freebsd-dev/usr.sbin/bhyve/pci_emul.c

1006 lines
22 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/linker_set.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "fbsdrun.h"
#include "inout.h"
#include "pci_emul.h"
#include "instruction_emul.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CFGWRITE(pi,off,val,b) \
do { \
if ((b) == 1) { \
pci_set_cfgdata8((pi),(off),(val)); \
} else if ((b) == 2) { \
pci_set_cfgdata16((pi),(off),(val)); \
} else { \
pci_set_cfgdata32((pi),(off),(val)); \
} \
} while (0)
#define MAXSLOTS 32
static struct slotinfo {
char *si_name;
char *si_param;
struct pci_devinst *si_devi;
int si_titled;
int si_pslot;
char si_prefix;
char si_suffix;
} pci_slotinfo[MAXSLOTS];
/*
* NetApp specific:
* struct used to build an in-core OEM table to supply device names
* to driver instances
*/
static struct mptable_pci_devnames {
#define MPT_HDR_BASE 0
#define MPT_HDR_NAME 2
uint16_t md_hdrtype;
uint16_t md_entries;
uint16_t md_cksum;
uint16_t md_pad;
#define MPT_NTAP_SIG \
((uint32_t)(('P' << 24) | ('A' << 16) | ('T' << 8) | 'N'))
uint32_t md_sig;
uint32_t md_rsvd;
struct mptable_pci_slotinfo {
uint16_t mds_type;
uint16_t mds_phys_slot;
uint8_t mds_bus;
uint8_t mds_slot;
uint8_t mds_func;
uint8_t mds_pad;
uint16_t mds_vid;
uint16_t mds_did;
uint8_t mds_suffix[4];
uint8_t mds_prefix[4];
uint32_t mds_rsvd[3];
} md_slotinfo[MAXSLOTS];
} pci_devnames;
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_MEMBASE32 (lomem_sz)
#define PCI_EMUL_MEMLIMIT32 0xE0000000 /* 3.5GB */
#define PCI_EMUL_MEMBASE64 0xD000000000UL
#define PCI_EMUL_MEMLIMIT64 0xFD00000000UL
static int pci_emul_devices;
static int devname_elems;
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <slot>,<emul>[,<config>]
*
* slot is 0..31
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
printf("Invalid PCI slot info field \"%s\"\n", aopt);
free(aopt);
}
void
pci_parse_slot(char *opt)
{
char *slot, *emul, *config;
char *str, *cpy;
int snum;
str = cpy = strdup(opt);
config = NULL;
slot = strsep(&str, ",");
emul = strsep(&str, ",");
if (str != NULL) {
config = strsep(&str, ",");
}
if (emul == NULL) {
pci_parse_slot_usage(cpy);
return;
}
snum = 255;
snum = atoi(slot);
if (snum < 0 || snum >= MAXSLOTS) {
pci_parse_slot_usage(cpy);
} else {
pci_slotinfo[snum].si_name = emul;
pci_slotinfo[snum].si_param = config;
}
}
/*
*
* PCI MPTable names are of the form:
*
* <slot>,[prefix]<digit><suffix>
*
* .. with <prefix> an alphabetic char, <digit> a 1 or 2-digit string,
* and <suffix> a single char.
*
* Examples:
* 1,e0c
* 4,e0P
* 6,43a
* 7,0f
* 10,1
* 12,e0M
* 2,12a
*
* Note that this is NetApp-specific, but is ignored on other o/s's.
*/
static void
pci_parse_name_usage(char *aopt)
{
printf("Invalid PCI slot name field \"%s\"\n", aopt);
}
void
pci_parse_name(char *opt)
{
char csnum[4];
char *namestr;
char *slotend;
char prefix, suffix;
int i;
int pslot;
int snum;
pslot = -1;
prefix = suffix = 0;
slotend = strchr(opt, ',');
/*
* A comma must be present, and can't be the first character
* or no slot would be present. Also, the slot number can't be
* more than 2 characters.
