freebsd-dev/sys/dev/sym/sym_hipd.c

9748 lines
237 KiB
C
Raw Normal View History

/*-
* Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
* PCI-SCSI controllers.
*
2001-11-11 17:56:35 +00:00
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
*
* This driver also supports the following Symbios/LSI PCI-SCSI chips:
* 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
* 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
*
*
* This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-1999 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* The initialisation code, and part of the code that addresses
* FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
* written by Justin T. Gibbs.
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define SYM_DRIVER_NAME "sym-1.6.5-20000902"
/* #define SYM_DEBUG_GENERIC_SUPPORT */
#include <sys/param.h>
/*
* Driver configuration options.
*/
#include "opt_sym.h"
#include <dev/sym/sym_conf.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/proc.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#ifdef __sparc64__
#include <dev/ofw/openfirm.h>
#include <machine/ofw_machdep.h>
#endif
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
/* Short and quite clear integer types */
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef u_int8_t u8;
typedef u_int16_t u16;
typedef u_int32_t u32;
/*
* Driver definitions.
*/
#include <dev/sym/sym_defs.h>
#include <dev/sym/sym_fw.h>
/*
* IA32 architecture does not reorder STORES and prevents
* LOADS from passing STORES. It is called `program order'
* by Intel and allows device drivers to deal with memory
* ordering by only ensuring that the code is not reordered
* by the compiler when ordering is required.
* Other architectures implement a weaker ordering that
* requires memory barriers (and also IO barriers when they
* make sense) to be used.
*/
2003-06-26 01:10:24 +00:00
#if defined __i386__ || defined __amd64__
#define MEMORY_BARRIER() do { ; } while(0)
#elif defined __powerpc__
#define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
#elif defined __ia64__
#define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory")
#elif defined __sparc64__
#define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory")
#else
#error "Not supported platform"
#endif
/*
* A la VMS/CAM-3 queue management.
*/
typedef struct sym_quehead {
struct sym_quehead *flink; /* Forward pointer */
struct sym_quehead *blink; /* Backward pointer */
} SYM_QUEHEAD;
#define sym_que_init(ptr) do { \
(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
} while (0)
static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
{
return (head->flink == head) ? NULL : head->flink;
}
static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
{
return (head->blink == head) ? NULL : head->blink;
}
static __inline void __sym_que_add(struct sym_quehead * new,
struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = new;
new->flink = flink;
new->blink = blink;
blink->flink = new;
}
static __inline void __sym_que_del(struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = blink;
blink->flink = flink;
}
static __inline int sym_que_empty(struct sym_quehead *head)
{
return head->flink == head;
}
static __inline void sym_que_splice(struct sym_quehead *list,
struct sym_quehead *head)
{
struct sym_quehead *first = list->flink;
if (first != list) {
struct sym_quehead *last = list->blink;
struct sym_quehead *at = head->flink;
first->blink = head;
head->flink = first;
last->flink = at;
at->blink = last;
}
}
#define sym_que_entry(ptr, type, member) \
((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
{
struct sym_quehead *elem = head->flink;
if (elem != head)
__sym_que_del(head, elem->flink);
else
elem = NULL;
return elem;
}
#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
{
struct sym_quehead *elem = head->blink;
if (elem != head)
__sym_que_del(elem->blink, head);
else
elem = NULL;
return elem;
}
/*
* This one may be useful.
*/
#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
for (qp = (head)->flink; qp != (head); qp = qp->flink)
/*
* FreeBSD does not offer our kind of queue in the CAM CCB.
* So, we have to cast.
*/
#define sym_qptr(p) ((struct sym_quehead *) (p))
/*
* Simple bitmap operations.
*/
#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
/*
* Number of tasks per device we want to handle.
*/
#if SYM_CONF_MAX_TAG_ORDER > 8
#error "more than 256 tags per logical unit not allowed."
#endif
#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
/*
* Donnot use more tasks that we can handle.
*/
#ifndef SYM_CONF_MAX_TAG
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
#endif
#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
#undef SYM_CONF_MAX_TAG
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
#endif
/*
* This one means 'NO TAG for this job'
*/
#define NO_TAG (256)
/*
* Number of SCSI targets.
*/
#if SYM_CONF_MAX_TARGET > 16
#error "more than 16 targets not allowed."
#endif
/*
* Number of logical units per target.
*/
#if SYM_CONF_MAX_LUN > 64
#error "more than 64 logical units per target not allowed."
#endif
/*
* Asynchronous pre-scaler (ns). Shall be 40 for
* the SCSI timings to be compliant.
*/
#define SYM_CONF_MIN_ASYNC (40)
/*
* Number of entries in the START and DONE queues.
*
* We limit to 1 PAGE in order to succeed allocation of
* these queues. Each entry is 8 bytes long (2 DWORDS).
*/
#ifdef SYM_CONF_MAX_START
#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
#else
#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif
#if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
#undef SYM_CONF_MAX_QUEUE
#define SYM_CONF_MAX_QUEUE PAGE_SIZE/8
#undef SYM_CONF_MAX_START
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif
/*
* For this one, we want a short name :-)
*/
#define MAX_QUEUE SYM_CONF_MAX_QUEUE
/*
* Active debugging tags and verbosity.
*/
#define DEBUG_ALLOC (0x0001)
#define DEBUG_PHASE (0x0002)
#define DEBUG_POLL (0x0004)
#define DEBUG_QUEUE (0x0008)
#define DEBUG_RESULT (0x0010)
#define DEBUG_SCATTER (0x0020)
#define DEBUG_SCRIPT (0x0040)
#define DEBUG_TINY (0x0080)
#define DEBUG_TIMING (0x0100)
#define DEBUG_NEGO (0x0200)
#define DEBUG_TAGS (0x0400)
#define DEBUG_POINTER (0x0800)
#if 0
static int sym_debug = 0;
#define DEBUG_FLAGS sym_debug
#else
/* #define DEBUG_FLAGS (0x0631) */
#define DEBUG_FLAGS (0x0000)
#endif
#define sym_verbose (np->verbose)
/*
* Insert a delay in micro-seconds and milli-seconds.
*/
static void UDELAY(int us) { DELAY(us); }
static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
/*
* Simple power of two buddy-like allocator.
*
* This simple code is not intended to be fast, but to
* provide power of 2 aligned memory allocations.
* Since the SCRIPTS processor only supplies 8 bit arithmetic,
* this allocator allows simple and fast address calculations
* from the SCRIPTS code. In addition, cache line alignment
* is guaranteed for power of 2 cache line size.
*
* This allocator has been developed for the Linux sym53c8xx
* driver, since this O/S does not provide naturally aligned
* allocations.
* It has the advantage of allowing the driver to use private
* pages of memory that will be useful if we ever need to deal
* with IO MMUs for PCI.
*/
#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
#if 0
#define MEMO_FREE_UNUSED /* Free unused pages immediately */
#endif
#define MEMO_WARN 1
#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
#define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
#define free_pages(p) free((p), M_DEVBUF)
typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
typedef struct m_link { /* Link between free memory chunks */
struct m_link *next;
} m_link_s;
typedef struct m_vtob { /* Virtual to Bus address translation */
struct m_vtob *next;
bus_dmamap_t dmamap; /* Map for this chunk */
m_addr_t vaddr; /* Virtual address */
m_addr_t baddr; /* Bus physical address */
} m_vtob_s;
/* Hash this stuff a bit to speed up translations */
#define VTOB_HASH_SHIFT 5
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m) \
((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
typedef struct m_pool { /* Memory pool of a given kind */
bus_dma_tag_t dev_dmat; /* Identifies the pool */
bus_dma_tag_t dmat; /* Tag for our fixed allocations */
m_addr_t (*getp)(struct m_pool *);
#ifdef MEMO_FREE_UNUSED
void (*freep)(struct m_pool *, m_addr_t);
#endif
#define M_GETP() mp->getp(mp)
#define M_FREEP(p) mp->freep(mp, p)
int nump;
m_vtob_s *(vtob[VTOB_HASH_SIZE]);
struct m_pool *next;
struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
} m_pool_s;
static void *___sym_malloc(m_pool_s *mp, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
int j;
m_addr_t a;
m_link_s *h = mp->h;
if (size > MEMO_CLUSTER_SIZE)
return NULL;
while (size > s) {
s <<= 1;
++i;
}
j = i;
while (!h[j].next) {
if (s == MEMO_CLUSTER_SIZE) {
h[j].next = (m_link_s *) M_GETP();
if (h[j].next)
h[j].next->next = NULL;
break;
}
++j;
s <<= 1;
}
a = (m_addr_t) h[j].next;
if (a) {
h[j].next = h[j].next->next;
while (j > i) {
j -= 1;
s >>= 1;
h[j].next = (m_link_s *) (a+s);
h[j].next->next = NULL;
}
}
#ifdef DEBUG
printf("___sym_malloc(%d) = %p\n", size, (void *) a);
#endif
return (void *) a;
}
static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
m_link_s *q;
m_addr_t a, b;
m_link_s *h = mp->h;
#ifdef DEBUG
printf("___sym_mfree(%p, %d)\n", ptr, size);
#endif
if (size > MEMO_CLUSTER_SIZE)
return;
while (size > s) {
s <<= 1;
++i;
}
a = (m_addr_t) ptr;
while (1) {
#ifdef MEMO_FREE_UNUSED
if (s == MEMO_CLUSTER_SIZE) {
M_FREEP(a);
break;
}
#endif
b = a ^ s;
q = &h[i];
while (q->next && q->next != (m_link_s *) b) {
q = q->next;
}
if (!q->next) {
((m_link_s *) a)->next = h[i].next;
h[i].next = (m_link_s *) a;
break;
}
q->next = q->next->next;
a = a & b;
s <<= 1;
++i;
}
}
static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
{
void *p;
p = ___sym_malloc(mp, size);
if (DEBUG_FLAGS & DEBUG_ALLOC)
printf ("new %-10s[%4d] @%p.\n", name, size, p);
if (p)
bzero(p, size);
else if (uflags & MEMO_WARN)
printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
return p;
}
#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN)
static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
{
if (DEBUG_FLAGS & DEBUG_ALLOC)
printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
___sym_mfree(mp, ptr, size);
}
/*
* Default memory pool we donnot need to involve in DMA.
*/
/*
* With the `bus dma abstraction', we use a separate pool for
* memory we donnot need to involve in DMA.
*/
static m_addr_t ___mp0_getp(m_pool_s *mp)
{
m_addr_t m = (m_addr_t) get_pages();
if (m)
++mp->nump;
return m;
}
#ifdef MEMO_FREE_UNUSED
static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
{
free_pages(m);
--mp->nump;
}
#endif
#ifdef MEMO_FREE_UNUSED
static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
#else
static m_pool_s mp0 = {0, 0, ___mp0_getp};
#endif
/*
* Actual memory allocation routine for non-DMAed memory.
*/
static void *sym_calloc(int size, char *name)
{
void *m;
/* Lock */
m = __sym_calloc(&mp0, size, name);
/* Unlock */
return m;
}
/*
* Actual memory allocation routine for non-DMAed memory.
*/
static void sym_mfree(void *ptr, int size, char *name)
{
/* Lock */
__sym_mfree(&mp0, ptr, size, name);
/* Unlock */
}
/*
* DMAable pools.
*/
/*
* With `bus dma abstraction', we use a separate pool per parent
* BUS handle. A reverse table (hashed) is maintained for virtual
* to BUS address translation.
*/
static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
baddr = (bus_addr_t *)arg;
*baddr = segs->ds_addr;
}
static m_addr_t ___dma_getp(m_pool_s *mp)
{
m_vtob_s *vbp;
void *vaddr = NULL;
bus_addr_t baddr = 0;
vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
if (!vbp)
goto out_err;
if (bus_dmamem_alloc(mp->dmat, &vaddr,
BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
goto out_err;
bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
if (baddr) {
int hc = VTOB_HASH_CODE(vaddr);
vbp->vaddr = (m_addr_t) vaddr;
vbp->baddr = (m_addr_t) baddr;
vbp->next = mp->vtob[hc];
mp->vtob[hc] = vbp;
++mp->nump;
return (m_addr_t) vaddr;
}
out_err:
if (baddr)
bus_dmamap_unload(mp->dmat, vbp->dmamap);
if (vaddr)
bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
if (vbp) {
if (vbp->dmamap)
bus_dmamap_destroy(mp->dmat, vbp->dmamap);
__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
}
return 0;
}
#ifdef MEMO_FREE_UNUSED
static void ___dma_freep(m_pool_s *mp, m_addr_t m)
{
m_vtob_s **vbpp, *vbp;
int hc = VTOB_HASH_CODE(m);
vbpp = &mp->vtob[hc];
while (*vbpp && (*vbpp)->vaddr != m)
vbpp = &(*vbpp)->next;
if (*vbpp) {
vbp = *vbpp;
*vbpp = (*vbpp)->next;
bus_dmamap_unload(mp->dmat, vbp->dmamap);
bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
bus_dmamap_destroy(mp->dmat, vbp->dmamap);
__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
--mp->nump;
}
}
#endif
static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
{
m_pool_s *mp;
for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
return mp;
}
static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
{
m_pool_s *mp = NULL;
mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
if (mp) {
mp->dev_dmat = dev_dmat;
if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL, MEMO_CLUSTER_SIZE, 1,
MEMO_CLUSTER_SIZE, 0,
NULL, NULL, &mp->dmat)) {
mp->getp = ___dma_getp;
#ifdef MEMO_FREE_UNUSED
mp->freep = ___dma_freep;
#endif
mp->next = mp0.next;
mp0.next = mp;
return mp;
}
}
if (mp)
__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
return NULL;
}
#ifdef MEMO_FREE_UNUSED
static void ___del_dma_pool(m_pool_s *p)
{
struct m_pool **pp = &mp0.next;
while (*pp && *pp != p)
pp = &(*pp)->next;
if (*pp) {
*pp = (*pp)->next;
bus_dma_tag_destroy(p->dmat);
__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
}
}
#endif
static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
{
struct m_pool *mp;
void *m = NULL;
/* Lock */
mp = ___get_dma_pool(dev_dmat);
if (!mp)
mp = ___cre_dma_pool(dev_dmat);
if (mp)
m = __sym_calloc(mp, size, name);
#ifdef MEMO_FREE_UNUSED
if (mp && !mp->nump)
___del_dma_pool(mp);
#endif
/* Unlock */
return m;
}
static void
__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
{
struct m_pool *mp;
/* Lock */
mp = ___get_dma_pool(dev_dmat);
if (mp)
__sym_mfree(mp, m, size, name);
#ifdef MEMO_FREE_UNUSED
if (mp && !mp->nump)
___del_dma_pool(mp);
#endif
/* Unlock */
}
static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
{
m_pool_s *mp;
int hc = VTOB_HASH_CODE(m);
m_vtob_s *vp = NULL;
m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
/* Lock */
mp = ___get_dma_pool(dev_dmat);
if (mp) {
vp = mp->vtob[hc];
while (vp && (m_addr_t) vp->vaddr != a)
vp = vp->next;
}
/* Unlock */
if (!vp)
panic("sym: VTOBUS FAILED!\n");
return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
}
/*
* Verbs for DMAable memory handling.
* The _uvptv_ macro avoids a nasty warning about pointer to volatile
* being discarded.
*/
#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
#define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n)
#define _sym_mfree_dma(np, p, s, n) \
__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
#define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n)
#define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n)
#define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p))
#define vtobus(p) _vtobus(np, p)
/*
* Print a buffer in hexadecimal format.
*/
static void sym_printb_hex (u_char *p, int n)
{
while (n-- > 0)
printf (" %x", *p++);
}
/*
* Same with a label at beginning and .\n at end.
*/
static void sym_printl_hex (char *label, u_char *p, int n)
{
printf ("%s", label);
sym_printb_hex (p, n);
printf (".\n");
}
/*
* Return a string for SCSI BUS mode.
*/
static const char *sym_scsi_bus_mode(int mode)
{
switch(mode) {
case SMODE_HVD: return "HVD";
case SMODE_SE: return "SE";
case SMODE_LVD: return "LVD";
}
return "??";
}
/*
* Some poor and bogus sync table that refers to Tekram NVRAM layout.
*/
#ifdef SYM_CONF_NVRAM_SUPPORT
static const u_char Tekram_sync[16] =
{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
#endif
/*
* Union of supported NVRAM formats.
*/
struct sym_nvram {
int type;
#define SYM_SYMBIOS_NVRAM (1)
#define SYM_TEKRAM_NVRAM (2)
#ifdef SYM_CONF_NVRAM_SUPPORT
union {
Symbios_nvram Symbios;
Tekram_nvram Tekram;
} data;
#endif
};
/*
* This one is hopefully useless, but actually useful. :-)
*/
#ifndef assert
#define assert(expression) { \
if (!(expression)) { \
(void)panic( \
"assertion \"%s\" failed: file \"%s\", line %d\n", \
#expression, \
__FILE__, __LINE__); \
} \
}
#endif
/*
* Some provision for a possible big endian mode supported by
* Symbios chips (never seen, by the way).
* For now, this stuff does not deserve any comments. :)
*/
#define sym_offb(o) (o)
#define sym_offw(o) (o)
/*
* Some provision for support for BIG ENDIAN CPU.
*/
#define cpu_to_scr(dw) htole32(dw)
#define scr_to_cpu(dw) le32toh(dw)
/*
* Access to the chip IO registers and on-chip RAM.
* We use the `bus space' interface under FreeBSD-4 and
* later kernel versions.
*/
#if defined(SYM_CONF_IOMAPPED)
#define INB_OFF(o) bus_read_1(np->io_res, (o))
#define INW_OFF(o) bus_read_2(np->io_res, (o))
#define INL_OFF(o) bus_read_4(np->io_res, (o))
#define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v))
#define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v))
#define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v))
#else /* Memory mapped IO */
#define INB_OFF(o) bus_read_1(np->mmio_res, (o))
#define INW_OFF(o) bus_read_2(np->mmio_res, (o))
#define INL_OFF(o) bus_read_4(np->mmio_res, (o))
#define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v))
#define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v))
#define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v))
#endif /* SYM_CONF_IOMAPPED */
#define OUTRAM_OFF(o, a, l) \
bus_write_region_1(np->ram_res, (o), (a), (l))
/*
* Common definitions for both bus space and legacy IO methods.
*/
#define INB(r) INB_OFF(offsetof(struct sym_reg,r))
#define INW(r) INW_OFF(offsetof(struct sym_reg,r))
#define INL(r) INL_OFF(offsetof(struct sym_reg,r))
#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
#define OUTONB(r, m) OUTB(r, INB(r) | (m))
#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
#define OUTONW(r, m) OUTW(r, INW(r) | (m))
#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
#define OUTONL(r, m) OUTL(r, INL(r) | (m))
#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
/*
* We normally want the chip to have a consistent view
* of driver internal data structures when we restart it.
* Thus these macros.
*/
#define OUTL_DSP(v) \
do { \
MEMORY_BARRIER(); \
OUTL (nc_dsp, (v)); \
} while (0)
#define OUTONB_STD() \
do { \
MEMORY_BARRIER(); \
OUTONB (nc_dcntl, (STD|NOCOM)); \
} while (0)
/*
* Command control block states.
*/
#define HS_IDLE (0)
#define HS_BUSY (1)
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
#define HS_DISCONNECT (3) /* Disconnected by target */
#define HS_WAIT (4) /* waiting for resource */
#define HS_DONEMASK (0x80)
#define HS_COMPLETE (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
/*
* Software Interrupt Codes
*/
#define SIR_BAD_SCSI_STATUS (1)
#define SIR_SEL_ATN_NO_MSG_OUT (2)
#define SIR_MSG_RECEIVED (3)
#define SIR_MSG_WEIRD (4)
#define SIR_NEGO_FAILED (5)
#define SIR_NEGO_PROTO (6)
#define SIR_SCRIPT_STOPPED (7)
#define SIR_REJECT_TO_SEND (8)
#define SIR_SWIDE_OVERRUN (9)
#define SIR_SODL_UNDERRUN (10)
#define SIR_RESEL_NO_MSG_IN (11)
#define SIR_RESEL_NO_IDENTIFY (12)
#define SIR_RESEL_BAD_LUN (13)
#define SIR_TARGET_SELECTED (14)
#define SIR_RESEL_BAD_I_T_L (15)
#define SIR_RESEL_BAD_I_T_L_Q (16)
#define SIR_ABORT_SENT (17)
#define SIR_RESEL_ABORTED (18)
#define SIR_MSG_OUT_DONE (19)
#define SIR_COMPLETE_ERROR (20)
#define SIR_DATA_OVERRUN (21)
#define SIR_BAD_PHASE (22)
#define SIR_MAX (22)
/*
* Extended error bit codes.
* xerr_status field of struct sym_ccb.
*/
#define XE_EXTRA_DATA (1) /* unexpected data phase */
#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
/*
* Negotiation status.
* nego_status field of struct sym_ccb.
*/
#define NS_SYNC (1)
#define NS_WIDE (2)
#define NS_PPR (3)
/*
* A CCB hashed table is used to retrieve CCB address
* from DSA value.
*/
#define CCB_HASH_SHIFT 8
#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
/*
* Device flags.
*/
#define SYM_DISC_ENABLED (1)
#define SYM_TAGS_ENABLED (1<<1)
#define SYM_SCAN_BOOT_DISABLED (1<<2)
#define SYM_SCAN_LUNS_DISABLED (1<<3)
/*
* Host adapter miscellaneous flags.
*/
#define SYM_AVOID_BUS_RESET (1)
#define SYM_SCAN_TARGETS_HILO (1<<1)
/*
* Device quirks.
* Some devices, for example the CHEETAH 2 LVD, disconnects without
* saving the DATA POINTER then reselects and terminates the IO.
* On reselection, the automatic RESTORE DATA POINTER makes the
* CURRENT DATA POINTER not point at the end of the IO.
* This behaviour just breaks our calculation of the residual.
* For now, we just force an AUTO SAVE on disconnection and will
* fix that in a further driver version.
*/
#define SYM_QUIRK_AUTOSAVE 1
/*
* Misc.
*/
#define SYM_LOCK() mtx_lock(&np->mtx)
#define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what))
#define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx)
#define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
#define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx)
#define SYM_UNLOCK() mtx_unlock(&np->mtx)
#define SYM_SNOOP_TIMEOUT (10000000)
#define SYM_PCI_IO PCIR_BAR(0)
#define SYM_PCI_MMIO PCIR_BAR(1)
#define SYM_PCI_RAM PCIR_BAR(2)
#define SYM_PCI_RAM64 PCIR_BAR(3)
/*
* Back-pointer from the CAM CCB to our data structures.
*/
#define sym_hcb_ptr spriv_ptr0
/* #define sym_ccb_ptr spriv_ptr1 */
/*
* We mostly have to deal with pointers.
* Thus these typedef's.
*/
typedef struct sym_tcb *tcb_p;
typedef struct sym_lcb *lcb_p;
typedef struct sym_ccb *ccb_p;
typedef struct sym_hcb *hcb_p;
/*
* Gather negotiable parameters value
*/
struct sym_trans {
u8 scsi_version;
u8 spi_version;
u8 period;
u8 offset;
u8 width;
u8 options; /* PPR options */
};
struct sym_tinfo {
struct sym_trans current;
struct sym_trans goal;
struct sym_trans user;
};
#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
/*
* Global TCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the TCB to a global
* address after selection.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_tcbh {
/*
* Scripts bus addresses of LUN table accessed from scripts.
* LUN #0 is a special case, since multi-lun devices are rare,
* and we we want to speed-up the general case and not waste
* resources.
*/
u32 luntbl_sa; /* bus address of this table */
u32 lun0_sa; /* bus address of LCB #0 */
/*
* Actual SYNC/WIDE IO registers value for this target.
* 'sval', 'wval' and 'uval' are read from SCRIPTS and
* so have alignment constraints.
*/
/*0*/ u_char uval; /* -> SCNTL4 register */
/*1*/ u_char sval; /* -> SXFER io register */
/*2*/ u_char filler1;
/*3*/ u_char wval; /* -> SCNTL3 io register */
};
/*
* Target Control Block
*/
struct sym_tcb {
/*
* TCB header.
* Assumed at offset 0.
*/
/*0*/ struct sym_tcbh head;
/*
* LUN table used by the SCRIPTS processor.
* An array of bus addresses is used on reselection.
*/
u32 *luntbl; /* LCBs bus address table */
/*
* LUN table used by the C code.
*/
lcb_p lun0p; /* LCB of LUN #0 (usual case) */
#if SYM_CONF_MAX_LUN > 1
lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
#endif
/*
* Bitmap that tells about LUNs that succeeded at least
* 1 IO and therefore assumed to be a real device.
* Avoid useless allocation of the LCB structure.
*/
u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
/*
* Bitmap that tells about LUNs that haven't yet an LCB
* allocated (not discovered or LCB allocation failed).
*/
u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
/*
* Transfer capabilities (SIP)
*/
struct sym_tinfo tinfo;
/*
* Keep track of the CCB used for the negotiation in order
* to ensure that only 1 negotiation is queued at a time.
*/
ccb_p nego_cp; /* CCB used for the nego */
/*
* Set when we want to reset the device.
*/
u_char to_reset;
/*
* Other user settable limits and options.
* These limits are read from the NVRAM if present.
*/
u_char usrflags;
u_short usrtags;
};
/*
* Global LCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the LCB to a global
* address after selection.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_lcbh {
/*
* SCRIPTS address jumped by SCRIPTS on reselection.
* For not probed logical units, this address points to
* SCRIPTS that deal with bad LU handling (must be at
* offset zero of the LCB for that reason).
*/
/*0*/ u32 resel_sa;
/*
* Task (bus address of a CCB) read from SCRIPTS that points
* to the unique ITL nexus allowed to be disconnected.
*/
u32 itl_task_sa;
/*
* Task table bus address (read from SCRIPTS).
*/
u32 itlq_tbl_sa;
};
/*
* Logical Unit Control Block
*/
struct sym_lcb {
/*
* TCB header.
* Assumed at offset 0.
*/
/*0*/ struct sym_lcbh head;
/*
* Task table read from SCRIPTS that contains pointers to
* ITLQ nexuses. The bus address read from SCRIPTS is
* inside the header.
*/
u32 *itlq_tbl; /* Kernel virtual address */
/*
* Busy CCBs management.
*/
u_short busy_itlq; /* Number of busy tagged CCBs */
u_short busy_itl; /* Number of busy untagged CCBs */
/*
* Circular tag allocation buffer.
*/
u_short ia_tag; /* Tag allocation index */
u_short if_tag; /* Tag release index */
u_char *cb_tags; /* Circular tags buffer */
/*
* Set when we want to clear all tasks.
*/
u_char to_clear;
/*
* Capabilities.
*/
u_char user_flags;
u_char current_flags;
};
/*
* Action from SCRIPTS on a task.
* Is part of the CCB, but is also used separately to plug
* error handling action to perform from SCRIPTS.
*/
struct sym_actscr {
u32 start; /* Jumped by SCRIPTS after selection */
u32 restart; /* Jumped by SCRIPTS on relection */
};
/*
* Phase mismatch context.
*
* It is part of the CCB and is used as parameters for the
* DATA pointer. We need two contexts to handle correctly the
* SAVED DATA POINTER.
*/
struct sym_pmc {
struct sym_tblmove sg; /* Updated interrupted SG block */
u32 ret; /* SCRIPT return address */
};
/*
* LUN control block lookup.
* We use a direct pointer for LUN #0, and a table of
* pointers which is only allocated for devices that support
* LUN(s) > 0.
*/
#if SYM_CONF_MAX_LUN <= 1
#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
#else
#define sym_lp(np, tp, lun) \
(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
#endif
/*
* Status are used by the host and the script processor.
*
* The last four bytes (status[4]) are copied to the
* scratchb register (declared as scr0..scr3) just after the
* select/reselect, and copied back just after disconnecting.
