freebsd-dev/module/zfs/zfs_vnops.c

4951 lines
118 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
2008-11-20 20:01:55 +00:00
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
2008-11-20 20:01:55 +00:00
*/
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
2008-11-20 20:01:55 +00:00
2008-11-20 20:01:55 +00:00
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/taskq.h>
#include <sys/uio.h>
#include <sys/vmsystm.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include <sys/pathname.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
2008-11-20 20:01:55 +00:00
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/sa.h>
2008-11-20 20:01:55 +00:00
#include <sys/dirent.h>
#include <sys/policy.h>
#include <sys/sunddi.h>
#include <sys/sid.h>
#include <sys/mode.h>
2008-11-20 20:01:55 +00:00
#include "fs/fs_subr.h"
#include <sys/zfs_ctldir.h>
2008-11-20 20:01:55 +00:00
#include <sys/zfs_fuid.h>
#include <sys/zfs_sa.h>
2010-12-17 19:18:08 +00:00
#include <sys/zfs_vnops.h>
2008-11-20 20:01:55 +00:00
#include <sys/dnlc.h>
#include <sys/zfs_rlock.h>
#include <sys/extdirent.h>
#include <sys/kidmap.h>
#include <sys/cred.h>
2008-11-20 20:01:55 +00:00
#include <sys/attr.h>
#include <sys/zpl.h>
2008-11-20 20:01:55 +00:00
/*
* Programming rules.
*
* Each vnode op performs some logical unit of work. To do this, the ZPL must
* properly lock its in-core state, create a DMU transaction, do the work,
* record this work in the intent log (ZIL), commit the DMU transaction,
* and wait for the intent log to commit if it is a synchronous operation.
* Moreover, the vnode ops must work in both normal and log replay context.
* The ordering of events is important to avoid deadlocks and references
* to freed memory. The example below illustrates the following Big Rules:
*
* (1) A check must be made in each zfs thread for a mounted file system.
* This is done avoiding races using ZFS_ENTER(zfsvfs).
* A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
2008-11-20 20:01:55 +00:00
* must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
* can return EIO from the calling function.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* (2) iput() should always be the last thing except for zil_commit()
2008-11-20 20:01:55 +00:00
* (if necessary) and ZFS_EXIT(). This is for 3 reasons:
* First, if it's the last reference, the vnode/znode
* can be freed, so the zp may point to freed memory. Second, the last
* reference will call zfs_zinactive(), which may induce a lot of work --
* pushing cached pages (which acquires range locks) and syncing out
* cached atime changes. Third, zfs_zinactive() may require a new tx,
* which could deadlock the system if you were already holding one.
* If you must call iput() within a tx then use zfs_iput_async().
2008-11-20 20:01:55 +00:00
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
* dmu_tx_assign(). This is critical because we don't want to block
* while holding locks.
*
* If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
* reduces lock contention and CPU usage when we must wait (note that if
* throughput is constrained by the storage, nearly every transaction
* must wait).
*
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing
* to use a non-blocking assign can deadlock the system. The scenario:
2008-11-20 20:01:55 +00:00
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
* calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
* to indicate that this operation has already called dmu_tx_wait().
* This will ensure that we don't retry forever, waiting a short bit
* each time.
2008-11-20 20:01:55 +00:00
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
* During ZIL replay the zfs_log_* functions will update the sequence
2009-01-15 21:59:39 +00:00
* number to indicate the zil transaction has replayed.
2008-11-20 20:01:55 +00:00
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
2008-11-20 20:01:55 +00:00
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* ZFS_ENTER(zfsvfs); // exit if unmounted
2008-11-20 20:01:55 +00:00
* top:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
2008-11-20 20:01:55 +00:00
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
* error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* iput(...); // release held vnodes
2009-01-15 21:59:39 +00:00
* if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
* waited = B_TRUE;
2008-11-20 20:01:55 +00:00
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
* }
* dmu_tx_abort(tx); // abort DMU tx
* ZFS_EXIT(zfsvfs); // finished in zfs
2008-11-20 20:01:55 +00:00
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* iput(...); // release held vnodes
* zil_commit(zilog, foid); // synchronous when necessary
* ZFS_EXIT(zfsvfs); // finished in zfs
2008-11-20 20:01:55 +00:00
* return (error); // done, report error
*/
/*
* Virus scanning is unsupported. It would be possible to add a hook
* here to performance the required virus scan. This could be done
* entirely in the kernel or potentially as an update to invoke a
* scanning utility.
*/
static int
zfs_vscan(struct inode *ip, cred_t *cr, int async)
{
return (0);
}
/* ARGSUSED */
int
zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/* Honor ZFS_APPENDONLY file attribute */
if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
((flag & O_APPEND) == 0)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
/* Virus scan eligible files on open */
if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
if (zfs_vscan(ip, cr, 0) != 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
}
}
/* Keep a count of the synchronous opens in the znode */
if (flag & O_SYNC)
atomic_inc_32(&zp->z_sync_cnt);
ZFS_EXIT(zfsvfs);
return (0);
}
/* ARGSUSED */
int
zfs_close(struct inode *ip, int flag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/* Decrement the synchronous opens in the znode */
if (flag & O_SYNC)
atomic_dec_32(&zp->z_sync_cnt);
if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
VERIFY(zfs_vscan(ip, cr, 1) == 0);
ZFS_EXIT(zfsvfs);
return (0);
}
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
/*
* Lseek support for finding holes (cmd == SEEK_HOLE) and
* data (cmd == SEEK_DATA). "off" is an in/out parameter.
*/
static int
zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
{
znode_t *zp = ITOZ(ip);
uint64_t noff = (uint64_t)*off; /* new offset */
uint64_t file_sz;
int error;
boolean_t hole;
file_sz = zp->z_size;
if (noff >= file_sz) {
return (SET_ERROR(ENXIO));
}
if (cmd == SEEK_HOLE)
hole = B_TRUE;
else
hole = B_FALSE;
error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
if (error == ESRCH)
return (SET_ERROR(ENXIO));
/* file was dirty, so fall back to using generic logic */
if (error == EBUSY) {
if (hole)
*off = file_sz;
return (0);
}
/*
* We could find a hole that begins after the logical end-of-file,
* because dmu_offset_next() only works on whole blocks. If the
* EOF falls mid-block, then indicate that the "virtual hole"
* at the end of the file begins at the logical EOF, rather than
* at the end of the last block.