*/
if (slotend == NULL || slotend == opt || (slotend - opt > 2)) {
pci_parse_name_usage(opt);
return;
}
for (i = 0; i < (slotend - opt); i++) {
csnum[i] = opt[i];
}
csnum[i] = '\0';
snum = 255;
snum = atoi(csnum);
if (snum < 0 || snum >= MAXSLOTS) {
pci_parse_name_usage(opt);
return;
}
namestr = slotend + 1;
if (strlen(namestr) > 3) {
pci_parse_name_usage(opt);
return;
}
if (isalpha(*namestr)) {
prefix = *namestr++;
}
if (!isdigit(*namestr)) {
pci_parse_name_usage(opt);
} else {
pslot = *namestr++ - '0';
if (isnumber(*namestr)) {
pslot = 10*pslot + *namestr++ - '0';
}
if (isalpha(*namestr) && *(namestr + 1) == 0) {
suffix = *namestr;
pci_slotinfo[snum].si_titled = 1;
pci_slotinfo[snum].si_pslot = pslot;
pci_slotinfo[snum].si_prefix = prefix;
pci_slotinfo[snum].si_suffix = suffix;
} else {
pci_parse_name_usage(opt);
}
}
}
static void
pci_add_mptable_name(struct slotinfo *si)
{
struct mptable_pci_slotinfo *ms;
/*
* If naming information has been supplied for this slot, populate
* the next available mptable OEM entry
*/
if (si->si_titled) {
ms = &pci_devnames.md_slotinfo[devname_elems];
ms->mds_type = MPT_HDR_NAME;
ms->mds_phys_slot = si->si_pslot;
ms->mds_bus = si->si_devi->pi_bus;
ms->mds_slot = si->si_devi->pi_slot;
ms->mds_func = si->si_devi->pi_func;
ms->mds_vid = pci_get_cfgdata16(si->si_devi, PCIR_VENDOR);
ms->mds_did = pci_get_cfgdata16(si->si_devi, PCIR_DEVICE);
ms->mds_suffix[0] = si->si_suffix;
ms->mds_prefix[0] = si->si_prefix;
devname_elems++;
}
}
static void
pci_finish_mptable_names(void)
{
int size;
if (devname_elems) {
pci_devnames.md_hdrtype = MPT_HDR_BASE;
pci_devnames.md_entries = devname_elems;
pci_devnames.md_cksum = 0; /* XXX */
pci_devnames.md_sig = MPT_NTAP_SIG;
size = (uintptr_t)&pci_devnames.md_slotinfo[devname_elems] -
(uintptr_t)&pci_devnames;
fbsdrun_add_oemtbl(&pci_devnames, size);
}
}
static int
pci_emul_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
int offset, i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
port >= pdi->pi_bar[i].addr &&
port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_ior)(pdi, i, offset, bytes);
else
(*pe->pe_iow)(pdi, i, offset, bytes, *eax);
return (0);
}
}
return (-1);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
enum pcibar_type type, uint64_t size)
{
int i, error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
struct inout_port iop;
assert(idx >= 0 && idx <= PCI_BARMAX);
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
baseptr = &pci_emul_iobase;
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (32MB currently).
*/
if (size > 32 * 1024 * 1024) {
/*
* XXX special case for device requiring peer-peer DMA
*/
if (size == 0x100000000UL)
baseptr = &hostbase;
else
baseptr = &pci_emul_membase64;
limit = PCI_EMUL_MEMLIMIT64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
}
/* fallthrough */
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
/* add a handler to intercept accesses to the I/O bar */
if (type == PCIBAR_IO) {
iop.name = pdi->pi_name;
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_handler;
iop.arg = pdi;
for (i = 0; i < size; i++) {
iop.port = addr + i;
register_inout(&iop);
}
}
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, capid, reallen;
uint16_t sts;
static u_char endofcap[4] = {
PCIY_RESERVED, 0, 0, 0
};
assert(caplen > 0 && capdata[0] != PCIY_RESERVED);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
capoff = CAP_START_OFFSET;
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else {
capoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((capoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
capoff = pci_get_cfgdata8(pi, capoff + 1);
}
}
/* Check if we have enough space */
if (capoff + reallen + sizeof(endofcap) > PCI_REGMAX + 1)
return (-1);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, capoff + reallen);
/* Copy of the reserved capability which serves as the end marker */
for (i = 0; i < sizeof(endofcap); i++)
pci_set_cfgdata8(pi, capoff + reallen + i, endofcap[i]);
return (0);
}
static struct pci_devemu *
pci_emul_finddev(char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static void
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int slot, char *params)
{
struct pci_devinst *pdi;
pdi = malloc(sizeof(struct pci_devinst));
bzero(pdi, sizeof(*pdi));
pdi->pi_vmctx = ctx;
pdi->pi_bus = 0;
pdi->pi_slot = slot;
pdi->pi_func = 0;
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND,
PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
if ((*pde->pe_init)(ctx, pdi, params) != 0) {
free(pdi);
} else {
pci_emul_devices++;
pci_slotinfo[slot].si_devi = pdi;
}
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
CTASSERT(sizeof(struct msicap) == 14);
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off, table_bar;
off = offset - capoff;
table_bar = pi->pi_msix.table_bar;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
}
CFGWRITE(pi, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
/*
* XXX check delivery mode, destination mode etc
*/
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.cpu = (addrlo >> 12) & 0xff;
pi->pi_msi.vector = msgdata & 0xff;
pi->pi_msi.msgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.cpu = 0;
pi->pi_msi.vector = 0;
pi->pi_msi.msgnum = 0;
}
}
CFGWRITE(pi, offset, val, bytes);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space.