* Inside the script the XX_REG are used.
*/
/*
* Last four bytes (script)
*/
#define QU_REG scr0
#define HS_REG scr1
#define HS_PRT nc_scr1
#define SS_REG scr2
#define SS_PRT nc_scr2
#define HF_REG scr3
#define HF_PRT nc_scr3
/*
* Last four bytes (host)
*/
#define actualquirks phys.head.status[0]
#define host_status phys.head.status[1]
#define ssss_status phys.head.status[2]
#define host_flags phys.head.status[3]
/*
* Host flags
*/
#define HF_IN_PM0 1u
#define HF_IN_PM1 (1u<<1)
#define HF_ACT_PM (1u<<2)
#define HF_DP_SAVED (1u<<3)
#define HF_SENSE (1u<<4)
#define HF_EXT_ERR (1u<<5)
#define HF_DATA_IN (1u<<6)
#ifdef SYM_CONF_IARB_SUPPORT
#define HF_HINT_IARB (1u<<7)
#endif
/*
* Global CCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the ccb to a global
* address after selection (or reselection) and copied back
* before disconnect.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_ccbh {
/*
* Start and restart SCRIPTS addresses (must be at 0).
*/
/*0*/ struct sym_actscr go;
/*
* SCRIPTS jump address that deal with data pointers.
* 'savep' points to the position in the script responsible
* for the actual transfer of data.
* It's written on reception of a SAVE_DATA_POINTER message.
*/
u32 savep; /* Jump address to saved data pointer */
u32 lastp; /* SCRIPTS address at end of data */
u32 goalp; /* Not accessed for now from SCRIPTS */
/*
* Status fields.
*/
u8 status[4];
};
/*
* Data Structure Block
*
* During execution of a ccb by the script processor, the
* DSA (data structure address) register points to this
* substructure of the ccb.
*/
struct sym_dsb {
/*
* CCB header.
* Also assumed at offset 0 of the sym_ccb structure.
*/
/*0*/ struct sym_ccbh head;
/*
* Phase mismatch contexts.
* We need two to handle correctly the SAVED DATA POINTER.
* MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
* for address calculation from SCRIPTS.
*/
struct sym_pmc pm0;
struct sym_pmc pm1;
/*
* Table data for Script
*/
struct sym_tblsel select;
struct sym_tblmove smsg;
struct sym_tblmove smsg_ext;
struct sym_tblmove cmd;
struct sym_tblmove sense;
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
struct sym_tblmove wresid;
struct sym_tblmove data [SYM_CONF_MAX_SG];
};
/*
* Our Command Control Block
*/
struct sym_ccb {
/*
* This is the data structure which is pointed by the DSA
* register when it is executed by the script processor.
* It must be the first entry.
*/
struct sym_dsb phys;
/*
* Pointer to CAM ccb and related stuff.
*/
struct callout ch; /* callout handle */
union ccb *cam_ccb; /* CAM scsiio ccb */
u8 cdb_buf[16]; /* Copy of CDB */
u8 *sns_bbuf; /* Bounce buffer for sense data */
#define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data)
int data_len; /* Total data length */
int segments; /* Number of SG segments */
/*
* Miscellaneous status'.
*/
u_char nego_status; /* Negotiation status */
u_char xerr_status; /* Extended error flags */
u32 extra_bytes; /* Extraneous bytes transferred */
/*
* Message areas.
* We prepare a message to be sent after selection.
* We may use a second one if the command is rescheduled
* due to CHECK_CONDITION or COMMAND TERMINATED.
* Contents are IDENTIFY and SIMPLE_TAG.
* While negotiating sync or wide transfer,
* a SDTR or WDTR message is appended.
*/
u_char scsi_smsg [12];
u_char scsi_smsg2[12];
/*
* Auto request sense related fields.
*/
u_char sensecmd[6]; /* Request Sense command */
u_char sv_scsi_status; /* Saved SCSI status */
u_char sv_xerr_status; /* Saved extended status */
int sv_resid; /* Saved residual */
/*
* Map for the DMA of user data.
*/
void *arg; /* Argument for some callback */
bus_dmamap_t dmamap; /* DMA map for user data */
u_char dmamapped;
#define SYM_DMA_NONE 0
#define SYM_DMA_READ 1
#define SYM_DMA_WRITE 2
/*
* Other fields.
*/
u32 ccb_ba; /* BUS address of this CCB */
u_short tag; /* Tag for this transfer */
/* NO_TAG means no tag */
u_char target;
u_char lun;
ccb_p link_ccbh; /* Host adapter CCB hash chain */
SYM_QUEHEAD
link_ccbq; /* Link to free/busy CCB queue */
u32 startp; /* Initial data pointer */
int ext_sg; /* Extreme data pointer, used */
int ext_ofs; /* to calculate the residual. */
u_char to_abort; /* Want this IO to be aborted */
};
#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
/*
* Host Control Block
*/
struct sym_hcb {
struct mtx mtx;
/*
* Global headers.
* Due to poorness of addressing capabilities, earlier
* chips (810, 815, 825) copy part of the data structures
* (CCB, TCB and LCB) in fixed areas.
*/
#ifdef SYM_CONF_GENERIC_SUPPORT
struct sym_ccbh ccb_head;
struct sym_tcbh tcb_head;
struct sym_lcbh lcb_head;
#endif
/*
* Idle task and invalid task actions and
* their bus addresses.
*/
struct sym_actscr idletask, notask, bad_itl, bad_itlq;
vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
/*
* Dummy lun table to protect us against target
* returning bad lun number on reselection.
*/
u32 *badluntbl; /* Table physical address */
u32 badlun_sa; /* SCRIPT handler BUS address */
/*
* Bus address of this host control block.
*/
u32 hcb_ba;
/*
* Bit 32-63 of the on-chip RAM bus address in LE format.
* The START_RAM64 script loads the MMRS and MMWS from this
* field.
*/
u32 scr_ram_seg;
/*
* Chip and controller indentification.
*/
device_t device;
/*
* Initial value of some IO register bits.
* These values are assumed to have been set by BIOS, and may
* be used to probe adapter implementation differences.
*/
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
sv_stest1;
/*
* Actual initial value of IO register bits used by the
* driver. They are loaded at initialisation according to
* features that are to be enabled/disabled.
*/
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
/*
* Target data.
*/
#ifdef __amd64__
struct sym_tcb *target;
#else
struct sym_tcb target[SYM_CONF_MAX_TARGET];
#endif
/*
* Target control block bus address array used by the SCRIPT
* on reselection.
*/
u32 *targtbl;
u32 targtbl_ba;
/*
* CAM SIM information for this instance.
*/
struct cam_sim *sim;
struct cam_path *path;
/*
* Allocated hardware resources.
*/
struct resource *irq_res;
struct resource *io_res;
struct resource *mmio_res;
struct resource *ram_res;
int ram_id;
void *intr;
/*
* Bus stuff.
*
* My understanding of PCI is that all agents must share the
* same addressing range and model.
* But some hardware architecture guys provide complex and
* brain-deaded stuff that makes shit.
* This driver only support PCI compliant implementations and
* deals with part of the BUS stuff complexity only to fit O/S
* requirements.
*/
/*
* DMA stuff.
*/
bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */
bus_dma_tag_t data_dmat; /* DMA tag for user data */
/*
* BUS addresses of the chip
*/
vm_offset_t mmio_ba; /* MMIO BUS address */
int mmio_ws; /* MMIO Window size */
vm_offset_t ram_ba; /* RAM BUS address */
int ram_ws; /* RAM window size */
/*
* SCRIPTS virtual and physical bus addresses.
* 'script' is loaded in the on-chip RAM if present.
* 'scripth' stays in main memory for all chips except the
* 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
*/
u_char *scripta0; /* Copies of script and scripth */
u_char *scriptb0; /* Copies of script and scripth */
vm_offset_t scripta_ba; /* Actual script and scripth */
vm_offset_t scriptb_ba; /* bus addresses. */
vm_offset_t scriptb0_ba;
u_short scripta_sz; /* Actual size of script A */
u_short scriptb_sz; /* Actual size of script B */
/*
* Bus addresses, setup and patch methods for
* the selected firmware.
*/
struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
void (*fw_setup)(hcb_p np, const struct sym_fw *fw);
void (*fw_patch)(hcb_p np);
const char *fw_name;
/*
* General controller parameters and configuration.
*/
u_short device_id; /* PCI device id */
u_char revision_id; /* PCI device revision id */
u_int features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
u_char maxwide; /* Maximum transfer width */
u_char minsync; /* Min sync period factor (ST) */
u_char maxsync; /* Max sync period factor (ST) */
u_char maxoffs; /* Max scsi offset (ST) */
u_char minsync_dt; /* Min sync period factor (DT) */
u_char maxsync_dt; /* Max sync period factor (DT) */
u_char maxoffs_dt; /* Max scsi offset (DT) */
u_char multiplier; /* Clock multiplier (1,2,4) */
u_char clock_divn; /* Number of clock divisors */
u32 clock_khz; /* SCSI clock frequency in KHz */
u32 pciclk_khz; /* Estimated PCI clock in KHz */
/*
* Start queue management.
* It is filled up by the host processor and accessed by the
* SCRIPTS processor in order to start SCSI commands.
*/
volatile /* Prevent code optimizations */
u32 *squeue; /* Start queue virtual address */
u32 squeue_ba; /* Start queue BUS address */
u_short squeueput; /* Next free slot of the queue */
u_short actccbs; /* Number of allocated CCBs */
/*
* Command completion queue.
* It is the same size as the start queue to avoid overflow.
*/
u_short dqueueget; /* Next position to scan */
volatile /* Prevent code optimizations */
u32 *dqueue; /* Completion (done) queue */
u32 dqueue_ba; /* Done queue BUS address */
/*
* Miscellaneous buffers accessed by the scripts-processor.
* They shall be DWORD aligned, because they may be read or
* written with a script command.
*/
u_char msgout[8]; /* Buffer for MESSAGE OUT */
u_char msgin [8]; /* Buffer for MESSAGE IN */
u32 lastmsg; /* Last SCSI message sent */
u_char scratch; /* Scratch for SCSI receive */
/*
* Miscellaneous configuration and status parameters.
*/
u_char usrflags; /* Miscellaneous user flags */
u_char scsi_mode; /* Current SCSI BUS mode */
u_char verbose; /* Verbosity for this controller*/
u32 cache; /* Used for cache test at init. */
/*
* CCB lists and queue.
*/
ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
/*
* During error handling and/or recovery,
* active CCBs that are to be completed with
* error or requeued are moved from the busy_ccbq
* to the comp_ccbq prior to completion.
*/
SYM_QUEHEAD comp_ccbq;
/*
* CAM CCB pending queue.
*/
SYM_QUEHEAD cam_ccbq;
/*
* IMMEDIATE ARBITRATION (IARB) control.
*
* We keep track in 'last_cp' of the last CCB that has been
* queued to the SCRIPTS processor and clear 'last_cp' when
* this CCB completes. If last_cp is not zero at the moment
* we queue a new CCB, we set a flag in 'last_cp' that is
* used by the SCRIPTS as a hint for setting IARB.
* We donnot set more than 'iarb_max' consecutive hints for
* IARB in order to leave devices a chance to reselect.
* By the way, any non zero value of 'iarb_max' is unfair. :)
*/
#ifdef SYM_CONF_IARB_SUPPORT
u_short iarb_max; /* Max. # consecutive IARB hints*/
u_short iarb_count; /* Actual # of these hints */
ccb_p last_cp;
#endif
/*
* Command abort handling.
* We need to synchronize tightly with the SCRIPTS
* processor in order to handle things correctly.
*/
u_char abrt_msg[4]; /* Message to send buffer */
struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
struct sym_tblsel abrt_sel; /* Sync params for selection */
u_char istat_sem; /* Tells the chip to stop (SEM) */
};
#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
/*
* Return the name of the controller.
*/
static __inline const char *sym_name(hcb_p np)
{
return device_get_nameunit(np->device);
}
/*--------------------------------------------------------------------------*/
/*------------------------------ FIRMWARES ---------------------------------*/
/*--------------------------------------------------------------------------*/
/*
* This stuff will be moved to a separate source file when
* the driver will be broken into several source modules.
*/
/*
* Macros used for all firmwares.
*/
#define SYM_GEN_A(s, label) ((short) offsetof(s, label)),
#define SYM_GEN_B(s, label) ((short) offsetof(s, label)),
#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
#ifdef SYM_CONF_GENERIC_SUPPORT
/*
* Allocate firmware #1 script area.
*/
#define SYM_FWA_SCR sym_fw1a_scr
#define SYM_FWB_SCR sym_fw1b_scr
#include <dev/sym/sym_fw1.h>
static const struct sym_fwa_ofs sym_fw1a_ofs = {
SYM_GEN_FW_A(struct SYM_FWA_SCR)
};
static const struct sym_fwb_ofs sym_fw1b_ofs = {
SYM_GEN_FW_B(struct SYM_FWB_SCR)
};
#undef SYM_FWA_SCR
#undef SYM_FWB_SCR
#endif /* SYM_CONF_GENERIC_SUPPORT */
/*
* Allocate firmware #2 script area.
*/
#define SYM_FWA_SCR sym_fw2a_scr
#define SYM_FWB_SCR sym_fw2b_scr
#include <dev/sym/sym_fw2.h>
static const struct sym_fwa_ofs sym_fw2a_ofs = {
SYM_GEN_FW_A(struct SYM_FWA_SCR)
};
static const struct sym_fwb_ofs sym_fw2b_ofs = {
SYM_GEN_FW_B(struct SYM_FWB_SCR)
SYM_GEN_B(struct SYM_FWB_SCR, start64)
SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
};
#undef SYM_FWA_SCR
#undef SYM_FWB_SCR
#undef SYM_GEN_A
#undef SYM_GEN_B
#undef PADDR_A
#undef PADDR_B
#ifdef SYM_CONF_GENERIC_SUPPORT
/*
* Patch routine for firmware #1.
*/
static void
sym_fw1_patch(hcb_p np)
{
struct sym_fw1a_scr *scripta0;
struct sym_fw1b_scr *scriptb0;
scripta0 = (struct sym_fw1a_scr *) np->scripta0;
scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
/*
* Remove LED support if not needed.
*/
if (!(np->features & FE_LED0)) {
scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
}
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If user does not want to use IMMEDIATE ARBITRATION
* when we are reselected while attempting to arbitrate,
* patch the SCRIPTS accordingly with a SCRIPT NO_OP.
*/
if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
#endif
/*
* Patch some data in SCRIPTS.
* - start and done queue initial bus address.
* - target bus address table bus address.
*/
scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
}
#endif /* SYM_CONF_GENERIC_SUPPORT */
/*
* Patch routine for firmware #2.
*/
static void
sym_fw2_patch(hcb_p np)
{
struct sym_fw2a_scr *scripta0;
struct sym_fw2b_scr *scriptb0;
scripta0 = (struct sym_fw2a_scr *) np->scripta0;
scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
/*
* Remove LED support if not needed.
*/
if (!(np->features & FE_LED0)) {
scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
}
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If user does not want to use IMMEDIATE ARBITRATION
* when we are reselected while attempting to arbitrate,
* patch the SCRIPTS accordingly with a SCRIPT NO_OP.
*/
if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
#endif
/*
* Patch some variable in SCRIPTS.
* - start and done queue initial bus address.
* - target bus address table bus address.
*/
scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
/*
* Remove the load of SCNTL4 on reselection if not a C10.
*/
if (!(np->features & FE_C10)) {
scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
scripta0->resel_scntl4[1] = cpu_to_scr(0);
}
/*
* Remove a couple of work-arounds specific to C1010 if
* they are not desirable. See `sym_fw2.h' for more details.
*/
if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
np->revision_id < 0x1 &&
np->pciclk_khz < 60000)) {
scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
scripta0->datao_phase[1] = cpu_to_scr(0);
}
if (!(np->device_id == PCI_ID_LSI53C1010 &&
/* np->revision_id < 0xff */ 1)) {
scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
scripta0->sel_done[1] = cpu_to_scr(0);
}
/*
* Patch some other variables in SCRIPTS.
* These ones are loaded by the SCRIPTS processor.
*/
scriptb0->pm0_data_addr[0] =
cpu_to_scr(np->scripta_ba +
offsetof(struct sym_fw2a_scr, pm0_data));
scriptb0->pm1_data_addr[0] =
cpu_to_scr(np->scripta_ba +
offsetof(struct sym_fw2a_scr, pm1_data));
}
/*
* Fill the data area in scripts.
* To be done for all firmwares.
*/
static void
sym_fw_fill_data (u32 *in, u32 *out)
{
int i;
for (i = 0; i < SYM_CONF_MAX_SG; i++) {
*in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN;
*in++ = offsetof (struct sym_dsb, data[i]);
*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
*out++ = offsetof (struct sym_dsb, data[i]);
}
}
/*
* Setup useful script bus addresses.
* To be done for all firmwares.
*/
static void
sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
{
u32 *pa;
const u_short *po;
int i;
/*
* Build the bus address table for script A
* from the script A offset table.
*/
po = (const u_short *) fw->a_ofs;
pa = (u32 *) &np->fwa_bas;
for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
pa[i] = np->scripta_ba + po[i];
/*
* Same for script B.
*/
po = (const u_short *) fw->b_ofs;
pa = (u32 *) &np->fwb_bas;
for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
pa[i] = np->scriptb_ba + po[i];
}
#ifdef SYM_CONF_GENERIC_SUPPORT
/*
* Setup routine for firmware #1.
*/
static void
sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
{
struct sym_fw1a_scr *scripta0;
scripta0 = (struct sym_fw1a_scr *) np->scripta0;
/*
* Fill variable parts in scripts.
*/
sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
/*
* Setup bus addresses used from the C code..
*/
sym_fw_setup_bus_addresses(np, fw);
}
#endif /* SYM_CONF_GENERIC_SUPPORT */
/*
* Setup routine for firmware #2.
*/
static void
sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
{
struct sym_fw2a_scr *scripta0;
scripta0 = (struct sym_fw2a_scr *) np->scripta0;
/*
* Fill variable parts in scripts.
*/
sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
/*
* Setup bus addresses used from the C code..
*/
sym_fw_setup_bus_addresses(np, fw);
}
/*
* Allocate firmware descriptors.
*/
#ifdef SYM_CONF_GENERIC_SUPPORT
static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
#endif /* SYM_CONF_GENERIC_SUPPORT */
static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
/*
* Find the most appropriate firmware for a chip.
*/
static const struct sym_fw *
sym_find_firmware(const struct sym_pci_chip *chip)
{
if (chip->features & FE_LDSTR)
return &sym_fw2;
#ifdef SYM_CONF_GENERIC_SUPPORT
else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
return &sym_fw1;
#endif
else
return NULL;
}
/*
* Bind a script to physical addresses.
*/
static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
{
u32 opcode, new, old, tmp1, tmp2;
u32 *end, *cur;
int relocs;
cur = start;
end = start + len/4;
while (cur < end) {
opcode = *cur;
/*
* If we forget to change the length
* in scripts, a field will be
* padded with 0. This is an illegal
* command.
*/
if (opcode == 0) {
printf ("%s: ERROR0 IN SCRIPT at %d.\n",
sym_name(np), (int) (cur-start));
MDELAY (10000);
++cur;
continue;
};
/*
* We use the bogus value 0xf00ff00f ;-)
* to reserve data area in SCRIPTS.
*/
if (opcode == SCR_DATA_ZERO) {
*cur++ = 0;
continue;
}
if (DEBUG_FLAGS & DEBUG_SCRIPT)
printf ("%d: <%x>\n", (int) (cur-start),
(unsigned)opcode);
/*
* We don't have to decode ALL commands
*/
switch (opcode >> 28) {
case 0xf:
/*
* LOAD / STORE DSA relative, don't relocate.
*/
relocs = 0;
break;
case 0xe:
/*
* LOAD / STORE absolute.
*/
relocs = 1;
break;
case 0xc:
/*
* COPY has TWO arguments.
*/
relocs = 2;
tmp1 = cur[1];
tmp2 = cur[2];
if ((tmp1 ^ tmp2) & 3) {
printf ("%s: ERROR1 IN SCRIPT at %d.\n",
sym_name(np), (int) (cur-start));
MDELAY (10000);
}
/*
* If PREFETCH feature not enabled, remove
* the NO FLUSH bit if present.
*/
if ((opcode & SCR_NO_FLUSH) &&
!(np->features & FE_PFEN)) {
opcode = (opcode & ~SCR_NO_FLUSH);
}
break;
case 0x0:
/*
* MOVE/CHMOV (absolute address)
*/
if (!(np->features & FE_WIDE))
opcode = (opcode | OPC_MOVE);
relocs = 1;
break;
case 0x1:
/*
* MOVE/CHMOV (table indirect)
*/
if (!(np->features & FE_WIDE))
opcode = (opcode | OPC_MOVE);
relocs = 0;
break;
case 0x8:
/*
* JUMP / CALL
* dont't relocate if relative :-)
*/
if (opcode & 0x00800000)
relocs = 0;
else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
relocs = 2;
else
relocs = 1;
break;
case 0x4:
case 0x5:
case 0x6:
case 0x7:
relocs = 1;
break;
default:
relocs = 0;
break;
};
/*
* Scriptify:) the opcode.
*/
*cur++ = cpu_to_scr(opcode);
/*
* If no relocation, assume 1 argument
* and just scriptize:) it.
*/
if (!relocs) {
*cur = cpu_to_scr(*cur);
++cur;
continue;
}
/*
* Otherwise performs all needed relocations.
*/
while (relocs--) {
old = *cur;
switch (old & RELOC_MASK) {
case RELOC_REGISTER:
new = (old & ~RELOC_MASK) + np->mmio_ba;
break;
case RELOC_LABEL_A:
new = (old & ~RELOC_MASK) + np->scripta_ba;
break;
case RELOC_LABEL_B:
new = (old & ~RELOC_MASK) + np->scriptb_ba;
break;
case RELOC_SOFTC:
new = (old & ~RELOC_MASK) + np->hcb_ba;
break;
case 0:
/*
* Don't relocate a 0 address.
* They are mostly used for patched or
* script self-modified areas.
*/
if (old == 0) {
new = old;
break;
}
/* fall through */
default:
new = 0;
panic("sym_fw_bind_script: "
"weird relocation %x\n", old);
break;
}
*cur++ = cpu_to_scr(new);
}
};
}
2007-03-05 21:21:03 +00:00
/*---------------------------------------------------------------------------*/
/*--------------------------- END OF FIRMWARES -----------------------------*/
/*---------------------------------------------------------------------------*/
/*
* Function prototypes.
*/
static void sym_save_initial_setting (hcb_p np);
static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
static void sym_put_start_queue (hcb_p np, ccb_p cp);
static void sym_chip_reset (hcb_p np);
static void sym_soft_reset (hcb_p np);
static void sym_start_reset (hcb_p np);
static int sym_reset_scsi_bus (hcb_p np, int enab_int);
static int sym_wakeup_done (hcb_p np);
static void sym_flush_busy_queue (hcb_p np, int cam_status);
static void sym_flush_comp_queue (hcb_p np, int cam_status);
static void sym_init (hcb_p np, int reason);
static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
u_char *fakp);
static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
u_char div, u_char fak);
static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak);
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak);
static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
static void sym_intr (void *arg);
static void sym_poll (struct cam_sim *sim);
static void sym_recover_scsi_int (hcb_p np, u_char hsts);
static void sym_int_sto (hcb_p np);
static void sym_int_udc (hcb_p np);
static void sym_int_sbmc (hcb_p np);
static void sym_int_par (hcb_p np, u_short sist);
static void sym_int_ma (hcb_p np);
static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
int task);
static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
static void sym_sir_task_recovery (hcb_p np, int num);
static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
static int sym_compute_residual (hcb_p np, ccb_p cp);
static int sym_show_msg (u_char * msg);
static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_int_sir (hcb_p np);
static void sym_free_ccb (hcb_p np, ccb_p cp);
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
static ccb_p sym_alloc_ccb (hcb_p np);
static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
static int sym_snooptest (hcb_p np);
static void sym_selectclock(hcb_p np, u_char scntl3);
static void sym_getclock (hcb_p np, int mult);
static int sym_getpciclock (hcb_p np);
static void sym_complete_ok (hcb_p np, ccb_p cp);
static void sym_complete_error (hcb_p np, ccb_p cp);
static void sym_callout (void *arg);
static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
static void sym_reset_dev (hcb_p np, union ccb *ccb);
static void sym_action (struct cam_sim *sim, union ccb *ccb);
static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
ccb_p cp);
static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
bus_dma_segment_t *psegs, int nsegs);
static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
bus_dma_segment_t *psegs, int nsegs);
static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
struct ccb_trans_settings *cts);
static void sym_update_dflags(hcb_p np, u_char *flags,
struct ccb_trans_settings *cts);
static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
static int sym_pci_probe (device_t dev);
static int sym_pci_attach (device_t dev);
static void sym_pci_free (hcb_p np);
static int sym_cam_attach (hcb_p np);
static void sym_cam_free (hcb_p np);
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
/*
* Print something which allows to retrieve the controller type,
* unit, target, lun concerned by a kernel message.
*/
static void PRINT_TARGET (hcb_p np, int target)
{
printf ("%s:%d:", sym_name(np), target);
}
static void PRINT_LUN(hcb_p np, int target, int lun)
{
printf ("%s:%d:%d:", sym_name(np), target, lun);
}
static void PRINT_ADDR (ccb_p cp)
{
if (cp && cp->cam_ccb)
xpt_print_path(cp->cam_ccb->ccb_h.path);
}
/*
* Take into account this ccb in the freeze count.
*/
static void sym_freeze_cam_ccb(union ccb *ccb)
{
if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, 1);
}
}
}
/*
* Set the status field of a CAM CCB.
*/
static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
/*
* Get the status field of a CAM CCB.
*/
static __inline int sym_get_cam_status(union ccb *ccb)
{
return ccb->ccb_h.status & CAM_STATUS_MASK;
}
/*
* Enqueue a CAM CCB.
*/
static void sym_enqueue_cam_ccb(ccb_p cp)
{
hcb_p np;
union ccb *ccb;
ccb = cp->cam_ccb;
np = (hcb_p) cp->arg;
assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
ccb->ccb_h.status = CAM_REQ_INPROG;
callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
(caddr_t) ccb);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
ccb->ccb_h.sym_hcb_ptr = np;
sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
}
/*
* Complete a pending CAM CCB.
*/
static void _sym_xpt_done(hcb_p np, union ccb *ccb)
{
SYM_LOCK_ASSERT(MA_OWNED);
KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
("%s: status=CAM_SIM_QUEUED", __func__));
if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
sym_freeze_cam_ccb(ccb);
xpt_done(ccb);
}
static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
{
SYM_LOCK_ASSERT(MA_OWNED);
if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
callout_stop(&cp->ch);
sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.sym_hcb_ptr = NULL;
}
_sym_xpt_done(np, ccb);
}
static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
{
SYM_LOCK_ASSERT(MA_OWNED);
sym_set_cam_status(ccb, cam_status);
_sym_xpt_done(np, ccb);
}
/*
* SYMBIOS chip clock divisor table.
*
* Divisors are multiplied by 10,000,000 in order to make
* calculations more simple.
*/
#define _5M 5000000
static const u32 div_10M[] =
{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
/*
* SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
* 128 transfers. All chips support at least 16 transfers
* bursts. The 825A, 875 and 895 chips support bursts of up
* to 128 transfers and the 895A and 896 support bursts of up
* to 64 transfers. All other chips support up to 16
* transfers bursts.
*
* For PCI 32 bit data transfers each transfer is a DWORD.
* It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
*
* We use log base 2 (burst length) as internal code, with
* value 0 meaning "burst disabled".
*/
/*
* Burst length from burst code.
*/
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
/*
* Burst code from io register bits.
*/
#define burst_code(dmode, ctest4, ctest5) \
(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
/*
* Set initial io register bits from burst code.
*/
static __inline void sym_init_burst(hcb_p np, u_char bc)
{
np->rv_ctest4 &= ~0x80;
np->rv_dmode &= ~(0x3 << 6);
np->rv_ctest5 &= ~0x4;
if (!bc) {
np->rv_ctest4 |= 0x80;
}
else {
--bc;
np->rv_dmode |= ((bc & 0x3) << 6);
np->rv_ctest5 |= (bc & 0x4);
}
}
/*
* Print out the list of targets that have some flag disabled by user.
*/
static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
{
int cnt;
int i;
for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
if (i == np->myaddr)
continue;
if (np->target[i].usrflags & mask) {
if (!cnt++)
printf("%s: %s disabled for targets",
sym_name(np), msg);
printf(" %d", i);
}
}
if (cnt)
printf(".\n");
}
/*
* Save initial settings of some IO registers.
* Assumed to have been set by BIOS.
* We cannot reset the chip prior to reading the
* IO registers, since informations will be lost.
* Since the SCRIPTS processor may be running, this
* is not safe on paper, but it seems to work quite
* well. :)
*/
static void sym_save_initial_setting (hcb_p np)
{
np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
np->sv_scntl3 = INB(nc_scntl3) & 0x07;
np->sv_dmode = INB(nc_dmode) & 0xce;
np->sv_dcntl = INB(nc_dcntl) & 0xa8;
np->sv_ctest3 = INB(nc_ctest3) & 0x01;
np->sv_ctest4 = INB(nc_ctest4) & 0x80;
np->sv_gpcntl = INB(nc_gpcntl);
np->sv_stest1 = INB(nc_stest1);
np->sv_stest2 = INB(nc_stest2) & 0x20;
np->sv_stest4 = INB(nc_stest4);
if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
np->sv_scntl4 = INB(nc_scntl4);
np->sv_ctest5 = INB(nc_ctest5) & 0x04;
}
else
np->sv_ctest5 = INB(nc_ctest5) & 0x24;
}
/*
* Prepare io register values used by sym_init() according
* to selected and supported features.
*/
static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
{
u_char burst_max;
u32 period;
int i;
/*
* Wide ?
*/
np->maxwide = (np->features & FE_WIDE)? 1 : 0;
/*
* Get the frequency of the chip's clock.
*/
if (np->features & FE_QUAD)
np->multiplier = 4;
else if (np->features & FE_DBLR)
np->multiplier = 2;
else
np->multiplier = 1;
np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
np->clock_khz *= np->multiplier;
if (np->clock_khz != 40000)
sym_getclock(np, np->multiplier);
/*
* Divisor to be used for async (timer pre-scaler).
*/
i = np->clock_divn - 1;
while (--i >= 0) {
if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
++i;
break;
}
}
np->rv_scntl3 = i+1;
/*
* The C1010 uses hardwired divisors for async.
* So, we just throw away, the async. divisor.:-)
*/
if (np->features & FE_C10)
np->rv_scntl3 = 0;
/*
* Minimum synchronous period factor supported by the chip.
* Btw, 'period' is in tenths of nanoseconds.
*/
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
if (period <= 250) np->minsync = 10;
else if (period <= 303) np->minsync = 11;
else if (period <= 500) np->minsync = 12;
else np->minsync = (period + 40 - 1) / 40;
/*
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
*/
if (np->minsync < 25 &&
!(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
np->minsync = 25;
else if (np->minsync < 12 &&
!(np->features & (FE_ULTRA2|FE_ULTRA3)))
np->minsync = 12;
/*
* Maximum synchronous period factor supported by the chip.
*/
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
np->maxsync = period > 2540 ? 254 : period / 10;
/*
* If chip is a C1010, guess the sync limits in DT mode.
*/
if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
if (np->clock_khz == 160000) {
np->minsync_dt = 9;
np->maxsync_dt = 50;
np->maxoffs_dt = 62;
}
}
/*
* 64 bit addressing (895A/896/1010) ?
*/
if (np->features & FE_DAC)
#ifdef __LP64__
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
#else
np->rv_ccntl1 |= (DDAC);
#endif
/*
* Phase mismatch handled by SCRIPTS (895A/896/1010) ?
*/
if (np->features & FE_NOPM)
np->rv_ccntl0 |= (ENPMJ);
/*
* C1010 Errata.
* In dual channel mode, contention occurs if internal cycles
* are used. Disable internal cycles.
*/
if (np->device_id == PCI_ID_LSI53C1010 &&
np->revision_id < 0x2)
np->rv_ccntl0 |= DILS;
/*
* Select burst length (dwords)
*/
burst_max = SYM_SETUP_BURST_ORDER;
if (burst_max == 255)
burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
np->sv_ctest5);
if (burst_max > 7)
burst_max = 7;
if (burst_max > np->maxburst)
burst_max = np->maxburst;
/*
* DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
* This chip and the 860 Rev 1 may wrongly use PCI cache line
* based transactions on LOAD/STORE instructions. So we have
* to prevent these chips from using such PCI transactions in
* this driver. The generic ncr driver that does not use
* LOAD/STORE instructions does not need this work-around.
*/
if ((np->device_id == PCI_ID_SYM53C810 &&
np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
(np->device_id == PCI_ID_SYM53C860 &&
np->revision_id <= 0x1))
np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
/*
* Select all supported special features.
* If we are using on-board RAM for scripts, prefetch (PFEN)
* does not help, but burst op fetch (BOF) does.
* Disabling PFEN makes sure BOF will be used.
*/
if (np->features & FE_ERL)
np->rv_dmode |= ERL; /* Enable Read Line */
if (np->features & FE_BOF)
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
if (np->features & FE_ERMP)
np->rv_dmode |= ERMP; /* Enable Read Multiple */
#if 1
if ((np->features & FE_PFEN) && !np->ram_ba)
#else
if (np->features & FE_PFEN)
#endif
np->rv_dcntl |= PFEN; /* Prefetch Enable */
if (np->features & FE_CLSE)
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
if (np->features & FE_WRIE)
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
if (np->features & FE_DFS)
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
/*
* Select some other
*/
if (SYM_SETUP_PCI_PARITY)
np->rv_ctest4 |= MPEE; /* Master parity checking */
if (SYM_SETUP_SCSI_PARITY)
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
/*
* Get parity checking, host ID and verbose mode from NVRAM
*/
np->myaddr = 255;
sym_nvram_setup_host (np, nvram);
#ifdef __sparc64__
np->myaddr = OF_getscsinitid(np->device);
#endif
/*
* Get SCSI addr of host adapter (set by bios?).
*/
if (np->myaddr == 255) {
np->myaddr = INB(nc_scid) & 0x07;
if (!np->myaddr)
np->myaddr = SYM_SETUP_HOST_ID;
}
/*
* Prepare initial io register bits for burst length
*/
sym_init_burst(np, burst_max);
/*
* Set SCSI BUS mode.
* - LVD capable chips (895/895A/896/1010) report the
* current BUS mode through the STEST4 IO register.
* - For previous generation chips (825/825A/875),
* user has to tell us how to check against HVD,
* since a 100% safe algorithm is not possible.
*/
np->scsi_mode = SMODE_SE;
if (np->features & (FE_ULTRA2|FE_ULTRA3))
np->scsi_mode = (np->sv_stest4 & SMODE);
else if (np->features & FE_DIFF) {
if (SYM_SETUP_SCSI_DIFF == 1) {
if (np->sv_scntl3) {
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
}
else if (nvram->type == SYM_SYMBIOS_NVRAM) {
if (!(INB(nc_gpreg) & 0x08))
np->scsi_mode = SMODE_HVD;
}
}
else if (SYM_SETUP_SCSI_DIFF == 2)
np->scsi_mode = SMODE_HVD;
}
if (np->scsi_mode == SMODE_HVD)
np->rv_stest2 |= 0x20;
/*
* Set LED support from SCRIPTS.
* Ignore this feature for boards known to use a
* specific GPIO wiring and for the 895A, 896
* and 1010 that drive the LED directly.
*/
if ((SYM_SETUP_SCSI_LED ||
(nvram->type == SYM_SYMBIOS_NVRAM ||
(nvram->type == SYM_TEKRAM_NVRAM &&
np->device_id == PCI_ID_SYM53C895))) &&
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
np->features |= FE_LED0;
/*
* Set irq mode.
*/
switch(SYM_SETUP_IRQ_MODE & 3) {
case 2:
np->rv_dcntl |= IRQM;
break;
case 1:
np->rv_dcntl |= (np->sv_dcntl & IRQM);
break;
default:
break;
}
/*
* Configure targets according to driver setup.
* If NVRAM present get targets setup from NVRAM.
*/
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
tcb_p tp = &np->target[i];
tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2;
tp->tinfo.user.period = np->minsync;
if (np->features & FE_ULTRA3)
tp->tinfo.user.period = np->minsync_dt;
tp->tinfo.user.offset = np->maxoffs;
tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
tp->usrtags = SYM_SETUP_MAX_TAG;
sym_nvram_setup_target (np, i, nvram);
/*
* For now, guess PPR/DT support from the period
* and BUS width.
*/
if (np->features & FE_ULTRA3) {
if (tp->tinfo.user.period <= 9 &&
tp->tinfo.user.width == BUS_16_BIT) {
tp->tinfo.user.options |= PPR_OPT_DT;
tp->tinfo.user.offset = np->maxoffs_dt;
tp->tinfo.user.spi_version = 3;
}
}
if (!tp->usrtags)
tp->usrflags &= ~SYM_TAGS_ENABLED;
}
/*
* Let user know about the settings.
*/
i = nvram->type;
printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
i == SYM_SYMBIOS_NVRAM ? "Symbios" :
(i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
np->myaddr,
(np->features & FE_ULTRA3) ? 80 :
(np->features & FE_ULTRA2) ? 40 :
(np->features & FE_ULTRA) ? 20 : 10,
sym_scsi_bus_mode(np->scsi_mode),
(np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
/*
* Tell him more on demand.
*/
if (sym_verbose) {
printf("%s: %s IRQ line driver%s\n",
sym_name(np),
np->rv_dcntl & IRQM ? "totem pole" : "open drain",
np->ram_ba ? ", using on-chip SRAM" : "");
printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
if (np->features & FE_NOPM)
printf("%s: handling phase mismatch from SCRIPTS.\n",
sym_name(np));
}
/*
* And still more.
*/
if (sym_verbose > 1) {
printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
}
/*
* Let user be aware of targets that have some disable flags set.
*/
sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
if (sym_verbose)
sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
"SCAN FOR LUNS");
return 0;
}
/*
* Prepare the next negotiation message if needed.
*
* Fill in the part of message buffer that contains the
* negotiation and the nego_status field of the CCB.
* Returns the size of the message in bytes.
*/
static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
{
tcb_p tp = &np->target[cp->target];
int msglen = 0;
/*
* Early C1010 chips need a work-around for DT
* data transfer to work.
*/
if (!(np->features & FE_U3EN))
tp->tinfo.goal.options = 0;
/*
* negotiate using PPR ?
*/
if (tp->tinfo.goal.options & PPR_OPT_MASK)
nego = NS_PPR;
/*
* negotiate wide transfers ?
*/
else if (tp->tinfo.current.width != tp->tinfo.goal.width)
nego = NS_WIDE;
/*
* negotiate synchronous transfers?
*/
else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
tp->tinfo.current.offset != tp->tinfo.goal.offset)
nego = NS_SYNC;
switch (nego) {
case NS_SYNC:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 3;
msgptr[msglen++] = M_X_SYNC_REQ;
msgptr[msglen++] = tp->tinfo.goal.period;
msgptr[msglen++] = tp->tinfo.goal.offset;
break;
case NS_WIDE:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 2;
msgptr[msglen++] = M_X_WIDE_REQ;
msgptr[msglen++] = tp->tinfo.goal.width;
break;
case NS_PPR:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 6;
msgptr[msglen++] = M_X_PPR_REQ;
msgptr[msglen++] = tp->tinfo.goal.period;
msgptr[msglen++] = 0;
msgptr[msglen++] = tp->tinfo.goal.offset;
msgptr[msglen++] = tp->tinfo.goal.width;
msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
break;
};
cp->nego_status = nego;
if (nego) {
tp->nego_cp = cp; /* Keep track a nego will be performed */
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
nego == NS_WIDE ? "wide msgout" :
"ppr msgout", msgptr);
};
};
return msglen;
}
/*
* Insert a job into the start queue.
*/
static void sym_put_start_queue(hcb_p np, ccb_p cp)
{
u_short qidx;
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If the previously queued CCB is not yet done,
* set the IARB hint. The SCRIPTS will go with IARB
* for this job when starting the previous one.
* We leave devices a chance to win arbitration by
* not using more than 'iarb_max' consecutive
* immediate arbitrations.
*/
if (np->last_cp && np->iarb_count < np->iarb_max) {
np->last_cp->host_flags |= HF_HINT_IARB;
++np->iarb_count;
}
else
np->iarb_count = 0;
np->last_cp = cp;
#endif
/*
* Insert first the idle task and then our job.
* The MB should ensure proper ordering.
*/
qidx = np->squeueput + 2;
if (qidx >= MAX_QUEUE*2) qidx = 0;
np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
MEMORY_BARRIER();
np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
np->squeueput = qidx;
if (DEBUG_FLAGS & DEBUG_QUEUE)
printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
/*
* Script processor may be waiting for reselect.
* Wake it up.
*/
MEMORY_BARRIER();
OUTB (nc_istat, SIGP|np->istat_sem);
}
/*
* Soft reset the chip.
*
* Raising SRST when the chip is running may cause
* problems on dual function chips (see below).
* On the other hand, LVD devices need some delay
* to settle and report actual BUS mode in STEST4.
*/
static void sym_chip_reset (hcb_p np)
{
OUTB (nc_istat, SRST);
UDELAY (10);
OUTB (nc_istat, 0);
UDELAY(2000); /* For BUS MODE to settle */
}
/*
* Soft reset the chip.
*
* Some 896 and 876 chip revisions may hang-up if we set
* the SRST (soft reset) bit at the wrong time when SCRIPTS
* are running.
* So, we need to abort the current operation prior to
* soft resetting the chip.
*/
static void sym_soft_reset (hcb_p np)
{
u_char istat;
int i;
OUTB (nc_istat, CABRT);
for (i = 1000000 ; i ; --i) {
istat = INB (nc_istat);
if (istat & SIP) {
INW (nc_sist);
continue;
}
if (istat & DIP) {
OUTB (nc_istat, 0);
INB (nc_dstat);
break;
}
}
if (!i)
printf("%s: unable to abort current chip operation.\n",
sym_name(np));
sym_chip_reset (np);
}
/*
* Start reset process.
*
* The interrupt handler will reinitialize the chip.
*/
static void sym_start_reset(hcb_p np)
{
(void) sym_reset_scsi_bus(np, 1);
}
static int sym_reset_scsi_bus(hcb_p np, int enab_int)
{
u32 term;
int retv = 0;
sym_soft_reset(np); /* Soft reset the chip */
if (enab_int)
OUTW (nc_sien, RST);
/*
* Enable Tolerant, reset IRQD if present and
* properly set IRQ mode, prior to resetting the bus.
*/
OUTB (nc_stest3, TE);
OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
OUTB (nc_scntl1, CRST);
UDELAY (200);
if (!SYM_SETUP_SCSI_BUS_CHECK)
goto out;
/*
* Check for no terminators or SCSI bus shorts to ground.
* Read SCSI data bus, data parity bits and control signals.
* We are expecting RESET to be TRUE and other signals to be
* FALSE.
*/
term = INB(nc_sstat0);
term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
if (!(np->features & FE_WIDE))
term &= 0x3ffff;
if (term != (2<<7)) {
printf("%s: suspicious SCSI data while resetting the BUS.\n",
sym_name(np));
printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
"0x%lx, expecting 0x%lx\n",
sym_name(np),
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
(u_long)term, (u_long)(2<<7));
if (SYM_SETUP_SCSI_BUS_CHECK == 1)
retv = 1;
}
out:
OUTB (nc_scntl1, 0);
/* MDELAY(100); */
return retv;
}
/*
* The chip may have completed jobs. Look at the DONE QUEUE.
*
* On architectures that may reorder LOAD/STORE operations,
* a memory barrier may be needed after the reading of the
* so-called `flag' and prior to dealing with the data.
*/
static int sym_wakeup_done (hcb_p np)
{
ccb_p cp;
int i, n;
u32 dsa;
SYM_LOCK_ASSERT(MA_OWNED);
n = 0;
i = np->dqueueget;
while (1) {
dsa = scr_to_cpu(np->dqueue[i]);
if (!dsa)
break;
np->dqueue[i] = 0;
if ((i = i+2) >= MAX_QUEUE*2)
i = 0;
cp = sym_ccb_from_dsa(np, dsa);
if (cp) {
MEMORY_BARRIER();
sym_complete_ok (np, cp);
++n;
}
else
printf ("%s: bad DSA (%x) in done queue.\n",
sym_name(np), (u_int) dsa);
}
np->dqueueget = i;
return n;
}
/*
* Complete all active CCBs with error.
* Used on CHIP/SCSI RESET.
*/
static void sym_flush_busy_queue (hcb_p np, int cam_status)
{
/*
* Move all active CCBs to the COMP queue
* and flush this queue.
*/
sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
sym_que_init(&np->busy_ccbq);
sym_flush_comp_queue(np, cam_status);
}
/*
* Start chip.
*
* 'reason' means:
* 0: initialisation.
* 1: SCSI BUS RESET delivered or received.
* 2: SCSI BUS MODE changed.
*/
static void sym_init (hcb_p np, int reason)
{
int i;
u32 phys;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Reset chip if asked, otherwise just clear fifos.
*/
if (reason == 1)
sym_soft_reset(np);
else {
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
}
/*
* Clear Start Queue
*/
phys = np->squeue_ba;
for (i = 0; i < MAX_QUEUE*2; i += 2) {
np->squeue[i] = cpu_to_scr(np->idletask_ba);
np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
}
np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
/*
* Start at first entry.
*/
np->squeueput = 0;
/*
* Clear Done Queue
*/
phys = np->dqueue_ba;
for (i = 0; i < MAX_QUEUE*2; i += 2) {
np->dqueue[i] = 0;
np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
}
np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
/*
* Start at first entry.
*/
np->dqueueget = 0;
/*
* Install patches in scripts.
* This also let point to first position the start
* and done queue pointers used from SCRIPTS.
*/
np->fw_patch(np);
/*
* Wakeup all pending jobs.
*/
sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
/*
* Init chip.
*/
OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
UDELAY (2000); /* The 895 needs time for the bus mode to settle */
OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
/* full arb., ena parity, par->ATN */
OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
OUTB (nc_istat , SIGP ); /* Signal Process */
OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
/* Extended Sreq/Sack filtering not supported on the C10 */
if (np->features & FE_C10)
OUTB (nc_stest2, np->rv_stest2);
else
OUTB (nc_stest2, EXT|np->rv_stest2);
OUTB (nc_stest3, TE); /* TolerANT enable */
OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
/*
* For now, disable AIP generation on C1010-66.
*/
if (np->device_id == PCI_ID_LSI53C1010_2)
OUTB (nc_aipcntl1, DISAIP);
/*
* C10101 Errata.
* Errant SGE's when in narrow. Write bits 4 & 5 of
* STEST1 register to disable SGE. We probably should do
* that from SCRIPTS for each selection/reselection, but
* I just don't want. :)
*/
if (np->device_id == PCI_ID_LSI53C1010 &&
/* np->revision_id < 0xff */ 1)
OUTB (nc_stest1, INB(nc_stest1) | 0x30);
/*
* DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
* Disable overlapped arbitration for some dual function devices,
* regardless revision id (kind of post-chip-design feature. ;-))
*/
if (np->device_id == PCI_ID_SYM53C875)
OUTB (nc_ctest0, (1<<5));
else if (np->device_id == PCI_ID_SYM53C896)
np->rv_ccntl0 |= DPR;
/*
* Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
* and/or hardware phase mismatch, since only such chips
* seem to support those IO registers.
*/
if (np->features & (FE_DAC|FE_NOPM)) {
OUTB (nc_ccntl0, np->rv_ccntl0);
OUTB (nc_ccntl1, np->rv_ccntl1);
}
/*
* If phase mismatch handled by scripts (895A/896/1010),
* set PM jump addresses.
*/
if (np->features & FE_NOPM) {
OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
}
/*
* Enable GPIO0 pin for writing if LED support from SCRIPTS.
* Also set GPIO5 and clear GPIO6 if hardware LED control.
*/
if (np->features & FE_LED0)
OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
else if (np->features & FE_LEDC)
OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
/*
* enable ints
*/
OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
/*
* For 895/6 enable SBMC interrupt and save current SCSI bus mode.
* Try to eat the spurious SBMC interrupt that may occur when
* we reset the chip but not the SCSI BUS (at initialization).
*/
if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
OUTONW (nc_sien, SBMC);
if (reason == 0) {
MDELAY(100);
INW (nc_sist);
}
np->scsi_mode = INB (nc_stest4) & SMODE;
}
/*
* Fill in target structure.
* Reinitialize usrsync.
* Reinitialize usrwide.
* Prepare sync negotiation according to actual SCSI bus mode.
*/
for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
tcb_p tp = &np->target[i];
tp->to_reset = 0;
tp->head.sval = 0;
tp->head.wval = np->rv_scntl3;
tp->head.uval = 0;
tp->tinfo.current.period = 0;
tp->tinfo.current.offset = 0;
tp->tinfo.current.width = BUS_8_BIT;
tp->tinfo.current.options = 0;
}
/*
* Download SCSI SCRIPTS to on-chip RAM if present,
* and start script processor.
*/
if (np->ram_ba) {
if (sym_verbose > 1)
printf ("%s: Downloading SCSI SCRIPTS.\n",
sym_name(np));
if (np->ram_ws == 8192) {
OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
OUTL (nc_mmws, np->scr_ram_seg);
OUTL (nc_mmrs, np->scr_ram_seg);
OUTL (nc_sfs, np->scr_ram_seg);
phys = SCRIPTB_BA (np, start64);
}
else
phys = SCRIPTA_BA (np, init);
OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
}
else
phys = SCRIPTA_BA (np, init);
np->istat_sem = 0;
OUTL (nc_dsa, np->hcb_ba);
OUTL_DSP (phys);
/*
* Notify the XPT about the RESET condition.
*/
if (reason != 0)
xpt_async(AC_BUS_RESET, np->path, NULL);
}
/*
* Get clock factor and sync divisor for a given
* synchronous factor period.
*/
static int
sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
{
u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
int div = np->clock_divn; /* Number of divisors supported */
u32 fak; /* Sync factor in sxfer */
u32 per; /* Period in tenths of ns */
u32 kpc; /* (per * clk) */
int ret;
/*
* Compute the synchronous period in tenths of nano-seconds
*/
if (dt && sfac <= 9) per = 125;
else if (sfac <= 10) per = 250;
else if (sfac == 11) per = 303;
else if (sfac == 12) per = 500;
else per = 40 * sfac;
ret = per;
kpc = per * clk;
if (dt)
kpc <<= 1;
/*
* For earliest C10 revision 0, we cannot use extra
* clocks for the setting of the SCSI clocking.
* Note that this limits the lowest sync data transfer
* to 5 Mega-transfers per second and may result in
* using higher clock divisors.
*/
#if 1
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
/*
* Look for the lowest clock divisor that allows an
* output speed not faster than the period.
*/
while (div > 0) {
--div;
if (kpc > (div_10M[div] << 2)) {
++div;
break;
}
}
fak = 0; /* No extra clocks */
if (div == np->clock_divn) { /* Are we too fast ? */
ret = -1;
}
*divp = div;
*fakp = fak;
return ret;
}
#endif
/*
* Look for the greatest clock divisor that allows an
* input speed faster than the period.
*/
while (div-- > 0)
if (kpc >= (div_10M[div] << 2)) break;
/*
* Calculate the lowest clock factor that allows an output
* speed not faster than the period, and the max output speed.
* If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
* If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
*/
if (dt) {
fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
}
else {
fak = (kpc - 1) / div_10M[div] + 1 - 4;
/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
}
/*
* Check against our hardware limits, or bugs :).
*/
if (fak < 0) {fak = 0; ret = -1;}
if (fak > 2) {fak = 2; ret = -1;}
/*
* Compute and return sync parameters.
*/
*divp = div;
*fakp = fak;
return ret;
}
/*
* Tell the SCSI layer about the new transfer parameters.
*/
static void
sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
{
struct ccb_trans_settings cts;
struct cam_path *path;
int sts;
tcb_p tp = &np->target[target];
sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
CAM_LUN_WILDCARD);
if (sts != CAM_REQ_CMP)
return;
bzero(&cts, sizeof(cts));
#define cts__scsi (cts.proto_specific.scsi)
#define cts__spi (cts.xport_specific.spi)
cts.type = CTS_TYPE_CURRENT_SETTINGS;
cts.protocol = PROTO_SCSI;
cts.transport = XPORT_SPI;
cts.protocol_version = tp->tinfo.current.scsi_version;
cts.transport_version = tp->tinfo.current.spi_version;
cts__spi.valid = spi_valid;
if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
cts__spi.sync_period = tp->tinfo.current.period;
if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
cts__spi.sync_offset = tp->tinfo.current.offset;
if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
cts__spi.bus_width = tp->tinfo.current.width;
if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
cts__spi.ppr_options = tp->tinfo.current.options;
#undef cts__spi
#undef cts__scsi
xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &cts);
xpt_free_path(path);
}
#define SYM_SPI_VALID_WDTR \
CTS_SPI_VALID_BUS_WIDTH | \
CTS_SPI_VALID_SYNC_RATE | \
CTS_SPI_VALID_SYNC_OFFSET
#define SYM_SPI_VALID_SDTR \
CTS_SPI_VALID_SYNC_RATE | \
CTS_SPI_VALID_SYNC_OFFSET
#define SYM_SPI_VALID_PPR \
CTS_SPI_VALID_PPR_OPTIONS | \
CTS_SPI_VALID_BUS_WIDTH | \
CTS_SPI_VALID_SYNC_RATE | \
CTS_SPI_VALID_SYNC_OFFSET
/*
* We received a WDTR.
* Let everything be aware of the changes.
*/
static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
{
tcb_p tp = &np->target[cp->target];
sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
tp->tinfo.current.offset = 0;
tp->tinfo.current.period = 0;
tp->tinfo.current.options = 0;
sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
}
/*
* We received a SDTR.
* Let everything be aware of the changes.
*/
static void
sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
{
tcb_p tp = &np->target[cp->target];
u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.period = tp->tinfo.current.period = per;
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
tp->tinfo.goal.options = tp->tinfo.current.options = 0;
sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
}
/*
* We received a PPR.
* Let everything be aware of the changes.
*/
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak)
{
tcb_p tp = &np->target[cp->target];
sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
tp->tinfo.goal.period = tp->tinfo.current.period = per;
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
tp->tinfo.goal.options = tp->tinfo.current.options = dt;
sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
}
/*
* Switch trans mode for current job and it's target.
*/
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak)
{
SYM_QUEHEAD *qp;
union ccb *ccb;
tcb_p tp;
u_char target = INB (nc_sdid) & 0x0f;
u_char sval, wval, uval;
assert (cp);
if (!cp) return;
ccb = cp->cam_ccb;
assert (ccb);
if (!ccb) return;
assert (target == (cp->target & 0xf));
tp = &np->target[target];
sval = tp->head.sval;
wval = tp->head.wval;
uval = tp->head.uval;
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
#if 0
printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
sval, wval, uval, np->rv_scntl3);
#endif
/*
* Set the offset.
*/
if (!(np->features & FE_C10))
sval = (sval & ~0x1f) | ofs;
else
sval = (sval & ~0x3f) | ofs;
/*
* Set the sync divisor and extra clock factor.
*/
if (ofs != 0) {
wval = (wval & ~0x70) | ((div+1) << 4);
if (!(np->features & FE_C10))
sval = (sval & ~0xe0) | (fak << 5);
else {
uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
}
}
/*
* Set the bus width.
*/
wval = wval & ~EWS;
if (wide != 0)
wval |= EWS;
/*
* Set misc. ultra enable bits.
*/
if (np->features & FE_C10) {
uval = uval & ~(U3EN|AIPCKEN);
if (dt) {
assert(np->features & FE_U3EN);
uval |= U3EN;
}
}
else {
wval = wval & ~ULTRA;
if (per <= 12) wval |= ULTRA;
}
/*
* Stop there if sync parameters are unchanged.
*/
if (tp->head.sval == sval &&
tp->head.wval == wval &&
tp->head.uval == uval)
return;
tp->head.sval = sval;
tp->head.wval = wval;
tp->head.uval = uval;
/*
* Disable extended Sreq/Sack filtering if per < 50.
* Not supported on the C1010.
*/
if (per < 50 && !(np->features & FE_C10))
OUTOFFB (nc_stest2, EXT);
/*
* set actual value and sync_status
*/
OUTB (nc_sxfer, tp->head.sval);
OUTB (nc_scntl3, tp->head.wval);
if (np->features & FE_C10) {
OUTB (nc_scntl4, tp->head.uval);
}
/*
* patch ALL busy ccbs of this target.
*/
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->target != target)
continue;
cp->phys.select.sel_scntl3 = tp->head.wval;
cp->phys.select.sel_sxfer = tp->head.sval;
if (np->features & FE_C10) {
cp->phys.select.sel_scntl4 = tp->head.uval;
}
}
}
/*
* log message for real hard errors
*
* sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
* reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
*
* exception register:
* ds: dstat
* si: sist
*
* SCSI bus lines:
* so: control lines as driven by chip.
* si: control lines as seen by chip.
* sd: scsi data lines as seen by chip.
*
* wide/fastmode:
* sxfer: (see the manual)
* scntl3: (see the manual)
*
* current script command:
* dsp: script address (relative to start of script).
* dbc: first word of script command.
*
* First 24 register of the chip:
* r0..rf
*/
static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
{
u32 dsp;
int script_ofs;
int script_size;
char *script_name;
u_char *script_base;
int i;
dsp = INL (nc_dsp);
if (dsp > np->scripta_ba &&
dsp <= np->scripta_ba + np->scripta_sz) {
script_ofs = dsp - np->scripta_ba;
script_size = np->scripta_sz;
script_base = (u_char *) np->scripta0;
script_name = "scripta";
}
else if (np->scriptb_ba < dsp &&
dsp <= np->scriptb_ba + np->scriptb_sz) {
script_ofs = dsp - np->scriptb_ba;
script_size = np->scriptb_sz;
script_base = (u_char *) np->scriptb0;
script_name = "scriptb";
} else {
script_ofs = dsp;
script_size = 0;
script_base = 0;
script_name = "mem";
}
printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
(unsigned)INB (nc_scntl3), script_name, script_ofs,
(unsigned)INL (nc_dbc));
if (((script_ofs & 3) == 0) &&
(unsigned)script_ofs < script_size) {
printf ("%s: script cmd = %08x\n", sym_name(np),
scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
}
printf ("%s: regdump:", sym_name(np));
for (i=0; i<24;i++)
printf (" %02x", (unsigned)INB_OFF(i));
printf (".\n");
/*
* PCI BUS error, read the PCI ststus register.
*/
if (dstat & (MDPE|BF)) {
u_short pci_sts;
pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
if (pci_sts & 0xf900) {
pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
printf("%s: PCI STATUS = 0x%04x\n",
sym_name(np), pci_sts & 0xf900);
}
}
}
/*
* chip interrupt handler
*
* In normal situations, interrupt conditions occur one at
* a time. But when something bad happens on the SCSI BUS,
* the chip may raise several interrupt flags before
* stopping and interrupting the CPU. The additionnal
* interrupt flags are stacked in some extra registers
* after the SIP and/or DIP flag has been raised in the
* ISTAT. After the CPU has read the interrupt condition
* flag from SIST or DSTAT, the chip unstacks the other
* interrupt flags and sets the corresponding bits in
* SIST or DSTAT. Since the chip starts stacking once the
* SIP or DIP flag is set, there is a small window of time
* where the stacking does not occur.
*
* Typically, multiple interrupt conditions may happen in
* the following situations:
*
* - SCSI parity error + Phase mismatch (PAR|MA)
* When a parity error is detected in input phase
* and the device switches to msg-in phase inside a
* block MOV.
* - SCSI parity error + Unexpected disconnect (PAR|UDC)
* When a stupid device does not want to handle the
* recovery of an SCSI parity error.
* - Some combinations of STO, PAR, UDC, ...
* When using non compliant SCSI stuff, when user is
* doing non compliant hot tampering on the BUS, when
* something really bad happens to a device, etc ...
*
* The heuristic suggested by SYMBIOS to handle
* multiple interrupts is to try unstacking all
* interrupts conditions and to handle them on some
* priority based on error severity.
* This will work when the unstacking has been
* successful, but we cannot be 100 % sure of that,
* since the CPU may have been faster to unstack than
* the chip is able to stack. Hmmm ... But it seems that
* such a situation is very unlikely to happen.
*
* If this happen, for example STO caught by the CPU
* then UDC happenning before the CPU have restarted
* the SCRIPTS, the driver may wrongly complete the
* same command on UDC, since the SCRIPTS didn't restart
* and the DSA still points to the same command.
* We avoid this situation by setting the DSA to an
* invalid value when the CCB is completed and before
* restarting the SCRIPTS.
*
* Another issue is that we need some section of our
* recovery procedures to be somehow uninterruptible but
* the SCRIPTS processor does not provides such a
* feature. For this reason, we handle recovery preferently
* from the C code and check against some SCRIPTS critical
* sections from the C code.
*
* Hopefully, the interrupt handling of the driver is now
* able to resist to weird BUS error conditions, but donnot
* ask me for any guarantee that it will never fail. :-)
* Use at your own decision and risk.
*/
static void sym_intr1 (hcb_p np)
{
u_char istat, istatc;
u_char dstat;
u_short sist;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* interrupt on the fly ?
*
* A `dummy read' is needed to ensure that the
* clear of the INTF flag reaches the device
* before the scanning of the DONE queue.
*/
istat = INB (nc_istat);
if (istat & INTF) {
OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
istat = INB (nc_istat); /* DUMMY READ */
if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
(void)sym_wakeup_done (np);
};
if (!(istat & (SIP|DIP)))
return;
#if 0 /* We should never get this one */
if (istat & CABRT)
OUTB (nc_istat, CABRT);
#endif
/*
* PAR and MA interrupts may occur at the same time,
* and we need to know of both in order to handle
* this situation properly. We try to unstack SCSI
* interrupts for that reason. BTW, I dislike a LOT
* such a loop inside the interrupt routine.
* Even if DMA interrupt stacking is very unlikely to
* happen, we also try unstacking these ones, since
* this has no performance impact.
*/
sist = 0;
dstat = 0;
istatc = istat;
do {
if (istatc & SIP)
sist |= INW (nc_sist);
if (istatc & DIP)
dstat |= INB (nc_dstat);
istatc = INB (nc_istat);
istat |= istatc;
} while (istatc & (SIP|DIP));
if (DEBUG_FLAGS & DEBUG_TINY)
printf ("<%d|%x:%x|%x:%x>",
(int)INB(nc_scr0),
dstat,sist,
(unsigned)INL(nc_dsp),
(unsigned)INL(nc_dbc));
/*
* On paper, a memory barrier may be needed here.
* And since we are paranoid ... :)
*/
MEMORY_BARRIER();
/*
* First, interrupts we want to service cleanly.
*
* Phase mismatch (MA) is the most frequent interrupt
* for chip earlier than the 896 and so we have to service
* it as quickly as possible.
* A SCSI parity error (PAR) may be combined with a phase
* mismatch condition (MA).
* Programmed interrupts (SIR) are used to call the C code
* from SCRIPTS.
* The single step interrupt (SSI) is not used in this
* driver.
*/
if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & PAR) sym_int_par (np, sist);
else if (sist & MA) sym_int_ma (np);
else if (dstat & SIR) sym_int_sir (np);
else if (dstat & SSI) OUTONB_STD ();
else goto unknown_int;
return;
};
/*
* Now, interrupts that donnot happen in normal
* situations and that we may need to recover from.
*
* On SCSI RESET (RST), we reset everything.
* On SCSI BUS MODE CHANGE (SBMC), we complete all
* active CCBs with RESET status, prepare all devices
* for negotiating again and restart the SCRIPTS.
* On STO and UDC, we complete the CCB with the corres-
* ponding status and restart the SCRIPTS.
*/
if (sist & RST) {
xpt_print_path(np->path);
printf("SCSI BUS reset detected.\n");
sym_init (np, 1);
return;
};
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
if (!(sist & (GEN|HTH|SGE)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & SBMC) sym_int_sbmc (np);
else if (sist & STO) sym_int_sto (np);
else if (sist & UDC) sym_int_udc (np);
else goto unknown_int;
return;
};
/*
* Now, interrupts we are not able to recover cleanly.
*
* Log message for hard errors.
* Reset everything.
*/
sym_log_hard_error(np, sist, dstat);
if ((sist & (GEN|HTH|SGE)) ||
(dstat & (MDPE|BF|ABRT|IID))) {
sym_start_reset(np);
return;
};
unknown_int:
/*
* We just miss the cause of the interrupt. :(
* Print a message. The timeout will do the real work.
*/
printf( "%s: unknown interrupt(s) ignored, "
"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
sym_name(np), istat, dstat, sist);
}
static void sym_intr(void *arg)
{
hcb_p np = arg;
SYM_LOCK();
if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
sym_intr1((hcb_p) arg);
if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
SYM_UNLOCK();
}
static void sym_poll(struct cam_sim *sim)
{
sym_intr1(cam_sim_softc(sim));
}
/*
* generic recovery from scsi interrupt
*
* The doc says that when the chip gets an SCSI interrupt,
* it tries to stop in an orderly fashion, by completing
* an instruction fetch that had started or by flushing
* the DMA fifo for a write to memory that was executing.
* Such a fashion is not enough to know if the instruction
* that was just before the current DSP value has been
* executed or not.
*
* There are some small SCRIPTS sections that deal with
* the start queue and the done queue that may break any
* assomption from the C code if we are interrupted
* inside, so we reset if this happens. Btw, since these
* SCRIPTS sections are executed while the SCRIPTS hasn't
* started SCSI operations, it is very unlikely to happen.
*
* All the driver data structures are supposed to be
* allocated from the same 4 GB memory window, so there
* is a 1 to 1 relationship between DSA and driver data
* structures. Since we are careful :) to invalidate the
* DSA when we complete a command or when the SCRIPTS
* pushes a DSA into a queue, we can trust it when it
* points to a CCB.
*/
static void sym_recover_scsi_int (hcb_p np, u_char hsts)
{
u32 dsp = INL (nc_dsp);
u32 dsa = INL (nc_dsa);
ccb_p cp = sym_ccb_from_dsa(np, dsa);
/*
* If we haven't been interrupted inside the SCRIPTS
* critical pathes, we can safely restart the SCRIPTS
* and trust the DSA value if it matches a CCB.
*/
if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
(!(dsp > SCRIPTA_BA (np, ungetjob) &&
dsp < SCRIPTA_BA (np, reselect) + 1)) &&
(!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
(!(dsp > SCRIPTA_BA (np, done) &&
dsp < SCRIPTA_BA (np, done_end) + 1))) {
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
/*
* If we have a CCB, let the SCRIPTS call us back for
* the handling of the error with SCRATCHA filled with
* STARTPOS. This way, we will be able to freeze the
* device queue and requeue awaiting IOs.
*/
if (cp) {
cp->host_status = hsts;
OUTL_DSP (SCRIPTA_BA (np, complete_error));
}
/*
* Otherwise just restart the SCRIPTS.
*/
else {
OUTL (nc_dsa, 0xffffff);
OUTL_DSP (SCRIPTA_BA (np, start));
}
}
else
goto reset_all;
return;
reset_all:
sym_start_reset(np);
}
/*
* chip exception handler for selection timeout
*/
static void sym_int_sto (hcb_p np)
{
u32 dsp = INL (nc_dsp);
if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
else
sym_start_reset(np);
}
/*
* chip exception handler for unexpected disconnect
*/
static void sym_int_udc (hcb_p np)
{
printf ("%s: unexpected disconnect\n", sym_name(np));
sym_recover_scsi_int(np, HS_UNEXPECTED);
}
/*
* chip exception handler for SCSI bus mode change
*
* spi2-r12 11.2.3 says a transceiver mode change must
* generate a reset event and a device that detects a reset
* event shall initiate a hard reset. It says also that a
* device that detects a mode change shall set data transfer
* mode to eight bit asynchronous, etc...
* So, just reinitializing all except chip should be enough.
*/
static void sym_int_sbmc (hcb_p np)
{
u_char scsi_mode = INB (nc_stest4) & SMODE;
/*
* Notify user.
*/
xpt_print_path(np->path);
printf("SCSI BUS mode change from %s to %s.\n",
sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
/*
* Should suspend command processing for a few seconds and
* reinitialize all except the chip.
*/
sym_init (np, 2);
}
/*
* chip exception handler for SCSI parity error.
*
* When the chip detects a SCSI parity error and is
* currently executing a (CH)MOV instruction, it does
* not interrupt immediately, but tries to finish the
* transfer of the current scatter entry before
* interrupting. The following situations may occur:
*
* - The complete scatter entry has been transferred
* without the device having changed phase.
* The chip will then interrupt with the DSP pointing
* to the instruction that follows the MOV.
*
* - A phase mismatch occurs before the MOV finished
* and phase errors are to be handled by the C code.
* The chip will then interrupt with both PAR and MA
* conditions set.
*
* - A phase mismatch occurs before the MOV finished and
* phase errors are to be handled by SCRIPTS.
* The chip will load the DSP with the phase mismatch
* JUMP address and interrupt the host processor.
*/
static void sym_int_par (hcb_p np, u_short sist)
{
u_char hsts = INB (HS_PRT);
u32 dsp = INL (nc_dsp);
u32 dbc = INL (nc_dbc);
u32 dsa = INL (nc_dsa);
u_char sbcl = INB (nc_sbcl);
u_char cmd = dbc >> 24;
int phase = cmd & 7;
ccb_p cp = sym_ccb_from_dsa(np, dsa);
printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
sym_name(np), hsts, dbc, sbcl);
/*
* Check that the chip is connected to the SCSI BUS.
*/
if (!(INB (nc_scntl1) & ISCON)) {
sym_recover_scsi_int(np, HS_UNEXPECTED);
return;
}
/*
* If the nexus is not clearly identified, reset the bus.
* We will try to do better later.
*/
if (!cp)
goto reset_all;
/*
* Check instruction was a MOV, direction was INPUT and
* ATN is asserted.
*/
if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
goto reset_all;
/*
* Keep track of the parity error.
*/
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_PARITY_ERR;
/*
* Prepare the message to send to the device.
*/
np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
/*
* If the old phase was DATA IN phase, we have to deal with
* the 3 situations described above.
* For other input phases (MSG IN and STATUS), the device
* must resend the whole thing that failed parity checking
* or signal error. So, jumping to dispatcher should be OK.
*/
if (phase == 1 || phase == 5) {
/* Phase mismatch handled by SCRIPTS */
if (dsp == SCRIPTB_BA (np, pm_handle))
OUTL_DSP (dsp);
/* Phase mismatch handled by the C code */
else if (sist & MA)
sym_int_ma (np);
/* No phase mismatch occurred */
else {
OUTL (nc_temp, dsp);
OUTL_DSP (SCRIPTA_BA (np, dispatch));
}
}
else
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
reset_all:
sym_start_reset(np);
}
/*
* chip exception handler for phase errors.
*
* We have to construct a new transfer descriptor,
* to transfer the rest of the current block.
*/
static void sym_int_ma (hcb_p np)
{
u32 dbc;
u32 rest;
u32 dsp;
u32 dsa;
u32 nxtdsp;
u32 *vdsp;
u32 oadr, olen;
u32 *tblp;
u32 newcmd;
u_int delta;
u_char cmd;
u_char hflags, hflags0;
struct sym_pmc *pm;
ccb_p cp;
dsp = INL (nc_dsp);
dbc = INL (nc_dbc);
dsa = INL (nc_dsa);
cmd = dbc >> 24;
rest = dbc & 0xffffff;
delta = 0;
/*
* locate matching cp if any.
*/
cp = sym_ccb_from_dsa(np, dsa);
/*
* Donnot take into account dma fifo and various buffers in
* INPUT phase since the chip flushes everything before
* raising the MA interrupt for interrupted INPUT phases.
* For DATA IN phase, we will check for the SWIDE later.
*/
if ((cmd & 7) != 1 && (cmd & 7) != 5) {
u_char ss0, ss2;
if (np->features & FE_DFBC)
delta = INW (nc_dfbc);
else {
u32 dfifo;
/*
* Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
*/
dfifo = INL(nc_dfifo);
/*
* Calculate remaining bytes in DMA fifo.
* (CTEST5 = dfifo >> 16)
*/
if (dfifo & (DFS << 16))
delta = ((((dfifo >> 8) & 0x300) |
(dfifo & 0xff)) - rest) & 0x3ff;
else
delta = ((dfifo & 0xff) - rest) & 0x7f;
}
/*
* The data in the dma fifo has not been transferred to
* the target -> add the amount to the rest
* and clear the data.
* Check the sstat2 register in case of wide transfer.
*/
rest += delta;
ss0 = INB (nc_sstat0);
if (ss0 & OLF) rest++;
if (!(np->features & FE_C10))
if (ss0 & ORF) rest++;
if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
ss2 = INB (nc_sstat2);
if (ss2 & OLF1) rest++;
if (!(np->features & FE_C10))
if (ss2 & ORF1) rest++;
};
/*
* Clear fifos.
*/
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
OUTB (nc_stest3, TE|CSF); /* scsi fifo */
}
/*
* log the information
*/
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
(unsigned) rest, (unsigned) delta);
/*
* try to find the interrupted script command,
* and the address at which to continue.
*/
vdsp = 0;
nxtdsp = 0;
if (dsp > np->scripta_ba &&
dsp <= np->scripta_ba + np->scripta_sz) {
vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
nxtdsp = dsp;
}
else if (dsp > np->scriptb_ba &&
dsp <= np->scriptb_ba + np->scriptb_sz) {
vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
nxtdsp = dsp;
}
/*
* log the information
*/
if (DEBUG_FLAGS & DEBUG_PHASE) {
printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
};
if (!vdsp) {
printf ("%s: interrupted SCRIPT address not found.\n",
sym_name (np));
goto reset_all;
}
if (!cp) {
printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
sym_name (np));
goto reset_all;
}
/*
* get old startaddress and old length.
*/
oadr = scr_to_cpu(vdsp[1]);
if (cmd & 0x10) { /* Table indirect */
tblp = (u32 *) ((char*) &cp->phys + oadr);
olen = scr_to_cpu(tblp[0]);
oadr = scr_to_cpu(tblp[1]);
} else {
tblp = (u32 *) 0;
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
};
if (DEBUG_FLAGS & DEBUG_PHASE) {
printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
tblp,
(unsigned) olen,
(unsigned) oadr);
};
/*
* check cmd against assumed interrupted script command.
* If dt data phase, the MOVE instruction hasn't bit 4 of
* the phase.
*/
if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
PRINT_ADDR(cp);
printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
goto reset_all;
};
/*
* if old phase not dataphase, leave here.
*/
if (cmd & 2) {
PRINT_ADDR(cp);
printf ("phase change %x-%x %d@%08x resid=%d.\n",
cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
(unsigned)oadr, (unsigned)rest);
goto unexpected_phase;
};
/*
* Choose the correct PM save area.
*
* Look at the PM_SAVE SCRIPT if you want to understand
* this stuff. The equivalent code is implemented in
* SCRIPTS for the 895A, 896 and 1010 that are able to
* handle PM from the SCRIPTS processor.
*/
hflags0 = INB (HF_PRT);
hflags = hflags0;
if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
if (hflags & HF_IN_PM0)
nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
else if (hflags & HF_IN_PM1)
nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
if (hflags & HF_DP_SAVED)
hflags ^= HF_ACT_PM;
}
if (!(hflags & HF_ACT_PM)) {
pm = &cp->phys.pm0;
newcmd = SCRIPTA_BA (np, pm0_data);
}
else {
pm = &cp->phys.pm1;
newcmd = SCRIPTA_BA (np, pm1_data);
}
hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
if (hflags != hflags0)
OUTB (HF_PRT, hflags);
/*
* fillin the phase mismatch context
*/
pm->sg.addr = cpu_to_scr(oadr + olen - rest);
pm->sg.size = cpu_to_scr(rest);
pm->ret = cpu_to_scr(nxtdsp);
/*
* If we have a SWIDE,
* - prepare the address to write the SWIDE from SCRIPTS,
* - compute the SCRIPTS address to restart from,
* - move current data pointer context by one byte.
*/
nxtdsp = SCRIPTA_BA (np, dispatch);
if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
(INB (nc_scntl2) & WSR)) {
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
u32 tmp;
/*
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
* Set up the table indirect for the MOVE
* of the residual byte and adjust the data
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
* pointer context.
*/
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
tmp = scr_to_cpu(pm->sg.addr);
cp->phys.wresid.addr = cpu_to_scr(tmp);
pm->sg.addr = cpu_to_scr(tmp + 1);
tmp = scr_to_cpu(pm->sg.size);
cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
pm->sg.size = cpu_to_scr(tmp - 1);
/*
* If only the residual byte is to be moved,
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
* no PM context is needed.
*/
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
if ((tmp&0xffffff) == 1)
newcmd = pm->ret;
/*
* Prepare the address of SCRIPTS that will
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
* move the residual byte to memory.
*/
nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
}
if (DEBUG_FLAGS & DEBUG_PHASE) {
PRINT_ADDR(cp);
printf ("PM %x %x %x / %x %x %x.\n",
hflags0, hflags, newcmd,
(unsigned)scr_to_cpu(pm->sg.addr),
(unsigned)scr_to_cpu(pm->sg.size),
(unsigned)scr_to_cpu(pm->ret));
}
/*
* Restart the SCRIPTS processor.
*/
OUTL (nc_temp, newcmd);
OUTL_DSP (nxtdsp);
return;
/*
* Unexpected phase changes that occurs when the current phase
* is not a DATA IN or DATA OUT phase are due to error conditions.
* Such event may only happen when the SCRIPTS is using a
* multibyte SCSI MOVE.
*
* Phase change Some possible cause
*
* COMMAND --> MSG IN SCSI parity error detected by target.
* COMMAND --> STATUS Bad command or refused by target.
* MSG OUT --> MSG IN Message rejected by target.
* MSG OUT --> COMMAND Bogus target that discards extended
* negotiation messages.
*
* The code below does not care of the new phase and so
* trusts the target. Why to annoy it ?
* If the interrupted phase is COMMAND phase, we restart at
* dispatcher.
* If a target does not get all the messages after selection,
* the code assumes blindly that the target discards extended
* messages and clears the negotiation status.
* If the target does not want all our response to negotiation,
* we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
* bloat for such a should_not_happen situation).
* In all other situation, we reset the BUS.
* Are these assumptions reasonnable ? (Wait and see ...)
*/
unexpected_phase:
dsp -= 8;
nxtdsp = 0;
switch (cmd & 7) {
case 2: /* COMMAND phase */
nxtdsp = SCRIPTA_BA (np, dispatch);
break;
#if 0
case 3: /* STATUS phase */
nxtdsp = SCRIPTA_BA (np, dispatch);
break;
#endif
case 6: /* MSG OUT phase */
/*
* If the device may want to use untagged when we want
* tagged, we prepare an IDENTIFY without disc. granted,
* since we will not be able to handle reselect.
* Otherwise, we just don't care.
*/
if (dsp == SCRIPTA_BA (np, send_ident)) {
if (cp->tag != NO_TAG && olen - rest <= 3) {
cp->host_status = HS_BUSY;
np->msgout[0] = M_IDENTIFY | cp->lun;
nxtdsp = SCRIPTB_BA (np, ident_break_atn);
}
else
nxtdsp = SCRIPTB_BA (np, ident_break);
}
else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
dsp == SCRIPTB_BA (np, send_sdtr) ||
dsp == SCRIPTB_BA (np, send_ppr)) {
nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
}
break;
#if 0
case 7: /* MSG IN phase */
nxtdsp = SCRIPTA_BA (np, clrack);
break;
#endif
}
if (nxtdsp) {
OUTL_DSP (nxtdsp);
return;
}
reset_all:
sym_start_reset(np);
}
/*
* Dequeue from the START queue all CCBs that match
* a given target/lun/task condition (-1 means all),
* and move them from the BUSY queue to the COMP queue
* with CAM_REQUEUE_REQ status condition.
* This function is used during error handling/recovery.
* It is called with SCRIPTS not running.
*/
static int
sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
{
int j;
ccb_p cp;
/*
* Make sure the starting index is within range.
*/
assert((i >= 0) && (i < 2*MAX_QUEUE));
/*
* Walk until end of START queue and dequeue every job
* that matches the target/lun/task condition.
*/
j = i;
while (i != np->squeueput) {
cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
assert(cp);
#ifdef SYM_CONF_IARB_SUPPORT
/* Forget hints for IARB, they may be no longer relevant */
cp->host_flags &= ~HF_HINT_IARB;
#endif
if ((target == -1 || cp->target == target) &&
(lun == -1 || cp->lun == lun) &&
(task == -1 || cp->tag == task)) {
sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
sym_remque(&cp->link_ccbq);
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
}
else {
if (i != j)
np->squeue[j] = np->squeue[i];
if ((j += 2) >= MAX_QUEUE*2) j = 0;
}
if ((i += 2) >= MAX_QUEUE*2) i = 0;
}
if (i != j) /* Copy back the idle task if needed */
np->squeue[j] = np->squeue[i];
np->squeueput = j; /* Update our current start queue pointer */
return (i - j) / 2;
}
/*
* Complete all CCBs queued to the COMP queue.
*
* These CCBs are assumed:
* - Not to be referenced either by devices or
* SCRIPTS-related queues and datas.
* - To have to be completed with an error condition
* or requeued.
*
* The device queue freeze count is incremented
* for each CCB that does not prevent this.
* This function is called when all CCBs involved
* in error handling/recovery have been reaped.
*/
static void
sym_flush_comp_queue(hcb_p np, int cam_status)
{
SYM_QUEHEAD *qp;
ccb_p cp;
while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
union ccb *ccb;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
/* Leave quiet CCBs waiting for resources */
if (cp->host_status == HS_WAIT)
continue;
ccb = cp->cam_ccb;
if (cam_status)
sym_set_cam_status(ccb, cam_status);
sym_freeze_cam_ccb(ccb);
sym_xpt_done(np, ccb, cp);
sym_free_ccb(np, cp);
}
}
/*
* chip handler for bad SCSI status condition
*
* In case of bad SCSI status, we unqueue all the tasks
* currently queued to the controller but not yet started
* and then restart the SCRIPTS processor immediately.
*
* QUEUE FULL and BUSY conditions are handled the same way.
* Basically all the not yet started tasks are requeued in
* device queue and the queue is frozen until a completion.
*
* For CHECK CONDITION and COMMAND TERMINATED status, we use
* the CCB of the failed command to prepare a REQUEST SENSE
* SCSI command and queue it to the controller queue.
*
* SCRATCHA is assumed to have been loaded with STARTPOS
* before the SCRIPTS called the C code.
*/
static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
{
tcb_p tp = &np->target[cp->target];
u32 startp;
u_char s_status = cp->ssss_status;
u_char h_flags = cp->host_flags;
int msglen;
int nego;
int i;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Compute the index of the next job to start from SCRIPTS.
*/
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
/*
* The last CCB queued used for IARB hint may be
* no longer relevant. Forget it.
*/
#ifdef SYM_CONF_IARB_SUPPORT
if (np->last_cp)
np->last_cp = NULL;
#endif
/*
* Now deal with the SCSI status.
*/
switch(s_status) {
case S_BUSY:
case S_QUEUE_FULL:
if (sym_verbose >= 2) {
PRINT_ADDR(cp);
printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
}
default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
sym_complete_error (np, cp);
break;
case S_TERMINATED:
case S_CHECK_COND:
/*
* If we get an SCSI error when requesting sense, give up.
*/
if (h_flags & HF_SENSE) {
sym_complete_error (np, cp);
break;
}
/*
* Dequeue all queued CCBs for that device not yet started,
* and restart the SCRIPTS processor immediately.
*/
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
OUTL_DSP (SCRIPTA_BA (np, start));
/*
* Save some info of the actual IO.
* Compute the data residual.
*/
cp->sv_scsi_status = cp->ssss_status;
cp->sv_xerr_status = cp->xerr_status;
cp->sv_resid = sym_compute_residual(np, cp);
/*
* Prepare all needed data structures for
* requesting sense data.
*/
/*
* identify message
*/
cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
msglen = 1;
/*
* If we are currently using anything different from
* async. 8 bit data transfers with that target,
* start a negotiation, since the device may want
* to report us a UNIT ATTENTION condition due to
* a cause we currently ignore, and we donnot want
* to be stuck with WIDE and/or SYNC data transfer.
*
* cp->nego_status is filled by sym_prepare_nego().
*/
cp->nego_status = 0;
nego = 0;
if (tp->tinfo.current.options & PPR_OPT_MASK)
nego = NS_PPR;
else if (tp->tinfo.current.width != BUS_8_BIT)
nego = NS_WIDE;
else if (tp->tinfo.current.offset != 0)
nego = NS_SYNC;
if (nego)
msglen +=
sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
/*
* Message table indirect structure.
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
* sense command
*/
cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
cp->phys.cmd.size = cpu_to_scr(6);
/*
* patch requested size into sense command
*/
cp->sensecmd[0] = 0x03;
cp->sensecmd[1] = cp->lun << 5;
if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
cp->sensecmd[1] = 0;
cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
cp->data_len = SYM_SNS_BBUF_LEN;
/*
* sense data
*/
bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
/*
* requeue the command.
*/
startp = SCRIPTB_BA (np, sdata_in);
cp->phys.head.savep = cpu_to_scr(startp);
cp->phys.head.goalp = cpu_to_scr(startp + 16);
cp->phys.head.lastp = cpu_to_scr(startp);
cp->startp = cpu_to_scr(startp);
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->ssss_status = S_ILLEGAL;
cp->host_flags = (HF_SENSE|HF_DATA_IN);
cp->xerr_status = 0;
cp->extra_bytes = 0;
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
/*
* Requeue the command.
*/
sym_put_start_queue(np, cp);
/*
* Give back to upper layer everything we have dequeued.
*/
sym_flush_comp_queue(np, 0);
break;
}
}
/*
* After a device has accepted some management message
* as BUS DEVICE RESET, ABORT TASK, etc ..., or when
* a device signals a UNIT ATTENTION condition, some
* tasks are thrown away by the device. We are required
* to reflect that on our tasks list since the device
* will never complete these tasks.
*
* This function move from the BUSY queue to the COMP
* queue all disconnected CCBs for a given target that
* match the following criteria:
* - lun=-1 means any logical UNIT otherwise a given one.
* - task=-1 means any task, otherwise a given one.
*/
static int
sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
{
SYM_QUEHEAD qtmp, *qp;
int i = 0;
ccb_p cp;
/*
* Move the entire BUSY queue to our temporary queue.
*/
sym_que_init(&qtmp);
sym_que_splice(&np->busy_ccbq, &qtmp);
sym_que_init(&np->busy_ccbq);
/*
* Put all CCBs that matches our criteria into
* the COMP queue and put back other ones into
* the BUSY queue.
*/
while ((qp = sym_remque_head(&qtmp)) != NULL) {
union ccb *ccb;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
ccb = cp->cam_ccb;
if (cp->host_status != HS_DISCONNECT ||
cp->target != target ||
(lun != -1 && cp->lun != lun) ||
(task != -1 &&
(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
continue;
}
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
/* Preserve the software timeout condition */
if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
sym_set_cam_status(ccb, cam_status);
++i;
#if 0
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
printf("XXXX TASK @%p CLEARED\n", cp);
#endif
}
return i;
}
/*
* chip handler for TASKS recovery
*
* We cannot safely abort a command, while the SCRIPTS
* processor is running, since we just would be in race
* with it.
*
* As long as we have tasks to abort, we keep the SEM
* bit set in the ISTAT. When this bit is set, the
* SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
* each time it enters the scheduler.
*
* If we have to reset a target, clear tasks of a unit,
* or to perform the abort of a disconnected job, we
* restart the SCRIPTS for selecting the target. Once
* selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
* If it loses arbitration, the SCRIPTS will interrupt again
* the next time it will enter its scheduler, and so on ...
*
* On SIR_TARGET_SELECTED, we scan for the more
* appropriate thing to do:
*
* - If nothing, we just sent a M_ABORT message to the
* target to get rid of the useless SCSI bus ownership.
* According to the specs, no tasks shall be affected.
* - If the target is to be reset, we send it a M_RESET
* message.
* - If a logical UNIT is to be cleared , we send the
* IDENTIFY(lun) + M_ABORT.
* - If an untagged task is to be aborted, we send the
* IDENTIFY(lun) + M_ABORT.
* - If a tagged task is to be aborted, we send the
* IDENTIFY(lun) + task attributes + M_ABORT_TAG.
*
* Once our 'kiss of death' :) message has been accepted
* by the target, the SCRIPTS interrupts again
* (SIR_ABORT_SENT). On this interrupt, we complete
* all the CCBs that should have been aborted by the
* target according to our message.
*/
static void sym_sir_task_recovery(hcb_p np, int num)
{
SYM_QUEHEAD *qp;
ccb_p cp;
tcb_p tp;
int target=-1, lun=-1, task;
int i, k;
switch(num) {
/*
* The SCRIPTS processor stopped before starting
* the next command in order to allow us to perform
* some task recovery.
*/
case SIR_SCRIPT_STOPPED:
/*
* Do we have any target to reset or unit to clear ?
*/
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
tp = &np->target[i];
if (tp->to_reset ||
(tp->lun0p && tp->lun0p->to_clear)) {
target = i;
break;
}
if (!tp->lunmp)
continue;
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
target = i;
break;
}
}
if (target != -1)
break;
}
/*
* If not, walk the busy queue for any
* disconnected CCB to be aborted.
*/
if (target == -1) {
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
if (cp->host_status != HS_DISCONNECT)
continue;
if (cp->to_abort) {
target = cp->target;
break;
}
}
}
/*
* If some target is to be selected,
* prepare and start the selection.
*/
if (target != -1) {
tp = &np->target[target];
np->abrt_sel.sel_id = target;
np->abrt_sel.sel_scntl3 = tp->head.wval;
np->abrt_sel.sel_sxfer = tp->head.sval;
OUTL(nc_dsa, np->hcb_ba);
OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
return;
}
/*
* Now look for a CCB to abort that haven't started yet.
* Btw, the SCRIPTS processor is still stopped, so
* we are not in race.
*/
i = 0;
cp = NULL;
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->host_status != HS_BUSY &&
cp->host_status != HS_NEGOTIATE)
continue;
if (!cp->to_abort)
continue;
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If we are using IMMEDIATE ARBITRATION, we donnot
* want to cancel the last queued CCB, since the
* SCRIPTS may have anticipated the selection.
*/
if (cp == np->last_cp) {
cp->to_abort = 0;
continue;
}
#endif
i = 1; /* Means we have found some */
break;
}
if (!i) {
/*
* We are done, so we donnot need
* to synchronize with the SCRIPTS anylonger.
* Remove the SEM flag from the ISTAT.
*/
np->istat_sem = 0;
OUTB (nc_istat, SIGP);
break;
}
/*
* Compute index of next position in the start
* queue the SCRIPTS intends to start and dequeue
* all CCBs for that device that haven't been started.
*/
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
/*
* Make sure at least our IO to abort has been dequeued.
*/
assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
/*
* Keep track in cam status of the reason of the abort.
*/
if (cp->to_abort == 2)
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
else
sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
/*
* Complete with error everything that we have dequeued.
*/
sym_flush_comp_queue(np, 0);
break;
/*
* The SCRIPTS processor has selected a target
* we may have some manual recovery to perform for.
*/
case SIR_TARGET_SELECTED:
target = (INB (nc_sdid) & 0xf);
tp = &np->target[target];
np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
/*
* If the target is to be reset, prepare a
* M_RESET message and clear the to_reset flag
* since we donnot expect this operation to fail.
*/
if (tp->to_reset) {
np->abrt_msg[0] = M_RESET;
np->abrt_tbl.size = 1;
tp->to_reset = 0;
break;
}
/*
* Otherwise, look for some logical unit to be cleared.
*/
if (tp->lun0p && tp->lun0p->to_clear)
lun = 0;
else if (tp->lunmp) {
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
lun = k;
break;
}
}
}
/*
* If a logical unit is to be cleared, prepare
* an IDENTIFY(lun) + ABORT MESSAGE.
*/
if (lun != -1) {
lcb_p lp = sym_lp(np, tp, lun);
lp->to_clear = 0; /* We donnot expect to fail here */
np->abrt_msg[0] = M_IDENTIFY | lun;
np->abrt_msg[1] = M_ABORT;
np->abrt_tbl.size = 2;
break;
}
/*
* Otherwise, look for some disconnected job to
* abort for this target.
*/
i = 0;
cp = NULL;
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->host_status != HS_DISCONNECT)
continue;
if (cp->target != target)
continue;
if (!cp->to_abort)
continue;
i = 1; /* Means we have some */
break;
}
/*
* If we have none, probably since the device has
* completed the command before we won abitration,
* send a M_ABORT message without IDENTIFY.
* According to the specs, the device must just
* disconnect the BUS and not abort any task.
*/
if (!i) {
np->abrt_msg[0] = M_ABORT;
np->abrt_tbl.size = 1;
break;
}
/*
* We have some task to abort.
* Set the IDENTIFY(lun)
*/
np->abrt_msg[0] = M_IDENTIFY | cp->lun;
/*
* If we want to abort an untagged command, we
* will send an IDENTIFY + M_ABORT.
* Otherwise (tagged command), we will send
* an IDENTIFY + task attributes + ABORT TAG.
*/
if (cp->tag == NO_TAG) {
np->abrt_msg[1] = M_ABORT;
np->abrt_tbl.size = 2;
}
else {
np->abrt_msg[1] = cp->scsi_smsg[1];
np->abrt_msg[2] = cp->scsi_smsg[2];
np->abrt_msg[3] = M_ABORT_TAG;
np->abrt_tbl.size = 4;
}
/*
* Keep track of software timeout condition, since the
* peripheral driver may not count retries on abort
* conditions not due to timeout.
*/
if (cp->to_abort == 2)
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
cp->to_abort = 0; /* We donnot expect to fail here */
break;
/*
* The target has accepted our message and switched
* to BUS FREE phase as we expected.
*/
case SIR_ABORT_SENT:
target = (INB (nc_sdid) & 0xf);
tp = &np->target[target];
/*
** If we didn't abort anything, leave here.
*/
if (np->abrt_msg[0] == M_ABORT)
break;
/*
* If we sent a M_RESET, then a hardware reset has
* been performed by the target.
* - Reset everything to async 8 bit
* - Tell ourself to negotiate next time :-)
* - Prepare to clear all disconnected CCBs for
* this target from our task list (lun=task=-1)
*/
lun = -1;
task = -1;
if (np->abrt_msg[0] == M_RESET) {
tp->head.sval = 0;
tp->head.wval = np->rv_scntl3;
tp->head.uval = 0;
tp->tinfo.current.period = 0;
tp->tinfo.current.offset = 0;
tp->tinfo.current.width = BUS_8_BIT;
tp->tinfo.current.options = 0;
}
/*
* Otherwise, check for the LUN and TASK(s)
* concerned by the cancelation.
* If it is not ABORT_TAG then it is CLEAR_QUEUE
* or an ABORT message :-)
*/
else {
lun = np->abrt_msg[0] & 0x3f;
if (np->abrt_msg[1] == M_ABORT_TAG)
task = np->abrt_msg[2];
}
/*
* Complete all the CCBs the device should have
* aborted due to our 'kiss of death' message.
*/
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
sym_flush_comp_queue(np, 0);
/*
* If we sent a BDR, make uper layer aware of that.
*/
if (np->abrt_msg[0] == M_RESET)
xpt_async(AC_SENT_BDR, np->path, NULL);
break;
}
/*
* Print to the log the message we intend to send.
*/
if (num == SIR_TARGET_SELECTED) {
PRINT_TARGET(np, target);
sym_printl_hex("control msgout:", np->abrt_msg,
np->abrt_tbl.size);
np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
}
/*
* Let the SCRIPTS processor continue.
*/
OUTONB_STD ();
}
/*
* Gerard's alchemy:) that deals with with the data
* pointer for both MDP and the residual calculation.
*
* I didn't want to bloat the code by more than 200
* lignes for the handling of both MDP and the residual.
* This has been achieved by using a data pointer
* representation consisting in an index in the data
* array (dp_sg) and a negative offset (dp_ofs) that
* have the following meaning:
*
* - dp_sg = SYM_CONF_MAX_SG
* we are at the end of the data script.
* - dp_sg < SYM_CONF_MAX_SG
* dp_sg points to the next entry of the scatter array
* we want to transfer.
* - dp_ofs < 0
* dp_ofs represents the residual of bytes of the
* previous entry scatter entry we will send first.
* - dp_ofs = 0
* no residual to send first.
*
* The function sym_evaluate_dp() accepts an arbitray
* offset (basically from the MDP message) and returns
* the corresponding values of dp_sg and dp_ofs.
*/
static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
{
u32 dp_scr;
int dp_ofs, dp_sg, dp_sgmin;
int tmp;
struct sym_pmc *pm;
/*
* Compute the resulted data pointer in term of a script
* address within some DATA script and a signed byte offset.
*/
dp_scr = scr;
dp_ofs = *ofs;
if (dp_scr == SCRIPTA_BA (np, pm0_data))
pm = &cp->phys.pm0;
else if (dp_scr == SCRIPTA_BA (np, pm1_data))
pm = &cp->phys.pm1;
else
pm = NULL;
if (pm) {
dp_scr = scr_to_cpu(pm->ret);
dp_ofs -= scr_to_cpu(pm->sg.size);
}
/*
* If we are auto-sensing, then we are done.
*/
if (cp->host_flags & HF_SENSE) {
*ofs = dp_ofs;
return 0;
}
/*
* Deduce the index of the sg entry.
* Keep track of the index of the first valid entry.
* If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
* end of the data.
*/
tmp = scr_to_cpu(cp->phys.head.goalp);
dp_sg = SYM_CONF_MAX_SG;
if (dp_scr != tmp)
dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
/*
* Move to the sg entry the data pointer belongs to.
*
* If we are inside the data area, we expect result to be:
*
* Either,
* dp_ofs = 0 and dp_sg is the index of the sg entry
* the data pointer belongs to (or the end of the data)
* Or,
* dp_ofs < 0 and dp_sg is the index of the sg entry
* the data pointer belongs to + 1.
*/
if (dp_ofs < 0) {
int n;
while (dp_sg > dp_sgmin) {
--dp_sg;
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
n = dp_ofs + (tmp & 0xffffff);
if (n > 0) {
++dp_sg;
break;
}
dp_ofs = n;
}
}
else if (dp_ofs > 0) {
while (dp_sg < SYM_CONF_MAX_SG) {
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
dp_ofs -= (tmp & 0xffffff);
++dp_sg;
if (dp_ofs <= 0)
break;
}
}
/*
* Make sure the data pointer is inside the data area.
* If not, return some error.
*/
if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
goto out_err;
else if (dp_sg > SYM_CONF_MAX_SG ||
(dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
goto out_err;
/*
* Save the extreme pointer if needed.
*/
if (dp_sg > cp->ext_sg ||
(dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
cp->ext_sg = dp_sg;
cp->ext_ofs = dp_ofs;
}
/*
* Return data.
*/
*ofs = dp_ofs;
return dp_sg;
out_err:
return -1;
}
/*
* chip handler for MODIFY DATA POINTER MESSAGE
*
* We also call this function on IGNORE WIDE RESIDUE
* messages that do not match a SWIDE full condition.
* Btw, we assume in that situation that such a message
* is equivalent to a MODIFY DATA POINTER (offset=-1).
*/
static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
{
int dp_ofs = ofs;
u32 dp_scr = INL (nc_temp);
u32 dp_ret;
u32 tmp;
u_char hflags;
int dp_sg;
struct sym_pmc *pm;
/*
* Not supported for auto-sense.
*/
if (cp->host_flags & HF_SENSE)
goto out_reject;
/*
* Apply our alchemy:) (see comments in sym_evaluate_dp()),
* to the resulted data pointer.
*/
dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
if (dp_sg < 0)
goto out_reject;
/*
* And our alchemy:) allows to easily calculate the data
* script address we want to return for the next data phase.
*/
dp_ret = cpu_to_scr(cp->phys.head.goalp);
dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
/*
* If offset / scatter entry is zero we donnot need
* a context for the new current data pointer.
*/
if (dp_ofs == 0) {
dp_scr = dp_ret;
goto out_ok;
}
/*
* Get a context for the new current data pointer.
*/
hflags = INB (HF_PRT);
if (hflags & HF_DP_SAVED)
hflags ^= HF_ACT_PM;
if (!(hflags & HF_ACT_PM)) {
pm = &cp->phys.pm0;
dp_scr = SCRIPTA_BA (np, pm0_data);
}
else {
pm = &cp->phys.pm1;
dp_scr = SCRIPTA_BA (np, pm1_data);
}
hflags &= ~(HF_DP_SAVED);
OUTB (HF_PRT, hflags);
/*
* Set up the new current data pointer.
* ofs < 0 there, and for the next data phase, we
* want to transfer part of the data of the sg entry
* corresponding to index dp_sg-1 prior to returning
* to the main data script.
*/
pm->ret = cpu_to_scr(dp_ret);
tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
pm->sg.addr = cpu_to_scr(tmp);
pm->sg.size = cpu_to_scr(-dp_ofs);
out_ok:
OUTL (nc_temp, dp_scr);
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
out_reject:
OUTL_DSP (SCRIPTB_BA (np, msg_bad));
}
/*
* chip calculation of the data residual.
*
* As I used to say, the requirement of data residual
* in SCSI is broken, useless and cannot be achieved
* without huge complexity.
* But most OSes and even the official CAM require it.
* When stupidity happens to be so widely spread inside
* a community, it gets hard to convince.
*
* Anyway, I don't care, since I am not going to use
* any software that considers this data residual as
* a relevant information. :)
*/
static int sym_compute_residual(hcb_p np, ccb_p cp)
{
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
int dp_sg, dp_sgmin, resid = 0;
int dp_ofs = 0;
/*
* Check for some data lost or just thrown away.
* We are not required to be quite accurate in this
* situation. Btw, if we are odd for output and the
* device claims some more data, it may well happen
* than our residual be zero. :-)
*/
if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
if (cp->xerr_status & XE_EXTRA_DATA)
resid -= cp->extra_bytes;
if (cp->xerr_status & XE_SODL_UNRUN)
++resid;
if (cp->xerr_status & XE_SWIDE_OVRUN)
--resid;
}
/*
* If all data has been transferred,
* there is no residual.
*/
if (cp->phys.head.lastp == cp->phys.head.goalp)
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
return resid;
/*
* If no data transfer occurs, or if the data
* pointer is weird, return full residual.
*/
if (cp->startp == cp->phys.head.lastp ||
sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
&dp_ofs) < 0) {
return cp->data_len;
}
/*
* If we were auto-sensing, then we are done.
*/
if (cp->host_flags & HF_SENSE) {
return -dp_ofs;
}
/*
* We are now full comfortable in the computation
* of the data residual (2's complement).
*/
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
resid = -cp->ext_ofs;
for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
resid += (tmp & 0xffffff);
}
/*
* Hopefully, the result is not too wrong.
*/
return resid;
}
/*
* Print out the content of a SCSI message.
*/
static int sym_show_msg (u_char * msg)
{
u_char i;
printf ("%x",*msg);
if (*msg==M_EXTENDED) {
for (i=1;i<8;i++) {
if (i-1>msg[1]) break;
printf ("-%x",msg[i]);
};
return (i+1);
} else if ((*msg & 0xf0) == 0x20) {
printf ("-%x",msg[1]);
return (2);
};
return (1);
}
static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
{
PRINT_ADDR(cp);
if (label)
printf ("%s: ", label);
(void) sym_show_msg (msg);
printf (".\n");
}
/*
* Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
*
* When we try to negotiate, we append the negotiation message
* to the identify and (maybe) simple tag message.
* The host status field is set to HS_NEGOTIATE to mark this
* situation.
*
* If the target doesn't answer this message immediately
* (as required by the standard), the SIR_NEGO_FAILED interrupt
* will be raised eventually.
* The handler removes the HS_NEGOTIATE status, and sets the
* negotiated value to the default (async / nowide).
*
* If we receive a matching answer immediately, we check it
* for validity, and set the values.
*
* If we receive a Reject message immediately, we assume the
* negotiation has failed, and fall back to standard values.
*
* If we receive a negotiation message while not in HS_NEGOTIATE
* state, it's a target initiated negotiation. We prepare a
* (hopefully) valid answer, set our parameters, and send back
* this answer to the target.
*
* If the target doesn't fetch the answer (no message out phase),
* we assume the negotiation has failed, and fall back to default
* settings (SIR_NEGO_PROTO interrupt).
*
* When we set the values, we adjust them in all ccbs belonging
* to this target, in the controller's register, and in the "phys"
* field of the controller's struct sym_hcb.
*/
/*
* chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
*/
static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, ofs, per, fak, div;
int req = 1;
/*
* Synchronous request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msgin", np->msgin);
};
/*
* request or answer ?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_SYNC)
goto reject_it;
req = 0;
}
/*
* get requested values.
*/
chg = 0;
per = np->msgin[3];
ofs = np->msgin[4];
/*
* check values against our limits.
*/
if (ofs) {
if (ofs > np->maxoffs)
{chg = 1; ofs = np->maxoffs;}
if (req) {
if (ofs > tp->tinfo.user.offset)
{chg = 1; ofs = tp->tinfo.user.offset;}
}
}
if (ofs) {
if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (req) {
if (per < tp->tinfo.user.period)
{chg = 1; per = tp->tinfo.user.period;}
}
}
div = fak = 0;
if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
goto reject_it;
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
ofs, per, div, fak, chg);
}
/*
* This was an answer message
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable. */
goto reject_it;
sym_setsync (np, cp, ofs, per, div, fak);
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
}
/*
* It was a request. Set value and
* prepare an answer message
*/
sym_setsync (np, cp, ofs, per, div, fak);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 3;
np->msgout[2] = M_X_SYNC_REQ;
np->msgout[3] = per;
np->msgout[4] = ofs;
cp->nego_status = NS_SYNC;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msgout", np->msgout);
}
np->msgin [0] = M_NOOP;
OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
return;
reject_it:
sym_setsync (np, cp, 0, 0, 0, 0);
OUTL_DSP (SCRIPTB_BA (np, msg_bad));
}
/*
* chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
*/
static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, ofs, per, fak, dt, div, wide;
int req = 1;
/*
* Synchronous request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "ppr msgin", np->msgin);
};
/*
* get requested values.
*/
chg = 0;
per = np->msgin[3];
ofs = np->msgin[5];
wide = np->msgin[6];
dt = np->msgin[7] & PPR_OPT_DT;
/*
* request or answer ?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_PPR)
goto reject_it;
req = 0;
}
/*
* check values against our limits.
*/
if (wide > np->maxwide)
{chg = 1; wide = np->maxwide;}
if (!wide || !(np->features & FE_ULTRA3))
dt &= ~PPR_OPT_DT;
if (req) {
if (wide > tp->tinfo.user.width)
{chg = 1; wide = tp->tinfo.user.width;}
}
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
dt &= ~PPR_OPT_DT;
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
if (ofs) {
if (dt) {
if (ofs > np->maxoffs_dt)
{chg = 1; ofs = np->maxoffs_dt;}
}
else if (ofs > np->maxoffs)
{chg = 1; ofs = np->maxoffs;}
if (req) {
if (ofs > tp->tinfo.user.offset)
{chg = 1; ofs = tp->tinfo.user.offset;}
}
}
if (ofs) {
if (dt) {
if (per < np->minsync_dt)
{chg = 1; per = np->minsync_dt;}
}
else if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (req) {
if (per < tp->tinfo.user.period)
{chg = 1; per = tp->tinfo.user.period;}
}
}
div = fak = 0;
if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
goto reject_it;
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("ppr: "
"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
dt, ofs, per, wide, div, fak, chg);
}
/*
* It was an answer.
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable */
goto reject_it;
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
}
/*
* It was a request. Set value and
* prepare an answer message
*/
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 6;
np->msgout[2] = M_X_PPR_REQ;
np->msgout[3] = per;
np->msgout[4] = 0;
np->msgout[5] = ofs;
np->msgout[6] = wide;
np->msgout[7] = dt;
cp->nego_status = NS_PPR;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "ppr msgout", np->msgout);
}
np->msgin [0] = M_NOOP;
OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
return;
reject_it:
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
OUTL_DSP (SCRIPTB_BA (np, msg_bad));
/*
* If it was a device response that should result in
* ST, we may want to try a legacy negotiation later.
*/
if (!req && !dt) {
tp->tinfo.goal.options = 0;
tp->tinfo.goal.width = wide;
tp->tinfo.goal.period = per;
tp->tinfo.goal.offset = ofs;
}
}
/*
* chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
*/
static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, wide;
int req = 1;
/*
* Wide request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "wide msgin", np->msgin);
};
/*
* Is it a request from the device?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_WIDE)
goto reject_it;
req = 0;
}
/*
* get requested values.
*/
chg = 0;
wide = np->msgin[3];
/*
* check values against driver limits.
*/
if (wide > np->maxwide)
{chg = 1; wide = np->maxwide;}
if (req) {
if (wide > tp->tinfo.user.width)
{chg = 1; wide = tp->tinfo.user.width;}
}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
}
/*
* This was an answer message
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable. */
goto reject_it;
sym_setwide (np, cp, wide);
/*
* Negotiate for SYNC immediately after WIDE response.
* This allows to negotiate for both WIDE and SYNC on
* a single SCSI command (Suggested by Justin Gibbs).
*/
if (tp->tinfo.goal.offset) {
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 3;
np->msgout[2] = M_X_SYNC_REQ;
np->msgout[3] = tp->tinfo.goal.period;
np->msgout[4] = tp->tinfo.goal.offset;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msgout", np->msgout);
}
cp->nego_status = NS_SYNC;
OUTB (HS_PRT, HS_NEGOTIATE);
OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
return;
}
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
};
/*
* It was a request, set value and
* prepare an answer message
*/
sym_setwide (np, cp, wide);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 2;
np->msgout[2] = M_X_WIDE_REQ;
np->msgout[3] = wide;
np->msgin [0] = M_NOOP;
cp->nego_status = NS_WIDE;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "wide msgout", np->msgout);
}
OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
return;
reject_it:
OUTL_DSP (SCRIPTB_BA (np, msg_bad));
}
/*
* Reset SYNC or WIDE to default settings.
*
* Called when a negotiation does not succeed either
* on rejection or on protocol error.
*
* If it was a PPR that made problems, we may want to
* try a legacy negotiation later.
*/
static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
{
/*
* any error in negotiation:
* fall back to default mode.
*/
switch (cp->nego_status) {
case NS_PPR:
#if 0
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
#else
tp->tinfo.goal.options = 0;
if (tp->tinfo.goal.period < np->minsync)
tp->tinfo.goal.period = np->minsync;
if (tp->tinfo.goal.offset > np->maxoffs)
tp->tinfo.goal.offset = np->maxoffs;
#endif
break;
case NS_SYNC:
sym_setsync (np, cp, 0, 0, 0, 0);
break;
case NS_WIDE:
sym_setwide (np, cp, 0);
break;
};
np->msgin [0] = M_NOOP;
np->msgout[0] = M_NOOP;
cp->nego_status = 0;
}
/*
* chip handler for MESSAGE REJECT received in response to
* a WIDE or SYNCHRONOUS negotiation.
*/
static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
{
sym_nego_default(np, tp, cp);
OUTB (HS_PRT, HS_BUSY);
}
/*
* chip exception handler for programmed interrupts.
*/
static void sym_int_sir (hcb_p np)
{
u_char num = INB (nc_dsps);
u32 dsa = INL (nc_dsa);
ccb_p cp = sym_ccb_from_dsa(np, dsa);
u_char target = INB (nc_sdid) & 0x0f;
tcb_p tp = &np->target[target];
int tmp;
SYM_LOCK_ASSERT(MA_OWNED);
if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
switch (num) {
/*
* Command has been completed with error condition
* or has been auto-sensed.
*/
case SIR_COMPLETE_ERROR:
sym_complete_error(np, cp);
return;
/*
* The C code is currently trying to recover from something.
* Typically, user want to abort some command.
*/
case SIR_SCRIPT_STOPPED:
case SIR_TARGET_SELECTED:
case SIR_ABORT_SENT:
sym_sir_task_recovery(np, num);
return;
/*
* The device didn't go to MSG OUT phase after having
* been selected with ATN. We donnot want to handle
* that.
*/
case SIR_SEL_ATN_NO_MSG_OUT:
printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
sym_name (np), target);
goto out_stuck;
/*
* The device didn't switch to MSG IN phase after
* having reseleted the initiator.
*/
case SIR_RESEL_NO_MSG_IN:
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
printf ("%s:%d: No MSG IN phase after reselection.\n",
sym_name (np), target);
goto out_stuck;
/*
* After reselection, the device sent a message that wasn't
* an IDENTIFY.
*/
case SIR_RESEL_NO_IDENTIFY:
Simplifications: - Remove all the code intended to deal with experimental C1010 revisions. This code got useless due to commercial chip revisions having been fixed. Fixes: - Rewrite/rework the WSR condition handling. Previous drivers snooped on the BUS through the SBDL IO register and this has been discovered to trigger a spurious SCSI parity error when WSR had been set by chip and cleared by SCRIPTS prior to reading SBDL bit [0...7]. On the other hand, the C1010 does not use the SWIDE register when synchronous data transfers are taking place and requires a CHMOV (1) WHEN DATA_IN to be performed in order to move to memory the residual byte when WSR is set and the residual byte is useful data. BTW, the new WSR handling by the driver is simpler. - No longer attempt to read from SCRIPTS the SBDL register. This is intended to avoid to be victimized again by any other issue regarding the handling of this register by 8xx chips. Miscellaneous: - The driver is now able to handle the WSR + IGN RESIDUE condition at the end of a DATA IN I/O without need of a programmed interrupt. It is a minor? optimization. - A few other minor cosmetic changes. This driver version fixes notably a permanent SCSI parity error condition at boot that can be triggerred due to recent changes in cam_xpt.c between 1.79 and 1.80. Changes in CAM/XPT are fine, but the new handling of the full INQUIRY may trigger the driver problem when a target returned an odd value in the `additionnal length' field of the INQUIRY response. The diff against previous driver version is large, but it consists approximatively in: - 350 lignes removed and not compiled in previous drivers (They addressed experimental C1010 revisions) - 250 lignes added or changed, half being comments or empty lines. So, in fact, the real changes are about 120 lines of source. About 80 lines address SCRIPTS changes and about 40 lines address C code changes. Approved by: jkh New WSR handling reviewed by Pamela Delaney <pam.delaney@lsil.com> (For back-porting to Linux sym53c8xx driver 1.6x series)
2000-02-13 12:14:07 +00:00
printf ("%s:%d: No IDENTIFY after reselection.\n",
sym_name (np), target);
goto out_stuck;
/*
* The device reselected a LUN we donnot know about.
*/
case SIR_RESEL_BAD_LUN:
np->msgout[0] = M_RESET;
goto out;
/*
* The device reselected for an untagged nexus and we
* haven't any.
*/
case SIR_RESEL_BAD_I_T_L:
np->msgout[0] = M_ABORT;
goto out;
/*
* The device reselected for a tagged nexus that we donnot
* have.
*/
case SIR_RESEL_BAD_I_T_L_Q:
np->msgout[0] = M_ABORT_TAG;
goto out;
/*
* The SCRIPTS let us know that the device has grabbed
* our message and will abort the job.
*/
case SIR_RESEL_ABORTED:
np->lastmsg = np->msgout[0];
np->msgout[0] = M_NOOP;
printf ("%s:%d: message %x sent on bad reselection.\n",
sym_name (np), target, np->lastmsg);
goto out;
/*
* The SCRIPTS let us know that a message has been
* successfully sent to the device.
*/
case SIR_MSG_OUT_DONE:
np->lastmsg = np->msgout[0];
np->msgout[0] = M_NOOP;
/* Should we really care of that */
if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
if (cp) {
cp->xerr_status &= ~XE_PARITY_ERR;
if (!cp->xerr_status)
OUTOFFB (HF_PRT, HF_EXT_ERR);
}
}
goto out;
/*
* The device didn't send a GOOD SCSI status.
* We may have some work to do prior to allow
* the SCRIPTS processor to continue.
*/
case SIR_BAD_SCSI_STATUS:
if (!cp)
goto out;
sym_sir_bad_scsi_status(np, num, cp);
return;
/*
* We are asked by the SCRIPTS to prepare a
* REJECT message.
*/
case SIR_REJECT_TO_SEND:
sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
np->msgout[0] = M_REJECT;
goto out;
/*
* We have been ODD at the end of a DATA IN
* transfer and the device didn't send a
* IGNORE WIDE RESIDUE message.
* It is a data overrun condition.
*/
case SIR_SWIDE_OVERRUN:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_SWIDE_OVRUN;
}
goto out;
/*
* We have been ODD at the end of a DATA OUT
* transfer.
* It is a data underrun condition.
*/
case SIR_SODL_UNDERRUN:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_SODL_UNRUN;
}
goto out;
/*
* The device wants us to tranfer more data than
* expected or in the wrong direction.
* The number of extra bytes is in scratcha.
* It is a data overrun condition.
*/
case SIR_DATA_OVERRUN:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_EXTRA_DATA;
cp->extra_bytes += INL (nc_scratcha);
}
goto out;
/*
* The device switched to an illegal phase (4/5).
*/
case SIR_BAD_PHASE:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_BAD_PHASE;
}
goto out;
/*
* We received a message.
*/
case SIR_MSG_RECEIVED:
if (!cp)
goto out_stuck;
switch (np->msgin [0]) {
/*
* We received an extended message.
* We handle MODIFY DATA POINTER, SDTR, WDTR
* and reject all other extended messages.
*/
case M_EXTENDED:
switch (np->msgin [2]) {
case M_X_MODIFY_DP:
if (DEBUG_FLAGS & DEBUG_POINTER)
sym_print_msg(cp,"modify DP",np->msgin);
tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
(np->msgin[5]<<8) + (np->msgin[6]);
sym_modify_dp(np, tp, cp, tmp);
return;
case M_X_SYNC_REQ:
sym_sync_nego(np, tp, cp);
return;
case M_X_PPR_REQ:
sym_ppr_nego(np, tp, cp);
return;
case M_X_WIDE_REQ:
sym_wide_nego(np, tp, cp);
return;
default:
goto out_reject;
}
break;
/*
* We received a 1/2 byte message not handled from SCRIPTS.
* We are only expecting MESSAGE REJECT and IGNORE WIDE
* RESIDUE messages that haven't been anticipated by
* SCRIPTS on SWIDE full condition. Unanticipated IGNORE
* WIDE RESIDUE messages are aliased as MODIFY DP (-1).
*/
case M_IGN_RESIDUE:
if (DEBUG_FLAGS & DEBUG_POINTER)
sym_print_msg(cp,"ign wide residue", np->msgin);
sym_modify_dp(np, tp, cp, -1);
return;
case M_REJECT:
if (INB (HS_PRT) == HS_NEGOTIATE)
sym_nego_rejected(np, tp, cp);
else {
PRINT_ADDR(cp);
printf ("M_REJECT received (%x:%x).\n",
scr_to_cpu(np->lastmsg), np->msgout[0]);
}
goto out_clrack;
break;
default:
goto out_reject;
}
break;
/*
* We received an unknown message.
* Ignore all MSG IN phases and reject it.
*/
case SIR_MSG_WEIRD:
sym_print_msg(cp, "WEIRD message received", np->msgin);
OUTL_DSP (SCRIPTB_BA (np, msg_weird));
return;
/*
* Negotiation failed.
* Target does not send us the reply.
* Remove the HS_NEGOTIATE status.
*/
case SIR_NEGO_FAILED:
OUTB (HS_PRT, HS_BUSY);
/*
* Negotiation failed.
* Target does not want answer message.
*/
case SIR_NEGO_PROTO:
sym_nego_default(np, tp, cp);
goto out;
};
out:
OUTONB_STD ();
return;
out_reject:
OUTL_DSP (SCRIPTB_BA (np, msg_bad));
return;
out_clrack:
OUTL_DSP (SCRIPTA_BA (np, clrack));
return;
out_stuck:
return;
}
/*
* Acquire a control block
*/
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
u_short tag = NO_TAG;
SYM_QUEHEAD *qp;
ccb_p cp = (ccb_p) NULL;
/*
* Look for a free CCB
*/
if (sym_que_empty(&np->free_ccbq))
goto out;
qp = sym_remque_head(&np->free_ccbq);
if (!qp)
goto out;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
/*
* If the LCB is not yet available and the LUN
* has been probed ok, try to allocate the LCB.
*/
if (!lp && sym_is_bit(tp->lun_map, ln)) {
lp = sym_alloc_lcb(np, tn, ln);
if (!lp)
goto out_free;
}
/*
* If the LCB is not available here, then the
* logical unit is not yet discovered. For those
* ones only accept 1 SCSI IO per logical unit,
* since we cannot allow disconnections.
*/
if (!lp) {
if (!sym_is_bit(tp->busy0_map, ln))
sym_set_bit(tp->busy0_map, ln);
else
goto out_free;
} else {
/*
* If we have been asked for a tagged command.
*/
if (tag_order) {
/*
* Debugging purpose.
*/
assert(lp->busy_itl == 0);
/*
* Allocate resources for tags if not yet.
*/
if (!lp->cb_tags) {
sym_alloc_lcb_tags(np, tn, ln);
if (!lp->cb_tags)
goto out_free;
}
/*
* Get a tag for this SCSI IO and set up
* the CCB bus address for reselection,
* and count it for this LUN.
* Toggle reselect path to tagged.
*/
if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
tag = lp->cb_tags[lp->ia_tag];
if (++lp->ia_tag == SYM_CONF_MAX_TASK)
lp->ia_tag = 0;
lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
++lp->busy_itlq;
lp->head.resel_sa =
cpu_to_scr(SCRIPTA_BA (np, resel_tag));
}
else
goto out_free;
}
/*
* This command will not be tagged.
* If we already have either a tagged or untagged
* one, refuse to overlap this untagged one.
*/
else {
/*
* Debugging purpose.
*/
assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
/*
* Count this nexus for this LUN.
* Set up the CCB bus address for reselection.
* Toggle reselect path to untagged.
*/
if (++lp->busy_itl == 1) {
lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
lp->head.resel_sa =
cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
}
else
goto out_free;
}
}
/*
* Put the CCB into the busy queue.
*/
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
/*
* Remember all informations needed to free this CCB.
*/
cp->to_abort = 0;
cp->tag = tag;
cp->target = tn;
cp->lun = ln;
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_LUN(np, tn, ln);
printf ("ccb @%p using tag %d.\n", cp, tag);
}
out:
return cp;
out_free:
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
return NULL;
}
/*
* Release one control block
*/
static void sym_free_ccb (hcb_p np, ccb_p cp)
{
tcb_p tp = &np->target[cp->target];
lcb_p lp = sym_lp(np, tp, cp->lun);
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_LUN(np, cp->target, cp->lun);
printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
}
/*
* If LCB available,
*/
if (lp) {
/*
* If tagged, release the tag, set the relect path
*/
if (cp->tag != NO_TAG) {
/*
* Free the tag value.
*/
lp->cb_tags[lp->if_tag] = cp->tag;
if (++lp->if_tag == SYM_CONF_MAX_TASK)
lp->if_tag = 0;
/*
* Make the reselect path invalid,
* and uncount this CCB.
*/
lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
--lp->busy_itlq;
} else { /* Untagged */
/*
* Make the reselect path invalid,
* and uncount this CCB.
*/
lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
--lp->busy_itl;
}
/*
* If no JOB active, make the LUN reselect path invalid.
*/
if (lp->busy_itlq == 0 && lp->busy_itl == 0)
lp->head.resel_sa =
cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
}
/*
* Otherwise, we only accept 1 IO per LUN.
* Clear the bit that keeps track of this IO.
*/
else
sym_clr_bit(tp->busy0_map, cp->lun);
/*
* We donnot queue more than 1 ccb per target
* with negotiation at any time. If this ccb was
* used for negotiation, clear this info in the tcb.
*/
if (cp == tp->nego_cp)
tp->nego_cp = NULL;
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If we just complete the last queued CCB,
* clear this info that is no longer relevant.
*/
if (cp == np->last_cp)
np->last_cp = NULL;
#endif
/*
* Unmap user data from DMA map if needed.
*/
if (cp->dmamapped) {
bus_dmamap_unload(np->data_dmat, cp->dmamap);
cp->dmamapped = 0;
}
/*
* Make this CCB available.
*/
cp->cam_ccb = NULL;
cp->host_status = HS_IDLE;
sym_remque(&cp->link_ccbq);
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
}
/*
* Allocate a CCB from memory and initialize its fixed part.
*/
static ccb_p sym_alloc_ccb(hcb_p np)
{
ccb_p cp = NULL;
int hcode;
SYM_LOCK_ASSERT(MA_NOTOWNED);
/*
* Prevent from allocating more CCBs than we can
* queue to the controller.
*/
if (np->actccbs >= SYM_CONF_MAX_START)
return NULL;
/*
* Allocate memory for this CCB.
*/
cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
if (!cp)
return NULL;
/*
* Allocate a bounce buffer for sense data.
*/
cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
if (!cp->sns_bbuf)
goto out_free;
/*
* Allocate a map for the DMA of user data.
*/
if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
goto out_free;
/*
* Count it.
*/
np->actccbs++;
/*
* Initialize the callout.
*/
callout_init(&cp->ch, 1);
/*
* Compute the bus address of this ccb.
*/
cp->ccb_ba = vtobus(cp);
/*
* Insert this ccb into the hashed list.
*/
hcode = CCB_HASH_CODE(cp->ccb_ba);
cp->link_ccbh = np->ccbh[hcode];
np->ccbh[hcode] = cp;
/*
* Initialize the start and restart actions.
*/
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
/*
* Initilialyze some other fields.
*/
cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
/*
* Chain into free ccb queue.
*/
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
return cp;
out_free:
if (cp->sns_bbuf)
sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
sym_mfree_dma(cp, sizeof(*cp), "CCB");
return NULL;
}
/*
* Look up a CCB from a DSA value.
*/
static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
{
int hcode;
ccb_p cp;
hcode = CCB_HASH_CODE(dsa);
cp = np->ccbh[hcode];
while (cp) {
if (cp->ccb_ba == dsa)
break;
cp = cp->link_ccbh;
}
return cp;
}
/*
* Target control block initialisation.
* Nothing important to do at the moment.
*/
static void sym_init_tcb (hcb_p np, u_char tn)
{
/*
* Check some alignments required by the chip.
*/
assert (((offsetof(struct sym_reg, nc_sxfer) ^
offsetof(struct sym_tcb, head.sval)) &3) == 0);
assert (((offsetof(struct sym_reg, nc_scntl3) ^
offsetof(struct sym_tcb, head.wval)) &3) == 0);
}
/*
* Lun control block allocation and initialization.
*/
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
/*
* Already done, just return.
*/
if (lp)
return lp;
/*
* Check against some race.
*/
assert(!sym_is_bit(tp->busy0_map, ln));
/*
* Initialize the target control block if not yet.
*/
sym_init_tcb (np, tn);
/*
* Allocate the LCB bus address array.
* Compute the bus address of this table.
*/
if (ln && !tp->luntbl) {
int i;
tp->luntbl = sym_calloc_dma(256, "LUNTBL");
if (!tp->luntbl)
goto fail;
for (i = 0 ; i < 64 ; i++)
tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
}
/*
* Allocate the table of pointers for LUN(s) > 0, if needed.
*/
if (ln && !tp->lunmp) {
tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
"LUNMP");
if (!tp->lunmp)
goto fail;
}
/*
* Allocate the lcb.
* Make it available to the chip.
*/
lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
if (!lp)
goto fail;
if (ln) {
tp->lunmp[ln] = lp;
tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
}
else {
tp->lun0p = lp;
tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
}
/*
* Let the itl task point to error handling.
*/
lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
/*
* Set the reselect pattern to our default. :)
*/
lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
/*
* Set user capabilities.
*/
lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
fail:
return lp;
}
/*
* Allocate LCB resources for tagged command queuing.
*/
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
int i;
/*
* If LCB not available, try to allocate it.
*/
if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
return;
/*
* Allocate the task table and and the tag allocation
* circular buffer. We want both or none.
*/
lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
if (!lp->itlq_tbl)
return;
lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
if (!lp->cb_tags) {
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
lp->itlq_tbl = 0;
return;
}
/*
* Initialize the task table with invalid entries.
*/
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
/*
* Fill up the tag buffer with tag numbers.
*/
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
lp->cb_tags[i] = i;
/*
* Make the task table available to SCRIPTS,
* And accept tagged commands now.
*/
lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
}
/*
* Test the pci bus snoop logic :-(
*
* Has to be called with interrupts disabled.
*/
#ifndef SYM_CONF_IOMAPPED
static int sym_regtest (hcb_p np)
{
register volatile u32 data;
/*
* chip registers may NOT be cached.
* write 0xffffffff to a read only register area,
* and try to read it back.
*/
data = 0xffffffff;
OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
#if 1
if (data == 0xffffffff) {
#else
if ((data & 0xe2f0fffd) != 0x02000080) {
#endif
printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
(unsigned) data);
return (0x10);
};
return (0);
}
#endif
static int sym_snooptest (hcb_p np)
{
u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
int i, err=0;
#ifndef SYM_CONF_IOMAPPED
err |= sym_regtest (np);
if (err) return (err);
#endif
restart_test:
/*
* Enable Master Parity Checking as we intend
* to enable it for normal operations.
*/
OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
/*
* init
*/
pc = SCRIPTB0_BA (np, snooptest);
host_wr = 1;
sym_wr = 2;
/*
* Set memory and register.
*/
np->cache = cpu_to_scr(host_wr);
OUTL (nc_temp, sym_wr);
/*
* Start script (exchange values)
*/
OUTL (nc_dsa, np->hcb_ba);
OUTL_DSP (pc);
/*
* Wait 'til done (with timeout)
*/
for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
if (INB(nc_istat) & (INTF|SIP|DIP))
break;
if (i>=SYM_SNOOP_TIMEOUT) {
printf ("CACHE TEST FAILED: timeout.\n");
return (0x20);
};
/*
* Check for fatal DMA errors.
*/
dstat = INB (nc_dstat);
#if 1 /* Band aiding for broken hardwares that fail PCI parity */
if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
printf ("%s: PCI DATA PARITY ERROR DETECTED - "
"DISABLING MASTER DATA PARITY CHECKING.\n",
sym_name(np));
np->rv_ctest4 &= ~MPEE;
goto restart_test;
}
#endif
if (dstat & (MDPE|BF|IID)) {
printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
return (0x80);
}
/*
* Save termination position.
*/
pc = INL (nc_dsp);
/*
* Read memory and register.
*/
host_rd = scr_to_cpu(np->cache);
sym_rd = INL (nc_scratcha);
sym_bk = INL (nc_temp);
/*
* Check termination position.
*/
if (pc != SCRIPTB0_BA (np, snoopend)+8) {
printf ("CACHE TEST FAILED: script execution failed.\n");
printf ("start=%08lx, pc=%08lx, end=%08lx\n",
(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
(u_long) SCRIPTB0_BA (np, snoopend) +8);
return (0x40);
};
/*
* Show results.
*/
if (host_wr != sym_rd) {
printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
(int) host_wr, (int) sym_rd);
err |= 1;
};
if (host_rd != sym_wr) {
printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
(int) sym_wr, (int) host_rd);
err |= 2;
};
if (sym_bk != sym_wr) {
printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
(int) sym_wr, (int) sym_bk);
err |= 4;
};
return (err);
}
/*
* Determine the chip's clock frequency.
*
* This is essential for the negotiation of the synchronous
* transfer rate.
*
* Note: we have to return the correct value.
* THERE IS NO SAFE DEFAULT VALUE.
*
* Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
* 53C860 and 53C875 rev. 1 support fast20 transfers but
* do not have a clock doubler and so are provided with a
* 80 MHz clock. All other fast20 boards incorporate a doubler
* and so should be delivered with a 40 MHz clock.
* The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
* clock and provide a clock quadrupler (160 Mhz).
*/
/*
* Select SCSI clock frequency
*/
static void sym_selectclock(hcb_p np, u_char scntl3)
{
/*
* If multiplier not present or not selected, leave here.
*/
if (np->multiplier <= 1) {
OUTB(nc_scntl3, scntl3);
return;
}
if (sym_verbose >= 2)
printf ("%s: enabling clock multiplier\n", sym_name(np));
OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
/*
* Wait for the LCKFRQ bit to be set if supported by the chip.
* Otherwise wait 20 micro-seconds.
*/
if (np->features & FE_LCKFRQ) {
int i = 20;
while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
UDELAY (20);
if (!i)
printf("%s: the chip cannot lock the frequency\n",
sym_name(np));
} else
UDELAY (20);
OUTB(nc_stest3, HSC); /* Halt the scsi clock */
OUTB(nc_scntl3, scntl3);
OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
OUTB(nc_stest3, 0x00); /* Restart scsi clock */
}
/*
* calculate SCSI clock frequency (in KHz)
*/
static unsigned getfreq (hcb_p np, int gen)
{
unsigned int ms = 0;
unsigned int f;
/*
* Measure GEN timer delay in order
* to calculate SCSI clock frequency
*
* This code will never execute too
* many loop iterations (if DELAY is
* reasonably correct). It could get
* too low a delay (too high a freq.)
* if the CPU is slow executing the
* loop for some reason (an NMI, for
* example). For this reason we will
* if multiple measurements are to be
* performed trust the higher delay
* (lower frequency returned).
*/
OUTW (nc_sien , 0); /* mask all scsi interrupts */
(void) INW (nc_sist); /* clear pending scsi interrupt */
OUTB (nc_dien , 0); /* mask all dma interrupts */
(void) INW (nc_sist); /* another one, just to be sure :) */
OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
OUTB (nc_stime1, 0); /* disable general purpose timer */
OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
while (!(INW(nc_sist) & GEN) && ms++ < 100000)
UDELAY (1000); /* count ms */
OUTB (nc_stime1, 0); /* disable general purpose timer */
/*
* set prescaler to divide by whatever 0 means
* 0 ought to choose divide by 2, but appears
* to set divide by 3.5 mode in my 53c810 ...
*/
OUTB (nc_scntl3, 0);
/*
* adjust for prescaler, and convert into KHz
*/
f = ms ? ((1 << gen) * 4340) / ms : 0;
if (sym_verbose >= 2)
printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
sym_name(np), gen, ms, f);
return f;
}
static unsigned sym_getfreq (hcb_p np)
{
u_int f1, f2;
int gen = 11;
(void) getfreq (np, gen); /* throw away first result */
f1 = getfreq (np, gen);
f2 = getfreq (np, gen);
if (f1 > f2) f1 = f2; /* trust lower result */
return f1;
}
/*
* Get/probe chip SCSI clock frequency
*/
static void sym_getclock (hcb_p np, int mult)
{
unsigned char scntl3 = np->sv_scntl3;
unsigned char stest1 = np->sv_stest1;
unsigned f1;
/*
* For the C10 core, assume 40 MHz.
*/
if (np->features & FE_C10) {
np->multiplier = mult;
np->clock_khz = 40000 * mult;
return;
}
np->multiplier = 1;
f1 = 40000;
/*
* True with 875/895/896/895A with clock multiplier selected
*/
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
if (sym_verbose >= 2)
printf ("%s: clock multiplier found\n", sym_name(np));
np->multiplier = mult;
}
/*
* If multiplier not found or scntl3 not 7,5,3,
* reset chip and get frequency from general purpose timer.
* Otherwise trust scntl3 BIOS setting.
*/
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
OUTB (nc_stest1, 0); /* make sure doubler is OFF */
f1 = sym_getfreq (np);
if (sym_verbose)
printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
if (f1 < 45000) f1 = 40000;
else if (f1 < 55000) f1 = 50000;
else f1 = 80000;
if (f1 < 80000 && mult > 1) {
if (sym_verbose >= 2)
printf ("%s: clock multiplier assumed\n",
sym_name(np));
np->multiplier = mult;
}
} else {
if ((scntl3 & 7) == 3) f1 = 40000;
else if ((scntl3 & 7) == 5) f1 = 80000;
else f1 = 160000;
f1 /= np->multiplier;
}
/*
* Compute controller synchronous parameters.
*/
f1 *= np->multiplier;
np->clock_khz = f1;
}
/*
* Get/probe PCI clock frequency
*/
static int sym_getpciclock (hcb_p np)
{
int f = 0;
/*
* For the C1010-33, this doesn't work.
* For the C1010-66, this will be tested when I'll have
* such a beast to play with.
*/
if (!(np->features & FE_C10)) {
OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
f = (int) sym_getfreq (np);
OUTB (nc_stest1, 0);
}
np->pciclk_khz = f;
return f;
}
/*============= DRIVER ACTION/COMPLETION ====================*/
/*
* Print something that tells about extended errors.
*/
static void sym_print_xerr(ccb_p cp, int x_status)
{
if (x_status & XE_PARITY_ERR) {
PRINT_ADDR(cp);
printf ("unrecovered SCSI parity error.\n");
}
if (x_status & XE_EXTRA_DATA) {
PRINT_ADDR(cp);
printf ("extraneous data discarded.\n");
}
if (x_status & XE_BAD_PHASE) {
PRINT_ADDR(cp);
printf ("illegal scsi phase (4/5).\n");
}
if (x_status & XE_SODL_UNRUN) {
PRINT_ADDR(cp);
printf ("ODD transfer in DATA OUT phase.\n");
}
if (x_status & XE_SWIDE_OVRUN) {
PRINT_ADDR(cp);
printf ("ODD transfer in DATA IN phase.\n");
}
}
/*
* Choose the more appropriate CAM status if
* the IO encountered an extended error.
*/
static int sym_xerr_cam_status(int cam_status, int x_status)
{
if (x_status) {
if (x_status & XE_PARITY_ERR)
cam_status = CAM_UNCOR_PARITY;
else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
cam_status = CAM_DATA_RUN_ERR;
else if (x_status & XE_BAD_PHASE)
cam_status = CAM_REQ_CMP_ERR;
else
cam_status = CAM_REQ_CMP_ERR;
}
return cam_status;
}
/*
* Complete execution of a SCSI command with extented
* error, SCSI status error, or having been auto-sensed.
*
* The SCRIPTS processor is not running there, so we
* can safely access IO registers and remove JOBs from
* the START queue.
* SCRATCHA is assumed to have been loaded with STARTPOS
* before the SCRIPTS called the C code.
*/
static void sym_complete_error (hcb_p np, ccb_p cp)
{
struct ccb_scsiio *csio;
u_int cam_status;
int i, sense_returned;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Paranoid check. :)
*/
if (!cp || !cp->cam_ccb)
return;
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
cp->host_status, cp->ssss_status, cp->host_flags,
cp->target, cp->lun);
MDELAY(100);
}
/*
* Get CAM command pointer.
*/
csio = &cp->cam_ccb->csio;
/*
* Check for extended errors.
*/
if (cp->xerr_status) {
if (sym_verbose)
sym_print_xerr(cp, cp->xerr_status);
if (cp->host_status == HS_COMPLETE)
cp->host_status = HS_COMP_ERR;
}
/*
* Calculate the residual.
*/
csio->sense_resid = 0;
csio->resid = sym_compute_residual(np, cp);
if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
csio->resid = 0; /* throw them away. :) */
cp->sv_resid = 0;
}
if (cp->host_flags & HF_SENSE) { /* Auto sense */
csio->scsi_status = cp->sv_scsi_status; /* Restore status */
csio->sense_resid = csio->resid; /* Swap residuals */
csio->resid = cp->sv_resid;
cp->sv_resid = 0;
if (sym_verbose && cp->sv_xerr_status)
sym_print_xerr(cp, cp->sv_xerr_status);
if (cp->host_status == HS_COMPLETE &&
cp->ssss_status == S_GOOD &&
cp->xerr_status == 0) {
cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
cp->sv_xerr_status);
cam_status |= CAM_AUTOSNS_VALID;
/*
* Bounce back the sense data to user and
* fix the residual.
*/
bzero(&csio->sense_data, sizeof(csio->sense_data));
sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
if (sense_returned < csio->sense_len)
csio->sense_resid = csio->sense_len -
sense_returned;
else
csio->sense_resid = 0;
bcopy(cp->sns_bbuf, &csio->sense_data,
MIN(csio->sense_len, sense_returned));
#if 0
/*
* If the device reports a UNIT ATTENTION condition
* due to a RESET condition, we should consider all
* disconnect CCBs for this unit as aborted.
*/
if (1) {
u_char *p;
p = (u_char *) csio->sense_data;
if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
sym_clear_tasks(np, CAM_REQ_ABORTED,
cp->target,cp->lun, -1);
}
#endif
}
else
cam_status = CAM_AUTOSENSE_FAIL;
}
else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
csio->scsi_status = cp->ssss_status;
cam_status = CAM_SCSI_STATUS_ERROR;
}
else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
cam_status = CAM_SEL_TIMEOUT;
else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
cam_status = CAM_UNEXP_BUSFREE;
else { /* Extended error */
if (sym_verbose) {
PRINT_ADDR(cp);
printf ("COMMAND FAILED (%x %x %x).\n",
cp->host_status, cp->ssss_status,
cp->xerr_status);
}
csio->scsi_status = cp->ssss_status;
/*
* Set the most appropriate value for CAM status.
*/
cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
cp->xerr_status);
}
/*
* Dequeue all queued CCBs for that device
* not yet started by SCRIPTS.
*/
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
/*
* Restart the SCRIPTS processor.
*/
OUTL_DSP (SCRIPTA_BA (np, start));
/*
* Synchronize DMA map if needed.
*/
if (cp->dmamapped) {
bus_dmamap_sync(np->data_dmat, cp->dmamap,
(cp->dmamapped == SYM_DMA_READ ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
}
/*
* Add this one to the COMP queue.
* Complete all those commands with either error
* or requeue condition.
*/
sym_set_cam_status((union ccb *) csio, cam_status);
sym_remque(&cp->link_ccbq);
sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
sym_flush_comp_queue(np, 0);
}
/*
* Complete execution of a successful SCSI command.
*
* Only successful commands go to the DONE queue,
* since we need to have the SCRIPTS processor
* stopped on any error condition.
* The SCRIPTS processor is running while we are
* completing successful commands.
*/
static void sym_complete_ok (hcb_p np, ccb_p cp)
{
struct ccb_scsiio *csio;
tcb_p tp;
lcb_p lp;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Paranoid check. :)
*/
if (!cp || !cp->cam_ccb)
return;
assert (cp->host_status == HS_COMPLETE);
/*
* Get command, target and lun pointers.
*/
csio = &cp->cam_ccb->csio;
tp = &np->target[cp->target];
lp = sym_lp(np, tp, cp->lun);
/*
* Assume device discovered on first success.
*/
if (!lp)
sym_set_bit(tp->lun_map, cp->lun);
/*
* If all data have been transferred, given than no
* extended error did occur, there is no residual.
*/
csio->resid = 0;
if (cp->phys.head.lastp != cp->phys.head.goalp)
csio->resid = sym_compute_residual(np, cp);
/*
* Wrong transfer residuals may be worse than just always
* returning zero. User can disable this feature from
* sym_conf.h. Residual support is enabled by default.
*/
if (!SYM_CONF_RESIDUAL_SUPPORT)
csio->resid = 0;
/*
* Synchronize DMA map if needed.
*/
if (cp->dmamapped) {
bus_dmamap_sync(np->data_dmat, cp->dmamap,
(cp->dmamapped == SYM_DMA_READ ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
}
/*
* Set status and complete the command.
*/
csio->scsi_status = cp->ssss_status;
sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
sym_xpt_done(np, (union ccb *) csio, cp);
sym_free_ccb(np, cp);
}
/*
* Our callout handler
*/
static void sym_callout(void *arg)
{
union ccb *ccb = (union ccb *) arg;
hcb_p np = ccb->ccb_h.sym_hcb_ptr;
/*
* Check that the CAM CCB is still queued.
*/
if (!np)
return;
SYM_LOCK();
switch(ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
(void) sym_abort_scsiio(np, ccb, 1);
break;
default:
break;
}
SYM_UNLOCK();
}
/*
* Abort an SCSI IO.
*/
static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
{
ccb_p cp;
SYM_QUEHEAD *qp;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Look up our CCB control block.
*/
cp = NULL;
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp2->cam_ccb == ccb) {
cp = cp2;
break;
}
}
if (!cp || cp->host_status == HS_WAIT)
return -1;
/*
* If a previous abort didn't succeed in time,
* perform a BUS reset.
*/
if (cp->to_abort) {
sym_reset_scsi_bus(np, 1);
return 0;
}
/*
* Mark the CCB for abort and allow time for.
*/
cp->to_abort = timed_out ? 2 : 1;
callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
/*
* Tell the SCRIPTS processor to stop and synchronize with us.
*/
np->istat_sem = SEM;
OUTB (nc_istat, SIGP|SEM);
return 0;
}
/*
* Reset a SCSI device (all LUNs of a target).
*/
static void sym_reset_dev(hcb_p np, union ccb *ccb)
{
tcb_p tp;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
SYM_LOCK_ASSERT(MA_OWNED);
if (ccb_h->target_id == np->myaddr ||
ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
tp = &np->target[ccb_h->target_id];
tp->to_reset = 1;
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
np->istat_sem = SEM;
OUTB (nc_istat, SIGP|SEM);
}
/*
* SIM action entry point.
*/
static void sym_action(struct cam_sim *sim, union ccb *ccb)
{
hcb_p np;
tcb_p tp;
lcb_p lp;
ccb_p cp;
int tmp;
u_char idmsg, *msgptr;
u_int msglen;
struct ccb_scsiio *csio;
struct ccb_hdr *ccb_h;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
/*
* Retrieve our controller data structure.
*/
np = (hcb_p) cam_sim_softc(sim);
SYM_LOCK_ASSERT(MA_OWNED);
/*
* The common case is SCSI IO.
* We deal with other ones elsewhere.
*/
if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
sym_action2(sim, ccb);
return;
}
csio = &ccb->csio;
ccb_h = &csio->ccb_h;
/*
* Work around races.
*/
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;
}
/*
* Minimal checkings, so that we will not
* go outside our tables.
*/
if (ccb_h->target_id == np->myaddr ||
ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
/*
* Retrieve the target and lun descriptors.
*/
tp = &np->target[ccb_h->target_id];
lp = sym_lp(np, tp, ccb_h->target_lun);
/*
* Complete the 1st INQUIRY command with error
* condition if the device is flagged NOSCAN
* at BOOT in the NVRAM. This may speed up
* the boot and maintain coherency with BIOS
* device numbering. Clearing the flag allows
* user to rescan skipped devices later.
* We also return error for devices not flagged
* for SCAN LUNS in the NVRAM since some mono-lun
* devices behave badly when asked for some non
* zero LUN. Btw, this is an absolute hack.:-)
*/
if (!(ccb_h->flags & CAM_CDB_PHYS) &&
(0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
ccb_h->target_lun != 0)) {
tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
}
/*
* Get a control block for this IO.
*/
tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
if (!cp) {
sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
return;
}
/*
* Keep track of the IO in our CCB.
*/
cp->cam_ccb = ccb;
/*
* Build the IDENTIFY message.
*/
idmsg = M_IDENTIFY | cp->lun;
if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
idmsg |= 0x40;
msgptr = cp->scsi_smsg;
msglen = 0;
msgptr[msglen++] = idmsg;
/*
* Build the tag message if present.
*/
if (cp->tag != NO_TAG) {
u_char order = csio->tag_action;
switch(order) {
case M_ORDERED_TAG:
break;
case M_HEAD_TAG:
break;
default:
order = M_SIMPLE_TAG;
}
msgptr[msglen++] = order;
/*
* For less than 128 tags, actual tags are numbered
* 1,3,5,..2*MAXTAGS+1,since we may have to deal
* with devices that have problems with #TAG 0 or too
* great #TAG numbers. For more tags (up to 256),
* we use directly our tag number.
*/
#if SYM_CONF_MAX_TASK > (512/4)
msgptr[msglen++] = cp->tag;
#else
msgptr[msglen++] = (cp->tag << 1) + 1;
#endif
}
/*
* Build a negotiation message if needed.
* (nego_status is filled by sym_prepare_nego())
*/
cp->nego_status = 0;
if (tp->tinfo.current.width != tp->tinfo.goal.width ||
tp->tinfo.current.period != tp->tinfo.goal.period ||
tp->tinfo.current.offset != tp->tinfo.goal.offset ||
tp->tinfo.current.options != tp->tinfo.goal.options) {
if (!tp->nego_cp && lp)
msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
}
/*
* Fill in our ccb
*/
/*
* Startqueue
*/
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
/*
* select
*/
cp->phys.select.sel_id = cp->target;
cp->phys.select.sel_scntl3 = tp->head.wval;
cp->phys.select.sel_sxfer = tp->head.sval;
cp->phys.select.sel_scntl4 = tp->head.uval;
/*
* message
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
* command
*/
if (sym_setup_cdb(np, csio, cp) < 0) {
sym_xpt_done(np, ccb, cp);
sym_free_ccb(np, cp);
return;
}
/*
* status
*/
#if 0 /* Provision */
cp->actualquirks = tp->quirks;
#endif
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->ssss_status = S_ILLEGAL;
cp->xerr_status = 0;
cp->host_flags = 0;
cp->extra_bytes = 0;
/*
* extreme data pointer.
* shall be positive, so -1 is lower than lowest.:)
*/
cp->ext_sg = -1;
cp->ext_ofs = 0;
/*
* Build the data descriptor block
* and start the IO.
*/
sym_setup_data_and_start(np, csio, cp);
}
/*
* Setup buffers and pointers that address the CDB.
* I bet, physical CDBs will never be used on the planet,
* since they can be bounced without significant overhead.
*/
static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
{
struct ccb_hdr *ccb_h;
u32 cmd_ba;
int cmd_len;
SYM_LOCK_ASSERT(MA_OWNED);
ccb_h = &csio->ccb_h;
/*
* CDB is 16 bytes max.
*/
if (csio->cdb_len > sizeof(cp->cdb_buf)) {
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
return -1;
}
cmd_len = csio->cdb_len;
if (ccb_h->flags & CAM_CDB_POINTER) {
/* CDB is a pointer */
if (!(ccb_h->flags & CAM_CDB_PHYS)) {
/* CDB pointer is virtual */
bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
cmd_ba = CCB_BA (cp, cdb_buf[0]);
} else {
/* CDB pointer is physical */
#if 0
cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
#else
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
return -1;
#endif
}
} else {
/* CDB is in the CAM ccb (buffer) */
bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
cmd_ba = CCB_BA (cp, cdb_buf[0]);
}
cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
cp->phys.cmd.size = cpu_to_scr(cmd_len);
return 0;
}
/*
* Set up data pointers used by SCRIPTS.
*/
static void __inline
sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
{
u32 lastp, goalp;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* No segments means no data.
*/
if (!cp->segments)
dir = CAM_DIR_NONE;
/*
* Set the data pointer.
*/
switch(dir) {
case CAM_DIR_OUT:
goalp = SCRIPTA_BA (np, data_out2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case CAM_DIR_IN:
cp->host_flags |= HF_DATA_IN;
goalp = SCRIPTA_BA (np, data_in2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case CAM_DIR_NONE:
default:
lastp = goalp = SCRIPTB_BA (np, no_data);
break;
}
cp->phys.head.lastp = cpu_to_scr(lastp);
cp->phys.head.goalp = cpu_to_scr(goalp);
cp->phys.head.savep = cpu_to_scr(lastp);
cp->startp = cp->phys.head.savep;
}
/*
* Call back routine for the DMA map service.
* If bounce buffers are used (why ?), we may sleep and then
* be called there in another context.
*/
static void
sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
{
ccb_p cp;
hcb_p np;
union ccb *ccb;
cp = (ccb_p) arg;
ccb = cp->cam_ccb;
np = (hcb_p) cp->arg;
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Deal with weird races.
*/
if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
goto out_abort;
/*
* Deal with weird errors.
*/
if (error) {
cp->dmamapped = 0;
sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
goto out_abort;
}
/*
* Build the data descriptor for the chip.
*/
if (nsegs) {
int retv;
/* 896 rev 1 requires to be careful about boundaries */
if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
else
retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
if (retv < 0) {
sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
goto out_abort;
}
}
/*
* Synchronize the DMA map only if we have
* actually mapped the data.
*/
if (cp->dmamapped) {
bus_dmamap_sync(np->data_dmat, cp->dmamap,
(cp->dmamapped == SYM_DMA_READ ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
}
/*
* Set host status to busy state.
* May have been set back to HS_WAIT to avoid a race.
*/
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
/*
* Set data pointers.
*/
sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK));
/*
* Enqueue this IO in our pending queue.
*/
sym_enqueue_cam_ccb(cp);
/*
* When `#ifed 1', the code below makes the driver
* panic on the first attempt to write to a SCSI device.
* It is the first test we want to do after a driver
* change that does not seem obviously safe. :)
*/
#if 0
switch (cp->cdb_buf[0]) {
case 0x0A: case 0x2A: case 0xAA:
panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
MDELAY(10000);
break;
default:
break;
}
#endif
/*
* Activate this job.
*/
sym_put_start_queue(np, cp);
return;
out_abort:
sym_xpt_done(np, ccb, cp);
sym_free_ccb(np, cp);
}
/*
* How complex it gets to deal with the data in CAM.
* The Bus Dma stuff makes things still more complex.
*/
static void
sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
{
struct ccb_hdr *ccb_h;
int dir, retv;
SYM_LOCK_ASSERT(MA_OWNED);
ccb_h = &csio->ccb_h;
/*
* Now deal with the data.
*/
cp->data_len = csio->dxfer_len;
cp->arg = np;
/*
* No direction means no data.
*/
dir = (ccb_h->flags & CAM_DIR_MASK);
if (dir == CAM_DIR_NONE) {
sym_execute_ccb(cp, NULL, 0, 0);
return;
}
if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
/* Single buffer */
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* Buffer is virtual */
cp->dmamapped = (dir == CAM_DIR_IN) ?
SYM_DMA_READ : SYM_DMA_WRITE;
retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
csio->data_ptr, csio->dxfer_len,
sym_execute_ccb, cp, 0);
if (retv == EINPROGRESS) {
cp->host_status = HS_WAIT;
xpt_freeze_simq(np->sim, 1);
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
}
} else {
/* Buffer is physical */
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t) csio->data_ptr;
sym_execute_ccb(cp, &seg, 1, 0);
}
} else {
/* Scatter/gather list */
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
/* The SG list pointer is physical */
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
goto out_abort;
}
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* SG buffer pointers are virtual */
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
goto out_abort;
}
/* SG buffer pointers are physical */
segs = (struct bus_dma_segment *)csio->data_ptr;
sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
}
return;
out_abort:
sym_xpt_done(np, (union ccb *) csio, cp);
sym_free_ccb(np, cp);
}
/*
* Move the scatter list to our data block.
*/
static int
sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
bus_dma_segment_t *psegs, int nsegs)
{
struct sym_tblmove *data;
bus_dma_segment_t *psegs2;
SYM_LOCK_ASSERT(MA_OWNED);
if (nsegs > SYM_CONF_MAX_SG)
return -1;
data = &cp->phys.data[SYM_CONF_MAX_SG-1];
psegs2 = &psegs[nsegs-1];
cp->segments = nsegs;
while (1) {
data->addr = cpu_to_scr(psegs2->ds_addr);
data->size = cpu_to_scr(psegs2->ds_len);
if (DEBUG_FLAGS & DEBUG_SCATTER) {
printf ("%s scatter: paddr=%lx len=%ld\n",
sym_name(np), (long) psegs2->ds_addr,
(long) psegs2->ds_len);
}
if (psegs2 != psegs) {
--data;
--psegs2;
continue;
}
break;
}
return 0;
}
/*
* Scatter a SG list with physical addresses into bus addressable chunks.
* We need to ensure 16MB boundaries not to be crossed during DMA of
* each segment, due to some chips being flawed.
*/
#define BOUND_MASK ((1UL<<24)-1)
static int
sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
{
u_long ps, pe, pn;
u_long k;
int s, t;
SYM_LOCK_ASSERT(MA_OWNED);
s = SYM_CONF_MAX_SG - 1;
t = nsegs - 1;
ps = psegs[t].ds_addr;
pe = ps + psegs[t].ds_len;
while (s >= 0) {
pn = (pe - 1) & ~BOUND_MASK;
if (pn <= ps)
pn = ps;
k = pe - pn;
if (DEBUG_FLAGS & DEBUG_SCATTER) {
printf ("%s scatter: paddr=%lx len=%ld\n",
sym_name(np), pn, k);
}
cp->phys.data[s].addr = cpu_to_scr(pn);
cp->phys.data[s].size = cpu_to_scr(k);
--s;
if (pn == ps) {
if (--t < 0)
break;
ps = psegs[t].ds_addr;
pe = ps + psegs[t].ds_len;
}
else
pe = pn;
}
cp->segments = SYM_CONF_MAX_SG - 1 - s;
return t >= 0 ? -1 : 0;
}
#undef BOUND_MASK
/*
* SIM action for non performance critical stuff.
*/
static void sym_action2(struct cam_sim *sim, union ccb *ccb)
{
hcb_p np;
tcb_p tp;
lcb_p lp;
struct ccb_hdr *ccb_h;
/*
* Retrieve our controller data structure.
*/
np = (hcb_p) cam_sim_softc(sim);
SYM_LOCK_ASSERT(MA_OWNED);
ccb_h = &ccb->ccb_h;
switch (ccb_h->func_code) {
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
cts = &ccb->cts;
tp = &np->target[ccb_h->target_id];
/*
* Update SPI transport settings in TARGET control block.
* Update SCSI device settings in LUN control block.
*/
lp = sym_lp(np, tp, ccb_h->target_lun);
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
sym_update_trans(np, tp, &tp->tinfo.goal, cts);
if (lp)
sym_update_dflags(np, &lp->current_flags, cts);
}
if (cts->type == CTS_TYPE_USER_SETTINGS) {
sym_update_trans(np, tp, &tp->tinfo.user, cts);
if (lp)
sym_update_dflags(np, &lp->user_flags, cts);
}
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
struct sym_trans *tip;
u_char dflags;
cts = &ccb->cts;
tp = &np->target[ccb_h->target_id];
lp = sym_lp(np, tp, ccb_h->target_lun);
#define cts__scsi (&cts->proto_specific.scsi)
#define cts__spi (&cts->xport_specific.spi)
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
tip = &tp->tinfo.current;
dflags = lp ? lp->current_flags : 0;
}
else {
tip = &tp->tinfo.user;
dflags = lp ? lp->user_flags : tp->usrflags;
}
cts->protocol = PROTO_SCSI;
cts->transport = XPORT_SPI;
cts->protocol_version = tip->scsi_version;
cts->transport_version = tip->spi_version;
cts__spi->sync_period = tip->period;
cts__spi->sync_offset = tip->offset;
cts__spi->bus_width = tip->width;
cts__spi->ppr_options = tip->options;
cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_PPR_OPTIONS;
cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (dflags & SYM_DISC_ENABLED)
cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
cts__spi->valid |= CTS_SPI_VALID_DISC;
cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
if (dflags & SYM_TAGS_ENABLED)
cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
cts__scsi->valid |= CTS_SCSI_VALID_TQ;
#undef cts__spi
#undef cts__scsi
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_CALC_GEOMETRY:
{
cam_calc_geometry(&ccb->ccg, /*extended*/1);
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
if ((np->features & FE_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
if (np->usrflags & SYM_SCAN_TARGETS_HILO)
cpi->hba_misc |= PIM_SCANHILO;
if (np->usrflags & SYM_AVOID_BUS_RESET)
cpi->hba_misc |= PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
/* Semantic problem:)LUN number max = max number of LUNs - 1 */
cpi->max_lun = SYM_CONF_MAX_LUN-1;
if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
cpi->max_lun = SYM_SETUP_MAX_LUN-1;
cpi->bus_id = cam_sim_bus(sim);
cpi->initiator_id = np->myaddr;
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
if (np->features & FE_ULTRA3) {
cpi->transport_version = 3;
cpi->xport_specific.spi.ppr_options =
SID_SPI_CLOCK_DT_ST;
}
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_ABORT:
{
union ccb *abort_ccb = ccb->cab.abort_ccb;
switch(abort_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
default:
sym_xpt_done2(np, ccb, CAM_UA_ABORT);
break;
}
break;
}
case XPT_RESET_DEV:
{
sym_reset_dev(np, ccb);
break;
}
case XPT_RESET_BUS:
{
sym_reset_scsi_bus(np, 0);
if (sym_verbose) {
xpt_print_path(np->path);
printf("SCSI BUS reset delivered.\n");
}
sym_init (np, 1);
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_ACCEPT_TARGET_IO:
case XPT_CONT_TARGET_IO:
case XPT_EN_LUN:
case XPT_NOTIFY_ACK:
case XPT_IMMED_NOTIFY:
case XPT_TERM_IO:
default:
sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
break;
}
}
/*
* Asynchronous notification handler.
*/
static void
sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
{
hcb_p np;
struct cam_sim *sim;
u_int tn;
tcb_p tp;
sim = (struct cam_sim *) cb_arg;
np = (hcb_p) cam_sim_softc(sim);
SYM_LOCK_ASSERT(MA_OWNED);
switch (code) {
case AC_LOST_DEVICE:
tn = xpt_path_target_id(path);
if (tn >= SYM_CONF_MAX_TARGET)
break;
tp = &np->target[tn];
tp->to_reset = 0;
tp->head.sval = 0;
tp->head.wval = np->rv_scntl3;
tp->head.uval = 0;
tp->tinfo.current.period = tp->tinfo.goal.period = 0;
tp->tinfo.current.offset = tp->tinfo.goal.offset = 0;
tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT;
tp->tinfo.current.options = tp->tinfo.goal.options = 0;
break;
default:
break;
}
}
/*
* Update transfer settings of a target.
*/
static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
struct ccb_trans_settings *cts)
{
SYM_LOCK_ASSERT(MA_OWNED);
/*
* Update the infos.
*/
#define cts__spi (&cts->xport_specific.spi)
if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
tip->width = cts__spi->bus_width;
if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
tip->offset = cts__spi->sync_offset;
if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
tip->period = cts__spi->sync_period;
if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
cts->protocol_version != PROTO_VERSION_UNKNOWN)
tip->scsi_version = cts->protocol_version;
if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
cts->transport_version != XPORT_VERSION_UNKNOWN)
tip->spi_version = cts->transport_version;
#undef cts__spi
/*
* Scale against driver configuration limits.
*/
if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE;
if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
/*
* Scale against actual controller BUS width.
*/
if (tip->width > np->maxwide)
tip->width = np->maxwide;
/*
* Only accept DT if controller supports and SYNC/WIDE asked.
*/
if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
!(tip->width == BUS_16_BIT && tip->offset)) {
tip->options &= ~PPR_OPT_DT;
}
/*
* Scale period factor and offset against controller limits.
*/
if (tip->options & PPR_OPT_DT) {
if (tip->period < np->minsync_dt)
tip->period = np->minsync_dt;
if (tip->period > np->maxsync_dt)
tip->period = np->maxsync_dt;
if (tip->offset > np->maxoffs_dt)
tip->offset = np->maxoffs_dt;
}
else {
if (tip->period < np->minsync)
tip->period = np->minsync;
if (tip->period > np->maxsync)
tip->period = np->maxsync;
if (tip->offset > np->maxoffs)
tip->offset = np->maxoffs;
}
}
/*
* Update flags for a device (logical unit).
*/
static void
sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
{
SYM_LOCK_ASSERT(MA_OWNED);
#define cts__scsi (&cts->proto_specific.scsi)
#define cts__spi (&cts->xport_specific.spi)
if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
*flags |= SYM_DISC_ENABLED;
else
*flags &= ~SYM_DISC_ENABLED;
}
if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
*flags |= SYM_TAGS_ENABLED;
else
*flags &= ~SYM_TAGS_ENABLED;
}
#undef cts__spi
#undef cts__scsi
}
/*============= DRIVER INITIALISATION ==================*/
static device_method_t sym_pci_methods[] = {
DEVMETHOD(device_probe, sym_pci_probe),
DEVMETHOD(device_attach, sym_pci_attach),
{ 0, 0 }
};
static driver_t sym_pci_driver = {
"sym",
sym_pci_methods,
1 /* no softc */
};
static devclass_t sym_devclass;
DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
MODULE_DEPEND(sym, cam, 1, 1, 1);
MODULE_DEPEND(sym, pci, 1, 1, 1);
static const struct sym_pci_chip sym_pci_dev_table[] = {
{PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
FE_ERL}
,
#ifdef SYM_DEBUG_GENERIC_SUPPORT
{PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
FE_BOF}
,
#else
{PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
,
#endif
{PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
FE_BOF|FE_ERL}
,
{PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
,
{PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
,
{PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
#ifdef SYM_DEBUG_GENERIC_SUPPORT
{PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
FE_RAM|FE_LCKFRQ}
,
#else
{PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_LCKFRQ}
,
#endif
{PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
,
{PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
,
{PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
FE_C10}
,
{PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
FE_C10|FE_U3EN}
,
{PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
FE_C10|FE_U3EN}
,
{PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_IO256|FE_LEDC}
};
#define sym_pci_num_devs \
(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
/*
* Look up the chip table.
*
* Return a pointer to the chip entry if found,
* zero otherwise.
*/
static const struct sym_pci_chip *
sym_find_pci_chip(device_t dev)
{
const struct sym_pci_chip *chip;
int i;
u_short device_id;
u_char revision;
if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
return NULL;
device_id = pci_get_device(dev);
revision = pci_get_revid(dev);
for (i = 0; i < sym_pci_num_devs; i++) {
chip = &sym_pci_dev_table[i];
if (device_id != chip->device_id)
continue;
if (revision > chip->revision_id)
continue;
return chip;
}
return NULL;
}
/*
* Tell upper layer if the chip is supported.
*/
static int
sym_pci_probe(device_t dev)
{
const struct sym_pci_chip *chip;
chip = sym_find_pci_chip(dev);
if (chip && sym_find_firmware(chip)) {
device_set_desc(dev, chip->name);
return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
2005-03-06 06:55:11 +00:00
BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
}
return ENXIO;
}
/*
* Attach a sym53c8xx device.
*/
static int
sym_pci_attach(device_t dev)
{
const struct sym_pci_chip *chip;
u_short command;
u_char cachelnsz;
struct sym_hcb *np = NULL;
struct sym_nvram nvram;
const struct sym_fw *fw = NULL;
int i;
bus_dma_tag_t bus_dmat;
bus_dmat = bus_get_dma_tag(dev);
/*
* Only probed devices should be attached.
* We just enjoy being paranoid. :)
*/
chip = sym_find_pci_chip(dev);
if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
return (ENXIO);
/*
* Allocate immediately the host control block,
* since we are only expecting to succeed. :)
* We keep track in the HCB of all the resources that
* are to be released on error.
*/
np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
if (np)
np->bus_dmat = bus_dmat;
else
return (ENXIO);
device_set_softc(dev, np);
SYM_LOCK_INIT();
/*
* Copy some useful infos to the HCB.
*/
np->hcb_ba = vtobus(np);
np->verbose = bootverbose;
np->device = dev;
np->device_id = pci_get_device(dev);
np->revision_id = pci_get_revid(dev);
np->features = chip->features;
np->clock_divn = chip->nr_divisor;
np->maxoffs = chip->offset_max;
np->maxburst = chip->burst_max;
np->scripta_sz = fw->a_size;
np->scriptb_sz = fw->b_size;
np->fw_setup = fw->setup;
np->fw_patch = fw->patch;
np->fw_name = fw->name;
#ifdef __amd64__
np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
"TARGET");
if (!np->target)
goto attach_failed;
#endif
/*
* Initialize the CCB free and busy queues.
*/
sym_que_init(&np->free_ccbq);
sym_que_init(&np->busy_ccbq);
sym_que_init(&np->comp_ccbq);
sym_que_init(&np->cam_ccbq);
/*
* Allocate a tag for the DMA of user data.
*/
if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL,
BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
(1<<24), 0, busdma_lock_mutex, &np->mtx,
&np->data_dmat)) {
device_printf(dev, "failed to create DMA tag.\n");
goto attach_failed;
}
/*
* Read and apply some fix-ups to the PCI COMMAND
* register. We want the chip to be enabled for:
* - BUS mastering
* - PCI parity checking (reporting would also be fine)
* - Write And Invalidate.
*/
command = pci_read_config(dev, PCIR_COMMAND, 2);
command |= PCIM_CMD_BUSMASTEREN;
command |= PCIM_CMD_PERRESPEN;
command |= /* PCIM_CMD_MWIEN */ 0x0010;
pci_write_config(dev, PCIR_COMMAND, command, 2);
/*
* Let the device know about the cache line size,
* if it doesn't yet.
*/
cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
if (!cachelnsz) {
cachelnsz = 8;
pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
}
/*
* Alloc/get/map/retrieve everything that deals with MMIO.
*/
if ((command & PCIM_CMD_MEMEN) != 0) {
int regs_id = SYM_PCI_MMIO;
np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&regs_id, RF_ACTIVE);
}
if (!np->mmio_res) {
device_printf(dev, "failed to allocate MMIO resources\n");
goto attach_failed;
}
np->mmio_ba = rman_get_start(np->mmio_res);
/*
* Allocate the IRQ.
*/
i = 0;
np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
RF_ACTIVE | RF_SHAREABLE);
if (!np->irq_res) {
device_printf(dev, "failed to allocate IRQ resource\n");
goto attach_failed;
}
#ifdef SYM_CONF_IOMAPPED
/*
* User want us to use normal IO with PCI.
* Alloc/get/map/retrieve everything that deals with IO.
*/
if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
int regs_id = SYM_PCI_IO;
np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&regs_id, RF_ACTIVE);
}
if (!np->io_res) {
device_printf(dev, "failed to allocate IO resources\n");
goto attach_failed;
}
#endif /* SYM_CONF_IOMAPPED */
/*
* If the chip has RAM.
* Alloc/get/map/retrieve the corresponding resources.
*/
if ((np->features & (FE_RAM|FE_RAM8K)) &&
(command & PCIM_CMD_MEMEN) != 0) {
int regs_id = SYM_PCI_RAM;
if (np->features & FE_64BIT)
regs_id = SYM_PCI_RAM64;
np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&regs_id, RF_ACTIVE);
if (!np->ram_res) {
device_printf(dev,"failed to allocate RAM resources\n");
goto attach_failed;
}
np->ram_id = regs_id;
np->ram_ba = rman_get_start(np->ram_res);
}
/*
* Save setting of some IO registers, so we will
* be able to probe specific implementations.
*/
sym_save_initial_setting (np);
/*
* Reset the chip now, since it has been reported
* that SCSI clock calibration may not work properly
* if the chip is currently active.
*/
sym_chip_reset (np);
/*
* Try to read the user set-up.
*/
(void) sym_read_nvram(np, &nvram);
/*
* Prepare controller and devices settings, according
* to chip features, user set-up and driver set-up.
*/
(void) sym_prepare_setting(np, &nvram);
/*
* Check the PCI clock frequency.
* Must be performed after prepare_setting since it destroys
* STEST1 that is used to probe for the clock doubler.
*/
i = sym_getpciclock(np);
if (i > 37000)
device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
/*
* Allocate the start queue.
*/
np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
if (!np->squeue)
goto attach_failed;
np->squeue_ba = vtobus(np->squeue);
/*
* Allocate the done queue.
*/
np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
if (!np->dqueue)
goto attach_failed;
np->dqueue_ba = vtobus(np->dqueue);
/*
* Allocate the target bus address array.
*/
np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
if (!np->targtbl)
goto attach_failed;
np->targtbl_ba = vtobus(np->targtbl);
/*
* Allocate SCRIPTS areas.
*/
np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
if (!np->scripta0 || !np->scriptb0)
goto attach_failed;
/*
* Allocate the CCBs. We need at least ONE.
*/
for (i = 0; sym_alloc_ccb(np) != NULL; i++)
;
if (i < 1)
goto attach_failed;
/*
* Calculate BUS addresses where we are going
* to load the SCRIPTS.
*/
np->scripta_ba = vtobus(np->scripta0);
np->scriptb_ba = vtobus(np->scriptb0);
np->scriptb0_ba = np->scriptb_ba;
if (np->ram_ba) {
np->scripta_ba = np->ram_ba;
if (np->features & FE_RAM8K) {
np->ram_ws = 8192;
np->scriptb_ba = np->scripta_ba + 4096;
#ifdef __LP64__
np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
#endif
}
else
np->ram_ws = 4096;
}
/*
* Copy scripts to controller instance.
*/
bcopy(fw->a_base, np->scripta0, np->scripta_sz);
bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
/*
* Setup variable parts in scripts and compute
* scripts bus addresses used from the C code.
*/
np->fw_setup(np, fw);
/*
* Bind SCRIPTS with physical addresses usable by the
* SCRIPTS processor (as seen from the BUS = BUS addresses).
*/
sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If user wants IARB to be set when we win arbitration
* and have other jobs, compute the max number of consecutive
* settings of IARB hints before we leave devices a chance to
* arbitrate for reselection.
*/
#ifdef SYM_SETUP_IARB_MAX
np->iarb_max = SYM_SETUP_IARB_MAX;
#else
np->iarb_max = 4;
#endif
#endif
/*
* Prepare the idle and invalid task actions.
*/
np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
np->idletask_ba = vtobus(&np->idletask);
np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
np->notask_ba = vtobus(&np->notask);
np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
np->bad_itl_ba = vtobus(&np->bad_itl);
np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
np->bad_itlq_ba = vtobus(&np->bad_itlq);
/*
* Allocate and prepare the lun JUMP table that is used
* for a target prior the probing of devices (bad lun table).
* A private table will be allocated for the target on the
* first INQUIRY response received.
*/
np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
if (!np->badluntbl)
goto attach_failed;
np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
/*
* Prepare the bus address array that contains the bus
* address of each target control block.
* For now, assume all logical units are wrong. :)
*/
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
np->target[i].head.luntbl_sa =
cpu_to_scr(vtobus(np->badluntbl));
np->target[i].head.lun0_sa =
cpu_to_scr(vtobus(&np->badlun_sa));
}
/*
* Now check the cache handling of the pci chipset.
*/
if (sym_snooptest (np)) {
device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
goto attach_failed;
};
/*
* Now deal with CAM.
* Hopefully, we will succeed with that one.:)
*/
if (!sym_cam_attach(np))
goto attach_failed;
/*
* Sigh! we are done.
*/
return 0;
/*
* We have failed.
* We will try to free all the resources we have
* allocated, but if we are a boot device, this
* will not help that much.;)
*/
attach_failed:
if (np)
sym_pci_free(np);
return ENXIO;
}
/*
* Free everything that have been allocated for this device.
*/
static void sym_pci_free(hcb_p np)
{
SYM_QUEHEAD *qp;
ccb_p cp;
tcb_p tp;
lcb_p lp;
int target, lun;
/*
* First free CAM resources.
*/
sym_cam_free(np);
/*
* Now every should be quiet for us to
* free other resources.
*/
if (np->ram_res)
bus_release_resource(np->device, SYS_RES_MEMORY,
np->ram_id, np->ram_res);
if (np->mmio_res)
bus_release_resource(np->device, SYS_RES_MEMORY,
SYM_PCI_MMIO, np->mmio_res);
if (np->io_res)
bus_release_resource(np->device, SYS_RES_IOPORT,
SYM_PCI_IO, np->io_res);
if (np->irq_res)
bus_release_resource(np->device, SYS_RES_IRQ,
0, np->irq_res);
if (np->scriptb0)
sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
if (np->scripta0)
sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
if (np->squeue)
sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
if (np->dqueue)
sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
bus_dmamap_destroy(np->data_dmat, cp->dmamap);
sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
sym_mfree_dma(cp, sizeof(*cp), "CCB");
}
if (np->badluntbl)
sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
tp = &np->target[target];
for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
lp = sym_lp(np, tp, lun);
if (!lp)
continue;
if (lp->itlq_tbl)
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
"ITLQ_TBL");
if (lp->cb_tags)
sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
"CB_TAGS");
sym_mfree_dma(lp, sizeof(*lp), "LCB");
}
#if SYM_CONF_MAX_LUN > 1
if (tp->lunmp)
sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
"LUNMP");
#endif
}
#ifdef __amd64__
if (np->target)
sym_mfree_dma(np->target,
SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
#endif
if (np->targtbl)
sym_mfree_dma(np->targtbl, 256, "TARGTBL");
if (np->data_dmat)
bus_dma_tag_destroy(np->data_dmat);
if (SYM_LOCK_INITIALIZED() != 0)
SYM_LOCK_DESTROY();
device_set_softc(np->device, NULL);
sym_mfree_dma(np, sizeof(*np), "HCB");
}
/*
* Allocate CAM resources and register a bus to CAM.
*/
static int sym_cam_attach(hcb_p np)
{
struct cam_devq *devq = NULL;
struct cam_sim *sim = NULL;
struct cam_path *path = NULL;
int err;
/*
* Establish our interrupt handler.
*/
err = bus_setup_intr(np->device, np->irq_res,
INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
NULL, sym_intr, np, &np->intr);
if (err) {
device_printf(np->device, "bus_setup_intr() failed: %d\n",
err);
goto fail;
}
/*
* Create the device queue for our sym SIM.
*/
devq = cam_simq_alloc(SYM_CONF_MAX_START);
if (!devq)
goto fail;
/*
* Construct our SIM entry.
*/
sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
device_get_unit(np->device),
&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
if (!sim)
goto fail;
SYM_LOCK();
if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
goto fail;
np->sim = sim;
if (xpt_create_path(&path, 0,
cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
goto fail;
}
np->path = path;
/*
* Establish our async notification handler.
*/
if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
CAM_REQ_CMP)
goto fail;
/*
* Start the chip now, without resetting the BUS, since
* it seems that this must stay under control of CAM.
* With LVD/SE capable chips and BUS in SE mode, we may
* get a spurious SMBC interrupt.
*/
sym_init (np, 0);
SYM_UNLOCK();
return 1;
fail:
if (sim)
cam_sim_free(sim, FALSE);
if (devq)
cam_simq_free(devq);
SYM_UNLOCK();
sym_cam_free(np);
return 0;
}
/*
* Free everything that deals with CAM.
*/
static void sym_cam_free(hcb_p np)
{
SYM_LOCK_ASSERT(MA_NOTOWNED);
if (np->intr) {
bus_teardown_intr(np->device, np->irq_res, np->intr);
np->intr = NULL;
}
SYM_LOCK();
if (np->sim) {
xpt_bus_deregister(cam_sim_path(np->sim));
cam_sim_free(np->sim, /*free_devq*/ TRUE);
np->sim = NULL;
}
if (np->path) {
xpt_free_path(np->path);
np->path = NULL;
}
SYM_UNLOCK();
}
/*============ OPTIONNAL NVRAM SUPPORT =================*/
/*
* Get host setup from NVRAM.
*/
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
{
#ifdef SYM_CONF_NVRAM_SUPPORT
/*
* Get parity checking, host ID, verbose mode
* and miscellaneous host flags from NVRAM.
*/
switch(nvram->type) {
case SYM_SYMBIOS_NVRAM:
if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
np->rv_scntl0 &= ~0x0a;
np->myaddr = nvram->data.Symbios.host_id & 0x0f;
if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
np->verbose += 1;
if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
np->usrflags |= SYM_SCAN_TARGETS_HILO;
if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
np->usrflags |= SYM_AVOID_BUS_RESET;
break;
case SYM_TEKRAM_NVRAM:
np->myaddr = nvram->data.Tekram.host_id & 0x0f;
break;
default:
break;
}
#endif
}
/*
* Get target setup from NVRAM.
*/
#ifdef SYM_CONF_NVRAM_SUPPORT
static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
#endif
static void
sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
{
#ifdef SYM_CONF_NVRAM_SUPPORT
switch(nvp->type) {
case SYM_SYMBIOS_NVRAM:
sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
break;
case SYM_TEKRAM_NVRAM:
sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
break;
default:
break;
}
#endif
}
#ifdef SYM_CONF_NVRAM_SUPPORT
/*
* Get target set-up from Symbios format NVRAM.
*/
static void
sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
{
tcb_p tp = &np->target[target];
Symbios_target *tn = &nvram->target[target];
tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
tp->usrtags =
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
tp->usrflags &= ~SYM_DISC_ENABLED;
if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
if (!(tn->flags & SYMBIOS_SCAN_LUNS))
tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
}
/*
* Get target set-up from Tekram format NVRAM.
*/
static void
sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
{
tcb_p tp = &np->target[target];
struct Tekram_target *tn = &nvram->target[target];
int i;
if (tn->flags & TEKRAM_SYNC_NEGO) {
i = tn->sync_index & 0xf;
tp->tinfo.user.period = Tekram_sync[i];
}
tp->tinfo.user.width =
(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
tp->usrtags = 2 << nvram->max_tags_index;
}
if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
tp->usrflags |= SYM_DISC_ENABLED;
/* If any device does not support parity, we will not use this option */
if (!(tn->flags & TEKRAM_PARITY_CHECK))
np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
}
#ifdef SYM_CONF_DEBUG_NVRAM
/*
* Dump Symbios format NVRAM for debugging purpose.
*/
static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
{
int i;
/* display Symbios nvram host data */
printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
sym_name(np), nvram->host_id & 0x0f,
(nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
(nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
(nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
(nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
(nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
/* display Symbios nvram drive data */
for (i = 0 ; i < 15 ; i++) {
struct Symbios_target *tn = &nvram->target[i];
printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
sym_name(np), i,
(tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
(tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
tn->bus_width,
tn->sync_period / 4,
tn->timeout);
}
}
/*
* Dump TEKRAM format NVRAM for debugging purpose.
*/
static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
{
int i, tags, boot_delay;
char *rem;
/* display Tekram nvram host data */
tags = 2 << nvram->max_tags_index;
boot_delay = 0;
if (nvram->boot_delay_index < 6)
boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
default:
case 0: rem = ""; break;
case 1: rem = " REMOVABLE=boot device"; break;
case 2: rem = " REMOVABLE=all"; break;
}
printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
sym_name(np), nvram->host_id & 0x0f,
(nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
(nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
(nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
(nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
(nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
(nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
rem, boot_delay, tags);
/* display Tekram nvram drive data */
for (i = 0; i <= 15; i++) {
int sync, j;
struct Tekram_target *tn = &nvram->target[i];
j = tn->sync_index & 0xf;
sync = Tekram_sync[j];
printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
sym_name(np), i,
(tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
(tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
(tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
(tn->flags & TEKRAM_START_CMD) ? " START" : "",
(tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
(tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
sync);
}
}
#endif /* SYM_CONF_DEBUG_NVRAM */
#endif /* SYM_CONF_NVRAM_SUPPORT */
/*
* Try reading Symbios or Tekram NVRAM
*/
#ifdef SYM_CONF_NVRAM_SUPPORT
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
#endif
static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
{
#ifdef SYM_CONF_NVRAM_SUPPORT
/*
* Try to read SYMBIOS nvram.
* Try to read TEKRAM nvram if Symbios nvram not found.
*/
if (SYM_SETUP_SYMBIOS_NVRAM &&
!sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
nvp->type = SYM_SYMBIOS_NVRAM;
#ifdef SYM_CONF_DEBUG_NVRAM
sym_display_Symbios_nvram(np, &nvp->data.Symbios);
#endif
}
else if (SYM_SETUP_TEKRAM_NVRAM &&
!sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
nvp->type = SYM_TEKRAM_NVRAM;
#ifdef SYM_CONF_DEBUG_NVRAM
sym_display_Tekram_nvram(np, &nvp->data.Tekram);
#endif
}
else
nvp->type = 0;
#else
nvp->type = 0;
#endif
return nvp->type;
}
#ifdef SYM_CONF_NVRAM_SUPPORT
/*
* 24C16 EEPROM reading.
*
* GPOI0 - data in/data out
* GPIO1 - clock
* Symbios NVRAM wiring now also used by Tekram.
*/
#define SET_BIT 0
#define CLR_BIT 1
#define SET_CLK 2
#define CLR_CLK 3
/*
* Set/clear data/clock bit in GPIO0
*/
static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
int bit_mode)
{
UDELAY (5);
switch (bit_mode){
case SET_BIT:
*gpreg |= write_bit;
break;
case CLR_BIT:
*gpreg &= 0xfe;
break;
case SET_CLK:
*gpreg |= 0x02;
break;
case CLR_CLK:
*gpreg &= 0xfd;
break;
}
OUTB (nc_gpreg, *gpreg);
UDELAY (5);
}
/*
* Send START condition to NVRAM to wake it up.
*/
static void S24C16_start(hcb_p np, u_char *gpreg)
{
S24C16_set_bit(np, 1, gpreg, SET_BIT);
S24C16_set_bit(np, 0, gpreg, SET_CLK);
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
}
/*
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
*/
static void S24C16_stop(hcb_p np, u_char *gpreg)
{
S24C16_set_bit(np, 0, gpreg, SET_CLK);
S24C16_set_bit(np, 1, gpreg, SET_BIT);
}
/*
* Read or write a bit to the NVRAM,
* read if GPIO0 input else write if GPIO0 output
*/
static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
u_char *gpreg)
{
S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
S24C16_set_bit(np, 0, gpreg, SET_CLK);
if (read_bit)
*read_bit = INB (nc_gpreg);
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
}
/*
* Output an ACK to the NVRAM after reading,
* change GPIO0 to output and when done back to an input
*/
static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
u_char *gpcntl)
{
OUTB (nc_gpcntl, *gpcntl & 0xfe);
S24C16_do_bit(np, 0, write_bit, gpreg);
OUTB (nc_gpcntl, *gpcntl);
}
/*
* Input an ACK from NVRAM after writing,
* change GPIO0 to input and when done back to an output
*/
static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
u_char *gpcntl)
{
OUTB (nc_gpcntl, *gpcntl | 0x01);
S24C16_do_bit(np, read_bit, 1, gpreg);
OUTB (nc_gpcntl, *gpcntl);
}
/*
* WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
* GPIO0 must already be set as an output
*/
static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
u_char *gpreg, u_char *gpcntl)
{
int x;
for (x = 0; x < 8; x++)
S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
S24C16_read_ack(np, ack_data, gpreg, gpcntl);
}
/*
* READ a byte from the NVRAM and then send an ACK to say we have got it,
* GPIO0 must already be set as an input
*/
static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
u_char *gpreg, u_char *gpcntl)
{
int x;
u_char read_bit;
*read_data = 0;
for (x = 0; x < 8; x++) {
S24C16_do_bit(np, &read_bit, 1, gpreg);
*read_data |= ((read_bit & 0x01) << (7 - x));
}
S24C16_write_ack(np, ack_data, gpreg, gpcntl);
}
/*
* Read 'len' bytes starting at 'offset'.
*/
static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
{
u_char gpcntl, gpreg;
u_char old_gpcntl, old_gpreg;
u_char ack_data;
int retv = 1;
int x;
/* save current state of GPCNTL and GPREG */
old_gpreg = INB (nc_gpreg);
old_gpcntl = INB (nc_gpcntl);
gpcntl = old_gpcntl & 0x1c;
/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
OUTB (nc_gpreg, old_gpreg);
OUTB (nc_gpcntl, gpcntl);
/* this is to set NVRAM into a known state with GPIO0/1 both low */
gpreg = old_gpreg;
S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
/* now set NVRAM inactive with GPIO0/1 both high */
S24C16_stop(np, &gpreg);
/* activate NVRAM */
S24C16_start(np, &gpreg);
/* write device code and random address MSB */
S24C16_write_byte(np, &ack_data,
0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* write random address LSB */
S24C16_write_byte(np, &ack_data,
offset & 0xff, &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* regenerate START state to set up for reading */
S24C16_start(np, &gpreg);
/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
S24C16_write_byte(np, &ack_data,
0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* now set up GPIO0 for inputting data */
gpcntl |= 0x01;
OUTB (nc_gpcntl, gpcntl);
/* input all requested data - only part of total NVRAM */
for (x = 0; x < len; x++)
S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
/* finally put NVRAM back in inactive mode */
gpcntl &= 0xfe;
OUTB (nc_gpcntl, gpcntl);
S24C16_stop(np, &gpreg);
retv = 0;
out:
/* return GPIO0/1 to original states after having accessed NVRAM */
OUTB (nc_gpcntl, old_gpcntl);
OUTB (nc_gpreg, old_gpreg);
return retv;
}
#undef SET_BIT /* 0 */
#undef CLR_BIT /* 1 */
#undef SET_CLK /* 2 */
#undef CLR_CLK /* 3 */
/*
* Try reading Symbios NVRAM.
* Return 0 if OK.
*/
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
{
static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
u_char *data = (u_char *) nvram;
int len = sizeof(*nvram);
u_short csum;
int x;
/* probe the 24c16 and read the SYMBIOS 24c16 area */
if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
return 1;
/* check valid NVRAM signature, verify byte count and checksum */
if (nvram->type != 0 ||
bcmp(nvram->trailer, Symbios_trailer, 6) ||
nvram->byte_count != len - 12)
return 1;
/* verify checksum */
for (x = 6, csum = 0; x < len - 6; x++)
csum += data[x];
if (csum != nvram->checksum)
return 1;
return 0;
}
/*
* 93C46 EEPROM reading.
*
* GPOI0 - data in
* GPIO1 - data out
* GPIO2 - clock
* GPIO4 - chip select
*
* Used by Tekram.
*/
/*
* Pulse clock bit in GPIO0
*/
static void T93C46_Clk(hcb_p np, u_char *gpreg)
{
OUTB (nc_gpreg, *gpreg | 0x04);
UDELAY (2);
OUTB (nc_gpreg, *gpreg);
}
/*
* Read bit from NVRAM
*/
static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
{
UDELAY (2);
T93C46_Clk(np, gpreg);
*read_bit = INB (nc_gpreg);
}
/*
* Write bit to GPIO0
*/
static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
{
if (write_bit & 0x01)
*gpreg |= 0x02;
else
*gpreg &= 0xfd;
*gpreg |= 0x10;
OUTB (nc_gpreg, *gpreg);
UDELAY (2);
T93C46_Clk(np, gpreg);
}
/*
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
*/
static void T93C46_Stop(hcb_p np, u_char *gpreg)
{
*gpreg &= 0xef;
OUTB (nc_gpreg, *gpreg);
UDELAY (2);
T93C46_Clk(np, gpreg);
}
/*
* Send read command and address to NVRAM
*/
static void T93C46_Send_Command(hcb_p np, u_short write_data,
u_char *read_bit, u_char *gpreg)
{
int x;
/* send 9 bits, start bit (1), command (2), address (6) */
for (x = 0; x < 9; x++)
T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
*read_bit = INB (nc_gpreg);
}
/*
* READ 2 bytes from the NVRAM
*/
static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
{
int x;
u_char read_bit;
*nvram_data = 0;
for (x = 0; x < 16; x++) {
T93C46_Read_Bit(np, &read_bit, gpreg);
if (read_bit & 0x01)
*nvram_data |= (0x01 << (15 - x));
else
*nvram_data &= ~(0x01 << (15 - x));
}
}
/*
* Read Tekram NvRAM data.
*/
static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
{
u_char read_bit;
int x;
for (x = 0; x < len; x++) {
/* output read command and address */
T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
if (read_bit & 0x01)
return 1; /* Bad */
T93C46_Read_Word(np, &data[x], gpreg);
T93C46_Stop(np, gpreg);
}
return 0;
}
/*
* Try reading 93C46 Tekram NVRAM.
*/
static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
{
u_char gpcntl, gpreg;
u_char old_gpcntl, old_gpreg;
int retv = 1;
/* save current state of GPCNTL and GPREG */
old_gpreg = INB (nc_gpreg);
old_gpcntl = INB (nc_gpcntl);
/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
1/2/4 out */
gpreg = old_gpreg & 0xe9;
OUTB (nc_gpreg, gpreg);
gpcntl = (old_gpcntl & 0xe9) | 0x09;
OUTB (nc_gpcntl, gpcntl);
/* input all of NVRAM, 64 words */
retv = T93C46_Read_Data(np, (u_short *) nvram,
sizeof(*nvram) / sizeof(short), &gpreg);
/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
OUTB (nc_gpcntl, old_gpcntl);
OUTB (nc_gpreg, old_gpreg);
return retv;
}
/*
* Try reading Tekram NVRAM.
* Return 0 if OK.
*/
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
{
u_char *data = (u_char *) nvram;
int len = sizeof(*nvram);
u_short csum;
int x;
switch (np->device_id) {
case PCI_ID_SYM53C885:
case PCI_ID_SYM53C895:
case PCI_ID_SYM53C896:
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
data, len);
break;
case PCI_ID_SYM53C875:
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
data, len);
if (!x)
break;
default:
x = sym_read_T93C46_nvram(np, nvram);
break;
}
if (x)
return 1;
/* verify checksum */
for (x = 0, csum = 0; x < len - 1; x += 2)
csum += data[x] + (data[x+1] << 8);
if (csum != 0x1234)
return 1;
return 0;
}
#endif /* SYM_CONF_NVRAM_SUPPORT */