*/
if (noff > file_sz) {
ASSERT(hole);
noff = file_sz;
}
if (noff < *off)
return (error);
*off = noff;
return (error);
}
int
zfs_holey(struct inode *ip, int cmd, loff_t *off)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
error = zfs_holey_common(ip, cmd, off);
ZFS_EXIT(zfsvfs);
return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
#if defined(_KERNEL)
2008-11-20 20:01:55 +00:00
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*/
2009-02-18 20:51:31 +00:00
static void
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
update_pages(struct inode *ip, int64_t start, int len,
objset_t *os, uint64_t oid)
2008-11-20 20:01:55 +00:00
{
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
struct address_space *mp = ip->i_mapping;
struct page *pp;
uint64_t nbytes;
2009-02-18 20:51:31 +00:00
int64_t off;
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
void *pb;
2008-11-20 20:01:55 +00:00
off = start & (PAGE_SIZE-1);
for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
nbytes = MIN(PAGE_SIZE - off, len);
2008-11-20 20:01:55 +00:00
pp = find_lock_page(mp, start >> PAGE_SHIFT);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
if (pp) {
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
2008-11-20 20:01:55 +00:00
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
pb = kmap(pp);
(void) dmu_read(os, oid, start+off, nbytes, pb+off,
2009-07-02 22:44:48 +00:00
DMU_READ_PREFETCH);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
SetPageUptodate(pp);
ClearPageError(pp);
unlock_page(pp);
put_page(pp);
2008-11-20 20:01:55 +00:00
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
2009-02-18 20:51:31 +00:00
len -= nbytes;
2008-11-20 20:01:55 +00:00
off = 0;
}
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
2008-11-20 20:01:55 +00:00
*/
static int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
mappedread(struct inode *ip, int nbytes, uio_t *uio)
2008-11-20 20:01:55 +00:00
{
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
struct address_space *mp = ip->i_mapping;
struct page *pp;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
2008-11-20 20:01:55 +00:00
int64_t start, off;
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
uint64_t bytes;
2008-11-20 20:01:55 +00:00
int len = nbytes;
int error = 0;
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
void *pb;
2008-11-20 20:01:55 +00:00
start = uio->uio_loffset;
off = start & (PAGE_SIZE-1);
for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
bytes = MIN(PAGE_SIZE - off, len);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
pp = find_lock_page(mp, start >> PAGE_SHIFT);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
if (pp) {
ASSERT(PageUptodate(pp));
pb = kmap(pp);
error = uiomove(pb + off, bytes, UIO_READ, uio);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
unlock_page(pp);
put_page(pp);
2008-11-20 20:01:55 +00:00
} else {
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, bytes);
2008-11-20 20:01:55 +00:00
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
2008-11-20 20:01:55 +00:00
len -= bytes;
off = 0;
if (error)
break;
}
return (error);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
#endif /* _KERNEL */
2008-11-20 20:01:55 +00:00
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
2008-11-20 20:01:55 +00:00
/*
* Read bytes from specified file into supplied buffer.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of file to be read from.
2008-11-20 20:01:55 +00:00
* uio - structure supplying read location, range info,
* and return buffer.
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
* ioflag - FSYNC flags; used to provide FRSYNC semantics.
* O_DIRECT flag; used to bypass page cache.
2008-11-20 20:01:55 +00:00
* cr - credentials of caller.
*
* OUT: uio - updated offset and range, buffer filled.
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Side Effects:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* inode - atime updated if byte count > 0
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
ssize_t n, nbytes;
int error = 0;
2008-11-20 20:01:55 +00:00
rl_t *rl;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#ifdef HAVE_UIO_ZEROCOPY
xuio_t *xuio = NULL;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#endif /* HAVE_UIO_ZEROCOPY */
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
2008-11-20 20:01:55 +00:00
}
/*
* Validate file offset
*/
if (uio->uio_loffset < (offset_t)0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
/*
* Fasttrack empty reads
*/
if (uio->uio_resid == 0) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* If we're in FRSYNC mode, sync out this znode before reading it.
* Only do this for non-snapshots.
2008-11-20 20:01:55 +00:00
*/
if (zfsvfs->z_log &&
(ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
zil_commit(zfsvfs->z_log, zp->z_id);
2008-11-20 20:01:55 +00:00
/*
* Lock the range against changes.
*/
rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
RL_READER);
2008-11-20 20:01:55 +00:00
/*
* If we are reading past end-of-file we can skip
* to the end; but we might still need to set atime.
*/
if (uio->uio_loffset >= zp->z_size) {
2008-11-20 20:01:55 +00:00
error = 0;
goto out;
}
ASSERT(uio->uio_loffset < zp->z_size);
n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#ifdef HAVE_UIO_ZEROCOPY
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
int nblk;
int blksz = zp->z_blksz;
uint64_t offset = uio->uio_loffset;
xuio = (xuio_t *)uio;
if ((ISP2(blksz))) {
nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
blksz)) / blksz;
} else {
ASSERT(offset + n <= blksz);
nblk = 1;
}
(void) dmu_xuio_init(xuio, nblk);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (vn_has_cached_data(ip)) {
/*
* For simplicity, we always allocate a full buffer
* even if we only expect to read a portion of a block.
*/
while (--nblk >= 0) {
(void) dmu_xuio_add(xuio,
dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz), 0, blksz);
}
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#endif /* HAVE_UIO_ZEROCOPY */
2008-11-20 20:01:55 +00:00
while (n > 0) {
nbytes = MIN(n, zfs_read_chunk_size -
P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
error = mappedread(ip, nbytes, uio);
} else {
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, nbytes);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
if (error) {
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
2008-11-20 20:01:55 +00:00
break;
}
2008-11-20 20:01:55 +00:00
n -= nbytes;
}
out:
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Write the bytes to a file.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of file to be written to.
2008-11-20 20:01:55 +00:00
* uio - structure supplying write location, range info,
* and data buffer.
* ioflag - FAPPEND flag set if in append mode.
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
* O_DIRECT flag; used to bypass page cache.
2008-11-20 20:01:55 +00:00
* cr - credentials of caller.
*
* OUT: uio - updated offset and range.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* ip - ctime|mtime updated if byte count > 0
2008-11-20 20:01:55 +00:00
*/
2008-11-20 20:01:55 +00:00
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
rlim64_t limit = uio->uio_limit;
2008-11-20 20:01:55 +00:00
ssize_t start_resid = uio->uio_resid;
ssize_t tx_bytes;
uint64_t end_size;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
offset_t woff;
ssize_t n, nbytes;
rl_t *rl;
int max_blksz = zfsvfs->z_max_blksz;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int error = 0;
2009-07-02 22:44:48 +00:00
arc_buf_t *abuf;
const iovec_t *aiov = NULL;
xuio_t *xuio = NULL;
int write_eof;
int count = 0;
sa_bulk_attr_t bulk[4];
uint64_t mtime[2], ctime[2];
uint32_t uid;
#ifdef HAVE_UIO_ZEROCOPY
int i_iov = 0;
const iovec_t *iovp = uio->uio_iov;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ASSERTV(int iovcnt = uio->uio_iovcnt);
#endif
2008-11-20 20:01:55 +00:00
/*
* Fasttrack empty write
*/
n = start_resid;
if (n == 0)
return (0);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
/*
* Callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfs_is_readonly(zfsvfs)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
/*
* If immutable or not appending then return EPERM
*/
if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
(uio->uio_loffset < zp->z_size))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
/*
* Validate file offset
*/
woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
if (woff < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
2008-11-20 20:01:55 +00:00
/*
* Pre-fault the pages to ensure slow (eg NFS) pages
* don't hold up txg.
* Skip this if uio contains loaned arc_buf.
2008-11-20 20:01:55 +00:00
*/
#ifdef HAVE_UIO_ZEROCOPY
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
xuio = (xuio_t *)uio;
else
#endif
uio_prefaultpages(MIN(n, max_blksz), uio);
2008-11-20 20:01:55 +00:00
/*
* If in append mode, set the io offset pointer to eof.
*/
if (ioflag & FAPPEND) {
/*
* Obtain an appending range lock to guarantee file append
* semantics. We reset the write offset once we have the lock.
2008-11-20 20:01:55 +00:00
*/
rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
woff = rl->r_off;
2008-11-20 20:01:55 +00:00
if (rl->r_len == UINT64_MAX) {
/*
* We overlocked the file because this write will cause
* the file block size to increase.
* Note that zp_size cannot change with this lock held.
*/
woff = zp->z_size;
2008-11-20 20:01:55 +00:00
}
uio->uio_loffset = woff;
2008-11-20 20:01:55 +00:00
} else {
/*
* Note that if the file block size will change as a result of
* this write, then this range lock will lock the entire file
* so that we can re-write the block safely.
2008-11-20 20:01:55 +00:00
*/
rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
2008-11-20 20:01:55 +00:00
}
if (woff >= limit) {
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EFBIG));
2008-11-20 20:01:55 +00:00
}
if ((woff + n) > limit || woff > (limit - n))
n = limit - woff;
/* Will this write extend the file length? */
write_eof = (woff + n > zp->z_size);
end_size = MAX(zp->z_size, woff + n);
2008-11-20 20:01:55 +00:00
/*
* Write the file in reasonable size chunks. Each chunk is written
* in a separate transaction; this keeps the intent log records small
* and allows us to do more fine-grained space accounting.
*/
while (n > 0) {
2009-07-02 22:44:48 +00:00
abuf = NULL;
woff = uio->uio_loffset;
if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
2009-07-02 22:44:48 +00:00
if (abuf != NULL)
dmu_return_arcbuf(abuf);
error = SET_ERROR(EDQUOT);
2009-07-02 22:44:48 +00:00
break;
}
if (xuio && abuf == NULL) {
#ifdef HAVE_UIO_ZEROCOPY
ASSERT(i_iov < iovcnt);
ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
aiov = &iovp[i_iov];
abuf = dmu_xuio_arcbuf(xuio, i_iov);
dmu_xuio_clear(xuio, i_iov);
ASSERT((aiov->iov_base == abuf->b_data) ||
((char *)aiov->iov_base - (char *)abuf->b_data +
aiov->iov_len == arc_buf_size(abuf)));
i_iov++;
#endif
} else if (abuf == NULL && n >= max_blksz &&
woff >= zp->z_size &&
2009-07-02 22:44:48 +00:00
P2PHASE(woff, max_blksz) == 0 &&
zp->z_blksz == max_blksz) {
/*
* This write covers a full block. "Borrow" a buffer
* from the dmu so that we can fill it before we enter
* a transaction. This avoids the possibility of
* holding up the transaction if the data copy hangs
* up on a pagefault (e.g., from an NFS server mapping).
*/
2009-07-02 22:44:48 +00:00
size_t cbytes;
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
max_blksz);
2009-07-02 22:44:48 +00:00
ASSERT(abuf != NULL);
ASSERT(arc_buf_size(abuf) == max_blksz);
if ((error = uiocopy(abuf->b_data, max_blksz,
UIO_WRITE, uio, &cbytes))) {
2009-07-02 22:44:48 +00:00
dmu_return_arcbuf(abuf);
break;
}
ASSERT(cbytes == max_blksz);
}
2008-11-20 20:01:55 +00:00
/*
* Start a transaction.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
2008-11-20 20:01:55 +00:00
if (error) {
dmu_tx_abort(tx);
2009-07-02 22:44:48 +00:00
if (abuf != NULL)
dmu_return_arcbuf(abuf);
2008-11-20 20:01:55 +00:00
break;
}
/*
* If zfs_range_lock() over-locked we grow the blocksize
* and then reduce the lock range. This will only happen
* on the first iteration since zfs_range_reduce() will
* shrink down r_len to the appropriate size.
*/
if (rl->r_len == UINT64_MAX) {
uint64_t new_blksz;
if (zp->z_blksz > max_blksz) {
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 20:15:08 +00:00
/*
* File's blocksize is already larger than the
* "recordsize" property. Only let it grow to
* the next power of 2.
*/
2008-11-20 20:01:55 +00:00
ASSERT(!ISP2(zp->z_blksz));
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 20:15:08 +00:00
new_blksz = MIN(end_size,
1 << highbit64(zp->z_blksz));
2008-11-20 20:01:55 +00:00
} else {
new_blksz = MIN(end_size, max_blksz);
}
zfs_grow_blocksize(zp, new_blksz, tx);
zfs_range_reduce(rl, woff, n);
}
/*
* XXX - should we really limit each write to z_max_blksz?
* Perhaps we should use SPA_MAXBLOCKSIZE chunks?
*/
nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
2009-07-02 22:44:48 +00:00
if (abuf == NULL) {
tx_bytes = uio->uio_resid;
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, nbytes, tx);
2009-07-02 22:44:48 +00:00
tx_bytes -= uio->uio_resid;
} else {
tx_bytes = nbytes;
ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
/*
* If this is not a full block write, but we are
* extending the file past EOF and this data starts
* block-aligned, use assign_arcbuf(). Otherwise,
* write via dmu_write().
*/
if (tx_bytes < max_blksz && (!write_eof ||
aiov->iov_base != abuf->b_data)) {
ASSERT(xuio);
dmu_write(zfsvfs->z_os, zp->z_id, woff,
aiov->iov_len, aiov->iov_base, tx);
dmu_return_arcbuf(abuf);
xuio_stat_wbuf_copied();
} else {
ASSERT(xuio || tx_bytes == max_blksz);
dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
woff, abuf, tx);
}
2009-07-02 22:44:48 +00:00
ASSERT(tx_bytes <= uio->uio_resid);
uioskip(uio, tx_bytes);
}
if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
update_pages(ip, woff,
tx_bytes, zfsvfs->z_os, zp->z_id);
}
2008-11-20 20:01:55 +00:00
/*
* If we made no progress, we're done. If we made even
* partial progress, update the znode and ZIL accordingly.
*/
if (tx_bytes == 0) {
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
(void *)&zp->z_size, sizeof (uint64_t), tx);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
ASSERT(error != 0);
break;
}
/*
* Clear Set-UID/Set-GID bits on successful write if not
* privileged and at least one of the execute bits is set.
2008-11-20 20:01:55 +00:00
*
* It would be nice to to this after all writes have
* been done, but that would still expose the ISUID/ISGID
* to another app after the partial write is committed.
*
* Note: we don't call zfs_fuid_map_id() here because
* user 0 is not an ephemeral uid.
2008-11-20 20:01:55 +00:00
*/
mutex_enter(&zp->z_acl_lock);
uid = KUID_TO_SUID(ip->i_uid);
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
2008-11-20 20:01:55 +00:00
(S_IXUSR >> 6))) != 0 &&
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
2008-11-20 20:01:55 +00:00
secpolicy_vnode_setid_retain(cr,
((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
uint64_t newmode;
zp->z_mode &= ~(S_ISUID | S_ISGID);
ip->i_mode = newmode = zp->z_mode;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
(void *)&newmode, sizeof (uint64_t), tx);
2008-11-20 20:01:55 +00:00
}
mutex_exit(&zp->z_acl_lock);
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
2008-11-20 20:01:55 +00:00
/*
* Update the file size (zp_size) if it has changed;
* account for possible concurrent updates.
*/
while ((end_size = zp->z_size) < uio->uio_loffset) {
(void) atomic_cas_64(&zp->z_size, end_size,
2008-11-20 20:01:55 +00:00
uio->uio_loffset);
ASSERT(error == 0);
}
/*
* If we are replaying and eof is non zero then force
* the file size to the specified eof. Note, there's no
* concurrency during replay.
*/
if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
zp->z_size = zfsvfs->z_replay_eof;
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
NULL, NULL);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
if (error != 0)
break;
ASSERT(tx_bytes == nbytes);
n -= nbytes;
if (!xuio && n > 0)
uio_prefaultpages(MIN(n, max_blksz), uio);
2008-11-20 20:01:55 +00:00
}
zfs_inode_update(zp);
2008-11-20 20:01:55 +00:00
zfs_range_unlock(rl);
/*
* If we're in replay mode, or we made no progress, return error.
* Otherwise, it's at least a partial write, so it's successful.
*/
if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (ioflag & (FSYNC | FDSYNC) ||
zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, zp->z_id);
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* Drop a reference on the passed inode asynchronously. This ensures
* that the caller will never drop the last reference on an inode in
* the current context. Doing so while holding open a tx could result
* in a deadlock if iput_final() re-enters the filesystem code.
*/
void
zfs_iput_async(struct inode *ip)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
{
objset_t *os = ITOZSB(ip)->z_os;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ASSERT(atomic_read(&ip->i_count) > 0);
ASSERT(os != NULL);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (atomic_read(&ip->i_count) == 1)
VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
(task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
else
iput(ip);
}
2008-11-20 20:01:55 +00:00
void
zfs_get_done(zgd_t *zgd, int error)
2008-11-20 20:01:55 +00:00
{
znode_t *zp = zgd->zgd_private;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
zfs_range_unlock(zgd->zgd_rl);
2008-11-20 20:01:55 +00:00
2009-07-02 22:44:48 +00:00
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
zfs_iput_async(ZTOI(zp));
if (error == 0 && zgd->zgd_bp)
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
2008-11-20 20:01:55 +00:00
kmem_free(zgd, sizeof (zgd_t));
}
2009-08-18 18:43:27 +00:00
#ifdef DEBUG
static int zil_fault_io = 0;
#endif
2008-11-20 20:01:55 +00:00
/*
* Get data to generate a TX_WRITE intent log record.
*/
int
zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
{
zfsvfs_t *zfsvfs = arg;
objset_t *os = zfsvfs->z_os;
2008-11-20 20:01:55 +00:00
znode_t *zp;
uint64_t object = lr->lr_foid;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
2008-11-20 20:01:55 +00:00
dmu_buf_t *db;
zgd_t *zgd;
int error = 0;
ASSERT(zio != NULL);
ASSERT(size != 0);
2008-11-20 20:01:55 +00:00
/*
* Nothing to do if the file has been removed
*/
if (zfs_zget(zfsvfs, object, &zp) != 0)
return (SET_ERROR(ENOENT));
2008-11-20 20:01:55 +00:00
if (zp->z_unlinked) {
2009-07-02 22:44:48 +00:00
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
zfs_iput_async(ZTOI(zp));
return (SET_ERROR(ENOENT));
2008-11-20 20:01:55 +00:00
}
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
zgd->zgd_zilog = zfsvfs->z_log;
zgd->zgd_private = zp;
2008-11-20 20:01:55 +00:00
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) { /* immediate write */
zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
RL_READER);
2008-11-20 20:01:55 +00:00
/* test for truncation needs to be done while range locked */
if (offset >= zp->z_size) {
error = SET_ERROR(ENOENT);
} else {
error = dmu_read(os, object, offset, size, buf,
DMU_READ_NO_PREFETCH);
2008-11-20 20:01:55 +00:00
}
ASSERT(error == 0 || error == ENOENT);
2008-11-20 20:01:55 +00:00
} else { /* indirect write */
/*
* Have to lock the whole block to ensure when it's
* written out and its checksum is being calculated
2008-11-20 20:01:55 +00:00
* that no one can change the data. We need to re-check
* blocksize after we get the lock in case it's changed!
*/
for (;;) {
uint64_t blkoff;
size = zp->z_blksz;
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
offset -= blkoff;
zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
size, RL_READER);
if (zp->z_blksz == size)
2008-11-20 20:01:55 +00:00
break;
offset += blkoff;
zfs_range_unlock(zgd->zgd_rl);
2008-11-20 20:01:55 +00:00
}
/* test for truncation needs to be done while range locked */
if (lr->lr_offset >= zp->z_size)
error = SET_ERROR(ENOENT);
2009-08-18 18:43:27 +00:00
#ifdef DEBUG
if (zil_fault_io) {
error = SET_ERROR(EIO);
2009-08-18 18:43:27 +00:00
zil_fault_io = 0;
}
#endif
2008-11-20 20:01:55 +00:00
if (error == 0)
error = dmu_buf_hold(os, object, offset, zgd, &db,
DMU_READ_NO_PREFETCH);
if (error == 0) {
blkptr_t *bp = &lr->lr_blkptr;
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT(db->db_offset == offset);
ASSERT(db->db_size == size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
zfs_get_done, zgd);
ASSERT(error || lr->lr_length <= size);
/*
* On success, we need to wait for the write I/O
* initiated by dmu_sync() to complete before we can
* release this dbuf. We will finish everything up
* in the zfs_get_done() callback.
*/
if (error == 0)
return (0);
if (error == EALREADY) {
lr->lr_common.lrc_txtype = TX_WRITE2;
error = 0;
}
}
2008-11-20 20:01:55 +00:00
}
zfs_get_done(zgd, error);
2008-11-20 20:01:55 +00:00
return (error);
}
/*ARGSUSED*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int
zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
int error;
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if (flag & V_ACE_MASK)
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
else
error = zfs_zaccess_rwx(zp, mode, flag, cr);
ZFS_EXIT(zfsvfs);
2009-08-18 18:43:27 +00:00
return (error);
}
2008-11-20 20:01:55 +00:00
/*
* Lookup an entry in a directory, or an extended attribute directory.
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* If it exists, return a held inode reference for it.
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - inode of directory to search.
2008-11-20 20:01:55 +00:00
* nm - name of entry to lookup.
* flags - LOOKUP_XATTR set if looking for an attribute.
* cr - credentials of caller.
* direntflags - directory lookup flags
* realpnp - returned pathname.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* OUT: ipp - inode of located entry, NULL if not found.
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
* NA
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
cred_t *cr, int *direntflags, pathname_t *realpnp)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zdp = ITOZ(dip);
zfsvfs_t *zfsvfs = ITOZSB(dip);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int error = 0;
2009-08-18 18:43:27 +00:00
/*
* Fast path lookup, however we must skip DNLC lookup
* for case folding or normalizing lookups because the
* DNLC code only stores the passed in name. This means
* creating 'a' and removing 'A' on a case insensitive
* file system would work, but DNLC still thinks 'a'
* exists and won't let you create it again on the next
* pass through fast path.
*/
2009-08-18 18:43:27 +00:00
if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (!S_ISDIR(dip->i_mode)) {
return (SET_ERROR(ENOTDIR));
} else if (zdp->z_sa_hdl == NULL) {
return (SET_ERROR(EIO));
2009-08-18 18:43:27 +00:00
}
if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (!error) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = dip;
igrab(*ipp);
2009-08-18 18:43:27 +00:00
return (0);
}
return (error);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#ifdef HAVE_DNLC
} else if (!zdp->z_zfsvfs->z_norm &&
(zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
2009-08-18 18:43:27 +00:00
vnode_t *tvp = dnlc_lookup(dvp, nm);
if (tvp) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (error) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(tvp);
2009-08-18 18:43:27 +00:00
return (error);
}
if (tvp == DNLC_NO_VNODE) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(tvp);
return (SET_ERROR(ENOENT));
2009-08-18 18:43:27 +00:00
} else {
*vpp = tvp;
return (specvp_check(vpp, cr));
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#endif /* HAVE_DNLC */
2009-08-18 18:43:27 +00:00
}
}
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zdp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = NULL;
2008-11-20 20:01:55 +00:00
if (flags & LOOKUP_XATTR) {
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Do we have permission to get into attribute directory?
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
B_FALSE, cr))) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(*ipp);
*ipp = NULL;
2008-11-20 20:01:55 +00:00
}
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (!S_ISDIR(dip->i_mode)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(ENOTDIR));
2008-11-20 20:01:55 +00:00
}
/*
* Check accessibility of directory.
*/
if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
2008-11-20 20:01:55 +00:00
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
if ((error == 0) && (*ipp))
zfs_inode_update(ITOZ(*ipp));
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* an error. Return the ip of the created or trunc'd file.
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - inode of directory to put new file entry in.
2008-11-20 20:01:55 +00:00
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - large file flag [UNUSED].
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* vsecp - ACL to be set
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* OUT: ipp - inode of created or trunc'd entry.
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dip - ctime|mtime updated if new entry created
* ip - ctime|mtime always, atime if new
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp, *dzp = ITOZ(dip);
zfsvfs_t *zfsvfs = ITOZSB(dip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
objset_t *os;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
uid_t uid;
gid_t gid;
zfs_acl_ids_t acl_ids;
2009-07-02 22:44:48 +00:00
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
gid = crgetgid(cr);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
if (name == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
os = zfsvfs->z_os;
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
2008-11-20 20:01:55 +00:00
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (vap->va_mask & ATTR_XVATTR) {
2008-11-20 20:01:55 +00:00
if ((error = secpolicy_xvattr((xvattr_t *)vap,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
crgetuid(cr), cr, vap->va_mode)) != 0) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
top:
*ipp = NULL;
2008-11-20 20:01:55 +00:00
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
igrab(dip);
2008-11-20 20:01:55 +00:00
zp = dzp;
dl = NULL;
error = 0;
} else {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
/* possible igrab(zp) */
2008-11-20 20:01:55 +00:00
int zflg = 0;
if (flag & FIGNORECASE)
zflg |= ZCILOOK;
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL);
if (error) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
if (strcmp(name, "..") == 0)
error = SET_ERROR(EISDIR);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
}
2008-11-20 20:01:55 +00:00
if (zp == NULL) {
uint64_t txtype;
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EINVAL);
2008-11-20 20:01:55 +00:00
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids)) != 0)
2009-07-02 22:44:48 +00:00
goto out;
have_acl = B_TRUE;
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2009-08-18 18:43:27 +00:00
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
2009-07-02 22:44:48 +00:00
goto out;
}
2008-11-20 20:01:55 +00:00
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2008-11-20 20:01:55 +00:00
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
2008-11-20 20:01:55 +00:00
}
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
2009-07-02 22:44:48 +00:00
2008-11-20 20:01:55 +00:00
(void) zfs_link_create(dl, zp, tx, ZNEW);
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
if (flag & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
2009-07-02 22:44:48 +00:00
vsecp, acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
} else {
int aflags = (flag & FAPPEND) ? V_APPEND : 0;
if (have_acl)
zfs_acl_ids_free(&acl_ids);
have_acl = B_FALSE;
2008-11-20 20:01:55 +00:00
/*
* A directory entry already exists for this name.
*/
/*
* Can't truncate an existing file if in exclusive mode.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (excl) {
error = SET_ERROR(EEXIST);
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* Can't open a directory for writing.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ZTOI(zp)->i_mode)) {
error = SET_ERROR(EISDIR);
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* Verify requested access to file.
*/
if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
goto out;
}
mutex_enter(&dzp->z_lock);
dzp->z_seq++;
mutex_exit(&dzp->z_lock);
/*
* Truncate regular files if requested.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISREG(ZTOI(zp)->i_mode) &&
(vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
/* we can't hold any locks when calling zfs_freesp() */
if (dl) {
zfs_dirent_unlock(dl);
dl = NULL;
}
2008-11-20 20:01:55 +00:00
error = zfs_freesp(zp, 0, 0, mode, TRUE);
}
}
out:
if (dl)
zfs_dirent_unlock(dl);
if (error) {
if (zp)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
} else {
zfs_inode_update(dzp);
zfs_inode_update(zp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = ZTOI(zp);
2008-11-20 20:01:55 +00:00
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/* ARGSUSED */
int
zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
{
znode_t *zp = NULL, *dzp = ITOZ(dip);
zfsvfs_t *zfsvfs = ITOZSB(dip);
objset_t *os;
dmu_tx_t *tx;
int error;
uid_t uid;
gid_t gid;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
boolean_t waited = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
gid = crgetgid(cr);
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
os = zfsvfs->z_os;
if (vap->va_mask & ATTR_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
top:
*ipp = NULL;
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids)) != 0)
goto out;
have_acl = B_TRUE;
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
/* Add to unlinked set */
zp->z_unlinked = 1;
zfs_unlinked_add(zp, tx);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
out:
if (error) {
if (zp)
iput(ZTOI(zp));
} else {
zfs_inode_update(dzp);
zfs_inode_update(zp);
*ipp = ZTOI(zp);
}
ZFS_EXIT(zfsvfs);
return (error);
}
2008-11-20 20:01:55 +00:00
/*
* Remove an entry from a directory.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - inode of directory to remove entry from.
2008-11-20 20:01:55 +00:00
* name - name of entry to remove.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dip - ctime|mtime
* ip - ctime (if nlink > 0)
2008-11-20 20:01:55 +00:00
*/
uint64_t null_xattr = 0;
2008-11-20 20:01:55 +00:00
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp, *dzp = ITOZ(dip);
znode_t *xzp;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
struct inode *ip;
zfsvfs_t *zfsvfs = ITOZSB(dip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
uint64_t acl_obj, xattr_obj;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
uint64_t xattr_obj_unlinked = 0;
uint64_t obj = 0;
uint64_t links;
2008-11-20 20:01:55 +00:00
zfs_dirlock_t *dl;
dmu_tx_t *tx;
boolean_t may_delete_now, delete_now = FALSE;
boolean_t unlinked, toobig = FALSE;
2008-11-20 20:01:55 +00:00
uint64_t txtype;
pathname_t *realnmp = NULL;
pathname_t realnm;
int error;
int zflg = ZEXISTS;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
if (name == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
if (flags & FIGNORECASE) {
zflg |= ZCILOOK;
pn_alloc(&realnm);
realnmp = &realnm;
}
top:
xattr_obj = 0;
xzp = NULL;
2008-11-20 20:01:55 +00:00
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, realnmp))) {
2008-11-20 20:01:55 +00:00
if (realnmp)
pn_free(realnmp);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ip = ZTOI(zp);
2008-11-20 20:01:55 +00:00
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ip->i_mode)) {
error = SET_ERROR(EPERM);
2008-11-20 20:01:55 +00:00
goto out;
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#ifdef HAVE_DNLC
2008-11-20 20:01:55 +00:00
if (realnmp)
dnlc_remove(dvp, realnmp->pn_buf);
else
dnlc_remove(dvp, name);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#endif /* HAVE_DNLC */
2008-11-20 20:01:55 +00:00
mutex_enter(&zp->z_lock);
may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
mutex_exit(&zp->z_lock);
2008-11-20 20:01:55 +00:00
/*
* We may delete the znode now, or we may put it in the unlinked set;
* it depends on whether we're the last link, and on whether there are
* other holds on the inode. So we dmu_tx_hold() the right things to
* allow for either case.
2008-11-20 20:01:55 +00:00
*/
obj = zp->z_id;
tx = dmu_tx_create(zfsvfs->z_os);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
if (may_delete_now) {
toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
/* if the file is too big, only hold_free a token amount */
dmu_tx_hold_free(tx, zp->z_id, 0,
(toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
}
2008-11-20 20:01:55 +00:00
/* are there any extended attributes? */
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 && xattr_obj) {
error = zfs_zget(zfsvfs, xattr_obj, &xzp);
ASSERT0(error);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
}
mutex_enter(&zp->z_lock);
if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
mutex_exit(&zp->z_lock);
2008-11-20 20:01:55 +00:00
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2008-11-20 20:01:55 +00:00
/*
* Mark this transaction as typically resulting in a net free of space
*/
dmu_tx_mark_netfree(tx);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
iput(ip);
if (xzp)
iput(ZTOI(xzp));
2008-11-20 20:01:55 +00:00
goto top;
}
if (realnmp)
pn_free(realnmp);
dmu_tx_abort(tx);
iput(ip);
if (xzp)
iput(ZTOI(xzp));
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (unlinked) {
/*
* Hold z_lock so that we can make sure that the ACL obj
* hasn't changed. Could have been deleted due to
* zfs_sa_upgrade().
*/
mutex_enter(&zp->z_lock);
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
delete_now = may_delete_now && !toobig &&
atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
acl_obj;
}
if (delete_now) {
if (xattr_obj_unlinked) {
ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
mutex_enter(&xzp->z_lock);
xzp->z_unlinked = 1;
clear_nlink(ZTOI(xzp));
links = 0;
error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
&links, sizeof (links), tx);
ASSERT3U(error, ==, 0);
mutex_exit(&xzp->z_lock);
zfs_unlinked_add(xzp, tx);
if (zp->z_is_sa)
error = sa_remove(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), tx);
else
error = sa_update(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), &null_xattr,
sizeof (uint64_t), tx);
ASSERT0(error);
}
/*
* Add to the unlinked set because a new reference could be
* taken concurrently resulting in a deferred destruction.
*/
zfs_unlinked_add(zp, tx);
mutex_exit(&zp->z_lock);
} else if (unlinked) {
mutex_exit(&zp->z_lock);
2008-11-20 20:01:55 +00:00
zfs_unlinked_add(zp, tx);
}
txtype = TX_REMOVE;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
out:
if (realnmp)
pn_free(realnmp);
zfs_dirent_unlock(dl);
zfs_inode_update(dzp);
zfs_inode_update(zp);
2008-11-20 20:01:55 +00:00
if (delete_now)
iput(ip);
else
zfs_iput_async(ip);
if (xzp) {
zfs_inode_update(xzp);
zfs_iput_async(ZTOI(xzp));
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* Create a new directory and insert it into dip using the name
2008-11-20 20:01:55 +00:00
* provided. Return a pointer to the inserted directory.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - inode of directory to add subdir to.
2008-11-20 20:01:55 +00:00
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
* vsecp - ACL to be set
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* OUT: ipp - inode of created directory.
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dip - ctime|mtime updated
* ipp - ctime|mtime|atime updated
2008-11-20 20:01:55 +00:00
*/
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
cred_t *cr, int flags, vsecattr_t *vsecp)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp, *dzp = ITOZ(dip);
zfsvfs_t *zfsvfs = ITOZSB(dip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
zfs_dirlock_t *dl;
uint64_t txtype;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uid_t uid;
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
2009-07-02 22:44:48 +00:00
boolean_t fuid_dirtied;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ASSERT(S_ISDIR(vap->va_mode));
2008-11-20 20:01:55 +00:00
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
if (dirname == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
if (dzp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
if (zfsvfs->z_utf8 && u8_validate(dirname,
2008-11-20 20:01:55 +00:00
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (vap->va_mask & ATTR_XVATTR) {
2008-11-20 20:01:55 +00:00
if ((error = secpolicy_xvattr((xvattr_t *)vap,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
crgetuid(cr), cr, vap->va_mode)) != 0) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
}
2008-11-20 20:01:55 +00:00
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
vsecp, &acl_ids)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
2008-11-20 20:01:55 +00:00
/*
* First make sure the new directory doesn't exist.
*
* Existence is checked first to make sure we don't return
* EACCES instead of EEXIST which can cause some applications
* to fail.
2008-11-20 20:01:55 +00:00
*/
top:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = NULL;
2008-11-20 20:01:55 +00:00
if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
NULL, NULL))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2009-08-18 18:43:27 +00:00
zfs_acl_ids_free(&acl_ids);
2009-07-02 22:44:48 +00:00
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EDQUOT));
2009-07-02 22:44:48 +00:00
}
2008-11-20 20:01:55 +00:00
/*
* Add a new entry to the directory.
*/
tx = dmu_tx_create(zfsvfs->z_os);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2008-11-20 20:01:55 +00:00
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
2008-11-20 20:01:55 +00:00
/*
* Now put new name in parent dir.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = ZTOI(zp);
2008-11-20 20:01:55 +00:00
txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
if (flags & FIGNORECASE)
txtype |= TX_CI;
2009-07-02 22:44:48 +00:00
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
acl_ids.z_fuidp, vap);
2008-11-20 20:01:55 +00:00
2009-07-02 22:44:48 +00:00
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_inode_update(dzp);
zfs_inode_update(zp);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - inode of directory to remove from.
2008-11-20 20:01:55 +00:00
* name - name of directory to be removed.
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* cwd - inode of current working directory.
2008-11-20 20:01:55 +00:00
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dip - ctime|mtime updated
2008-11-20 20:01:55 +00:00
*/
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
int flags)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *dzp = ITOZ(dip);
2008-11-20 20:01:55 +00:00
znode_t *zp;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
struct inode *ip;
zfsvfs_t *zfsvfs = ITOZSB(dip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zflg = ZEXISTS;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
if (name == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
zp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ip = ZTOI(zp);
2008-11-20 20:01:55 +00:00
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2008-11-20 20:01:55 +00:00
goto out;
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (!S_ISDIR(ip->i_mode)) {
error = SET_ERROR(ENOTDIR);
2008-11-20 20:01:55 +00:00
goto out;
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (ip == cwd) {
error = SET_ERROR(EINVAL);
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* Grab a lock on the directory to make sure that no one is
2008-11-20 20:01:55 +00:00
* trying to add (or lookup) entries while we are removing it.
*/
rw_enter(&zp->z_name_lock, RW_WRITER);
/*
* Grab a lock on the parent pointer to make sure we play well
* with the treewalk and directory rename code.
*/
rw_enter(&zp->z_parent_lock, RW_WRITER);
tx = dmu_tx_create(zfsvfs->z_os);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
dmu_tx_mark_netfree(tx);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
iput(ip);
2008-11-20 20:01:55 +00:00
goto top;
}
dmu_tx_abort(tx);
iput(ip);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
if (error == 0) {
uint64_t txtype = TX_RMDIR;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2008-11-20 20:01:55 +00:00
}
dmu_tx_commit(tx);
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
out:
zfs_dirent_unlock(dl);
zfs_inode_update(dzp);
zfs_inode_update(zp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ip);
2008-11-20 20:01:55 +00:00
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Read as many directory entries as will fit into the provided
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dirent buffer from the given directory cursor position.
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of directory to read.
* dirent - buffer for directory entries.
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* OUT: dirent - filler buffer of directory entries.
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* ip - atime updated
2008-11-20 20:01:55 +00:00
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
/* ARGSUSED */
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int
zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
objset_t *os;
zap_cursor_t zc;
zap_attribute_t zap;
int error;
uint8_t prefetch;
uint8_t type;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int done = 0;
uint64_t parent;
uint64_t offset; /* must be unsigned; checks for < 1 */
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
&parent, sizeof (parent))) != 0)
goto out;
2008-11-20 20:01:55 +00:00
/*
* Quit if directory has been removed (posix)
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (zp->z_unlinked)
goto out;
error = 0;
os = zfsvfs->z_os;
offset = ctx->pos;
2008-11-20 20:01:55 +00:00
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (offset <= 3) {
2008-11-20 20:01:55 +00:00
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2008-11-20 20:01:55 +00:00
}
/*
* Transform to file-system independent format
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
while (!done) {
uint64_t objnum;
2008-11-20 20:01:55 +00:00
/*
* Special case `.', `..', and `.zfs'.
*/
if (offset == 0) {
2008-11-20 20:01:55 +00:00
(void) strcpy(zap.za_name, ".");
zap.za_normalization_conflict = 0;
objnum = zp->z_id;
type = DT_DIR;
} else if (offset == 1) {
2008-11-20 20:01:55 +00:00
(void) strcpy(zap.za_name, "..");
zap.za_normalization_conflict = 0;
objnum = parent;
type = DT_DIR;
} else if (offset == 2 && zfs_show_ctldir(zp)) {
2008-11-20 20:01:55 +00:00
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_normalization_conflict = 0;
objnum = ZFSCTL_INO_ROOT;
type = DT_DIR;
2008-11-20 20:01:55 +00:00
} else {
/*
* Grab next entry.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((error = zap_cursor_retrieve(&zc, &zap))) {
if (error == ENOENT)
2008-11-20 20:01:55 +00:00
break;
else
goto update;
}
/*
* Allow multiple entries provided the first entry is
* the object id. Non-zpl consumers may safely make
* use of the additional space.
*
* XXX: This should be a feature flag for compatibility
*/
2008-11-20 20:01:55 +00:00
if (zap.za_integer_length != 8 ||
zap.za_num_integers == 0) {
2008-11-20 20:01:55 +00:00
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld, "
"length = %d, num = %lld\n",
2008-11-20 20:01:55 +00:00
(u_longlong_t)zp->z_id,
(u_longlong_t)offset,
zap.za_integer_length,
(u_longlong_t)zap.za_num_integers);
error = SET_ERROR(ENXIO);
2008-11-20 20:01:55 +00:00
goto update;
}
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2008-11-20 20:01:55 +00:00
}
done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
objnum, type);
if (done)
2008-11-20 20:01:55 +00:00
break;
/* Prefetch znode */
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (prefetch) {
dmu_prefetch(os, objnum, 0, 0, 0,
ZIO_PRIORITY_SYNC_READ);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
}
2008-11-20 20:01:55 +00:00
/*
* Move to the next entry, fill in the previous offset.
*/
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2008-11-20 20:01:55 +00:00
zap_cursor_advance(&zc);
offset = zap_cursor_serialize(&zc);
2008-11-20 20:01:55 +00:00
} else {
offset += 1;
2008-11-20 20:01:55 +00:00
}
ctx->pos = offset;
2008-11-20 20:01:55 +00:00
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
update:
zap_cursor_fini(&zc);
if (error == ENOENT)
error = 0;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
out:
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
ulong_t zfs_fsync_sync_cnt = 4;
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
zil_commit(zfsvfs->z_log, zp->z_id);
ZFS_EXIT(zfsvfs);
}
tsd_set(zfs_fsyncer_key, NULL);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* Get the requested file attributes and place them in the provided
* vattr structure.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of file.
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
* vap - va_mask identifies requested attributes.
* If ATTR_XVATTR set, then optional attrs are requested
2008-11-20 20:01:55 +00:00
* flags - ATTR_NOACLCHECK (CIFS server context)
* cr - credentials of caller.
*
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
* OUT: vap - attribute values.
*
* RETURN: 0 (always succeeds)
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
int error = 0;
uint64_t links;
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
uint64_t atime[2], mtime[2], ctime[2];
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap = NULL;
2008-11-20 20:01:55 +00:00
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
sa_bulk_attr_t bulk[3];
int count = 0;
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
2008-11-20 20:01:55 +00:00
/*
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
* Also, if we are the owner don't bother, since owner should
* always be allowed to read basic attributes of file.
*/
if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
(vap->va_uid != crgetuid(cr))) {
if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
skipaclchk, cr))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
}
/*
* Return all attributes. It's cheaper to provide the answer
* than to determine whether we were asked the question.
*/
2009-07-02 22:44:48 +00:00
mutex_enter(&zp->z_lock);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_type = vn_mode_to_vtype(zp->z_mode);
vap->va_mode = zp->z_mode;
vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_nodeid = zp->z_id;
if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
links = ZTOI(zp)->i_nlink + 1;
2008-11-20 20:01:55 +00:00
else
links = ZTOI(zp)->i_nlink;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_nlink = MIN(links, ZFS_LINK_MAX);
vap->va_size = i_size_read(ip);
vap->va_rdev = ip->i_rdev;
vap->va_seq = ip->i_generation;
/*
* Add in any requested optional attributes and the create time.
* Also set the corresponding bits in the returned attribute bitmap.
*/
if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
xoap->xoa_archive =
((zp->z_pflags & ZFS_ARCHIVE) != 0);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
xoap->xoa_readonly =
((zp->z_pflags & ZFS_READONLY) != 0);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
xoap->xoa_system =
((zp->z_pflags & ZFS_SYSTEM) != 0);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
xoap->xoa_hidden =
((zp->z_pflags & ZFS_HIDDEN) != 0);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
xoap->xoa_nounlink =
((zp->z_pflags & ZFS_NOUNLINK) != 0);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
xoap->xoa_immutable =
((zp->z_pflags & ZFS_IMMUTABLE) != 0);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
xoap->xoa_appendonly =
((zp->z_pflags & ZFS_APPENDONLY) != 0);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
xoap->xoa_nodump =
((zp->z_pflags & ZFS_NODUMP) != 0);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
xoap->xoa_opaque =
((zp->z_pflags & ZFS_OPAQUE) != 0);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
xoap->xoa_av_quarantined =
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
xoap->xoa_av_modified =
((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
S_ISREG(ip->i_mode)) {
zfs_sa_get_scanstamp(zp, xvap);
}
2008-11-20 20:01:55 +00:00
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
uint64_t times[2];
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
times, sizeof (times));
ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
xoap->xoa_generation = ip->i_generation;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_RTN(xvap, XAT_GEN);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
xoap->xoa_offline =
((zp->z_pflags & ZFS_OFFLINE) != 0);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
xoap->xoa_sparse =
((zp->z_pflags & ZFS_SPARSE) != 0);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
}
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
ZFS_TIME_DECODE(&vap->va_atime, atime);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
ZFS_TIME_DECODE(&vap->va_mtime, mtime);
ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2008-11-20 20:01:55 +00:00
mutex_exit(&zp->z_lock);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2008-11-20 20:01:55 +00:00
if (zp->z_blksz == 0) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
vap->va_blksize = zfsvfs->z_max_blksz;
2008-11-20 20:01:55 +00:00
}
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
/*
* Get the basic file attributes and place them in the provided kstat
* structure. The inode is assumed to be the authoritative source
* for most of the attributes. However, the znode currently has the
* authoritative atime, blksize, and block count.