*/
static void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
{
int capid;
uint8_t capoff, nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
/*
* Capability ID and Next Capability Pointer are readonly
*/
if (offset == capoff || offset == capoff + 1)
return;
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
int found;
uint16_t sts;
uint8_t capid, lastoff;
found = 0;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
lastoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((lastoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, lastoff);
if (capid == PCIY_RESERVED)
break;
lastoff = pci_get_cfgdata8(pi, lastoff + 1);
}
if (offset >= CAP_START_OFFSET && offset <= lastoff)
found = 1;
}
return (found);
}
void
init_pci(struct vmctx *ctx)
{
struct pci_devemu *pde;
struct slotinfo *si;
int i;
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = PCI_EMUL_MEMBASE32;
pci_emul_membase64 = PCI_EMUL_MEMBASE64;
si = pci_slotinfo;
for (i = 0; i < MAXSLOTS; i++, si++) {
if (si->si_name != NULL) {
pde = pci_emul_finddev(si->si_name);
if (pde != NULL) {
pci_emul_init(ctx, pde, i, si->si_param);
pci_add_mptable_name(si);
}
}
}
pci_finish_mptable_names();
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_msgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.msgnum);
else
return (0);
}
void
pci_generate_msi(struct pci_devinst *pi, int msg)
{
if (pci_msi_enabled(pi) && msg < pci_msi_msgnum(pi)) {
vm_lapic_irq(pi->pi_vmctx,
pi->pi_msi.cpu,
pi->pi_msi.vector + msg);
}
}
static int cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
uint32_t x;
assert(!in);
if (bytes != 4)
return (-1);
x = *eax;
cfgoff = x & PCI_REGMAX;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_OUT, pci_emul_cfgaddr);
static int
pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pi;
struct pci_devemu *pe;
int coff, idx;
uint64_t mask, bar;
assert(bytes == 1 || bytes == 2 || bytes == 4);
pi = pci_slotinfo[cfgslot].si_devi;
coff = cfgoff + (port - CONF1_DATA_PORT);
#if 0
printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
#endif
if (pi == NULL || cfgfunc != 0) {
if (in)
*eax = 0xffffffff;
return (0);
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL &&
(*pe->pe_cfgread)(ctx, vcpu, pi, coff, bytes, eax) == 0)
return (0);
if (bytes == 1)
*eax = pci_get_cfgdata8(pi, coff);
else if (bytes == 2)
*eax = pci_get_cfgdata16(pi, coff);
else
*eax = pci_get_cfgdata32(pi, coff);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
return (0);
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return (0);
idx = (coff - PCIR_BAR(0)) / 4;
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
bar = 0;
break;
case PCIBAR_IO:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_IO_BASE;
bar = (*eax & mask) | PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM32:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
case PCIBAR_MEM64:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = ((uint64_t)*eax << 32) & mask;
bar = bar >> 32;
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
if (pi->pi_bar[idx].handler) {
pi->pi_bar[idx].handler(pi, idx, bar);
}
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax);
} else {
CFGWRITE(pi, coff, *eax, bytes);
}
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
/*
* I/O ports to configure PCI IRQ routing. We ignore all writes to it.
*/
static int
pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
assert(in == 0);
return (0);
}
INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler);
INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler);
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DREGSZ 20
struct pci_emul_dsoftc {
uint8_t regs[DREGSZ];
};
#define PCI_EMUL_MSGS 4
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
int error;
struct pci_emul_dsoftc *sc;
sc = malloc(sizeof(struct pci_emul_dsoftc));
memset(sc, 0, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_alloc_bar(pi, 0, 0, PCIBAR_IO, DREGSZ);
assert(error == 0);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSGS);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct pci_devinst *pi, int baridx, int offset, int size,
uint32_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (offset + size > DREGSZ) {
printf("diow: too large, offset %d size %d\n", offset, size);
return;
}
if (size == 1) {
sc->regs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->regs[offset] = value & 0xffff;
} else {
*(uint32_t *)&sc->regs[offset] = value;
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_msgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_msgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
static uint32_t
pci_emul_dior(struct pci_devinst *pi, int baridx, int offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
if (offset + size > DREGSZ) {
printf("dior: too large, offset %d size %d\n", offset, size);
return (0);
}
if (size == 1) {
value = sc->regs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->regs[offset];
} else {
value = *(uint32_t *) &sc->regs[offset];
}
return (value);
}
struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_iow = pci_emul_diow,
.pe_ior = pci_emul_dior
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */