz);
if (iwi_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
device_printf(sc->sc_dev, "could not load microcode\n");
goto fail2;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
for (i = 0; i < sc->rxq.count; i++) {
data = &sc->rxq.data[i];
CSR_WRITE_4(sc, data->reg, data->physaddr);
}
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->bootsz) +
le32toh(hdr->ucodesz);
if (iwi_load_firmware(sc, fw, le32toh(hdr->fwsz)) != 0) {
device_printf(sc->sc_dev, "could not load main firmware\n");
goto fail2;
}
sc->flags |= IWI_FLAG_FW_INITED;
if (iwi_config(sc) != 0) {
device_printf(sc->sc_dev, "device configuration failed\n");
goto fail2;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
2006-03-10 18:55:30 +00:00
sc->flags &=~ IWI_FLAG_INIT_LOCKED;
if (!owned)
mtx_unlock(&sc->sc_mtx);
return;
fail2: firmware_put(fp, FIRMWARE_UNLOAD);
fail1: ifp->if_flags &= ~IFF_UP;
iwi_stop(sc);
2006-03-10 18:55:30 +00:00
sc->flags &=~ IWI_FLAG_INIT_LOCKED;
if (!owned)
mtx_unlock(&sc->sc_mtx);
}
static void
iwi_stop(void *priv)
{
struct iwi_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
2006-03-10 18:55:30 +00:00
mtx_lock(&sc->sc_mtx);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
/* reset rings */
iwi_reset_cmd_ring(sc, &sc->cmdq);
iwi_reset_tx_ring(sc, &sc->txq[0]);
iwi_reset_tx_ring(sc, &sc->txq[1]);
iwi_reset_tx_ring(sc, &sc->txq[2]);
iwi_reset_tx_ring(sc, &sc->txq[3]);
iwi_reset_rx_ring(sc, &sc->rxq);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2006-03-10 18:55:30 +00:00
mtx_unlock(&sc->sc_mtx);
}
static int
iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
uint32_t size, buf[128];
if (!(sc->flags & IWI_FLAG_FW_INITED)) {
memset(buf, 0, sizeof buf);
return SYSCTL_OUT(req, buf, sizeof buf);
}
size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
return SYSCTL_OUT(req, buf, sizeof buf);
}
static int
iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
{
struct iwi_softc *sc = arg1;
int val;
val = (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ? 1 : 0;
return SYSCTL_OUT(req, &val, sizeof val);
}