*
* IN: ip - inode of file.
*
* OUT: sp - kstat values.
*
* RETURN: 0 (always succeeds)
*/
/* ARGSUSED */
int
zfs_getattr_fast(struct inode *ip, struct kstat *sp)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
uint32_t blksize;
u_longlong_t nblocks;
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
mutex_enter(&zp->z_lock);
generic_fillattr(ip, sp);
sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
sp->blksize = blksize;
sp->blocks = nblocks;
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
if (unlikely(zp->z_blksz == 0)) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
sp->blksize = zfsvfs->z_max_blksz;
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
}
mutex_exit(&zp->z_lock);
/*
* Required to prevent NFS client from detecting different inode
* numbers of snapshot root dentry before and after snapshot mount.
*/
if (zfsvfs->z_issnap) {
if (ip->i_sb->s_root->d_inode == ip)
sp->ino = ZFSCTL_INO_SNAPDIRS -
dmu_objset_id(zfsvfs->z_os);
}
ZFS_EXIT(zfsvfs);
Improve fstat(2) performance There is at most a factor of 3x performance improvement to be had by using the Linux generic_fillattr() helper. However, to use it safely we need to ensure the values in a cached inode are kept rigerously up to date. Unfortunately, this isn't the case for the blksize, blocks, and atime fields. At the moment the authoritative values are still stored in the znode. This patch introduces an optimized zfs_getattr_fast() call. The idea is to use the up to date values from the inode and the blksize, block, and atime fields from the znode. At some latter date we should be able to strictly use the inode values and further improve performance. The remaining overhead in the zfs_getattr_fast() call can be attributed to having to take the znode mutex. This overhead is unavoidable until the inode is kept strictly up to date. The the careful reader will notice the we do not use the customary ZFS_ENTER()/ZFS_EXIT() macros. These macro's are designed to ensure the filesystem is not torn down in the middle of an operation. However, in this case the VFS is holding a reference on the active inode so we know this is impossible. =================== Performance Tests ======================== This test calls the fstat(2) system call 10,000,000 times on an open file description in a tight loop. The test results show the zfs stat(2) performance is now only 22% slower than ext4. This is a 2.5x improvement and there is a clear long term plan to get to parity with ext4. filesystem | test-1 test-2 test-3 | average | times-ext4 --------------+-------------------------+---------+----------- ext4 | 7.785s 7.899s 7.284s | 7.656s | 1.000x zfs-0.6.0-rc4 | 24.052s 22.531s 23.857s | 23.480s | 3.066x zfs-faststat | 9.224s 9.398s 9.485s | 9.369s | 1.223x The second test is to run 'du' of a copy of the /usr tree which contains 110514 files. The test is run multiple times both using both a cold cache (/proc/sys/vm/drop_caches) and a hot cache. As expected this change signigicantly improved the zfs hot cache performance and doesn't quite bring zfs to parity with ext4. A little surprisingly the zfs cold cache performance is better than ext4. This can probably be attributed to the zfs allocation policy of co-locating all the meta data on disk which minimizes seek times. By default the ext4 allocator will spread the data over the entire disk only co-locating each directory. filesystem | cold | hot --------------+---------+-------- ext4 | 13.318s | 1.040s zfs-0.6.0-rc4 | 4.982s | 1.762s zfs-faststat | 4.933s | 1.345s
2011-07-09 22:44:16 +00:00
return (0);
}
2008-11-20 20:01:55 +00:00
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of file to be modified.
2008-11-20 20:01:55 +00:00
* vap - new attribute values.
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
* If ATTR_XVATTR set, then optional attrs are being set
2008-11-20 20:01:55 +00:00
* flags - ATTR_UTIME set if non-default time values provided.
* - ATTR_NOACLCHECK (CIFS context only).
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* ip - ctime updated, mtime updated if size changed.
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
dmu_tx_t *tx;
vattr_t oldva;
xvattr_t *tmpxvattr;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
uint_t mask = vap->va_mask;
uint_t saved_mask = 0;
2008-11-20 20:01:55 +00:00
int trim_mask = 0;
uint64_t new_mode;
uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
uint64_t xattr_obj;
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
uint64_t mtime[2], ctime[2], atime[2];
2008-11-20 20:01:55 +00:00
znode_t *attrzp;
int need_policy = FALSE;
int err, err2;
2008-11-20 20:01:55 +00:00
zfs_fuid_info_t *fuidp = NULL;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap;
zfs_acl_t *aclp;
2008-11-20 20:01:55 +00:00
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
boolean_t fuid_dirtied = B_FALSE;
sa_bulk_attr_t *bulk, *xattr_bulk;
int count = 0, xattr_count = 0;
2008-11-20 20:01:55 +00:00
if (mask == 0)
return (0);
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
/*
* Make sure that if we have ephemeral uid/gid or xvattr specified
* that file system is at proper version level
*/
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (zfsvfs->z_use_fuids == B_FALSE &&
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
(((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
(mask & ATTR_XVATTR))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EISDIR));
2008-11-20 20:01:55 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
/*
* If this is an xvattr_t, then get a pointer to the structure of
* optional attributes. If this is NULL, then we have a vattr_t.
*/
xoap = xva_getxoptattr(xvap);
tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
xva_init(tmpxvattr);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
/*
* Immutable files can only alter immutable bit and atime
*/
if ((zp->z_pflags & ZFS_IMMUTABLE) &&
((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
err = SET_ERROR(EPERM);
goto out3;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
err = SET_ERROR(EPERM);
goto out3;
2008-11-20 20:01:55 +00:00
}
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
/*
* Verify timestamps doesn't overflow 32 bits.
* ZFS can handle large timestamps, but 32bit syscalls can't
* handle times greater than 2039. This check should be removed
* once large timestamps are fully supported.
*/
if (mask & (ATTR_ATIME | ATTR_MTIME)) {
if (((mask & ATTR_ATIME) &&
TIMESPEC_OVERFLOW(&vap->va_atime)) ||
((mask & ATTR_MTIME) &&
TIMESPEC_OVERFLOW(&vap->va_mtime))) {
err = SET_ERROR(EOVERFLOW);
goto out3;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
2008-11-20 20:01:55 +00:00
top:
attrzp = NULL;
aclp = NULL;
2008-11-20 20:01:55 +00:00
2009-08-18 18:43:27 +00:00
/* Can this be moved to before the top label? */
if (zfs_is_readonly(zfsvfs)) {
err = SET_ERROR(EROFS);
goto out3;
2008-11-20 20:01:55 +00:00
}
/*
* First validate permissions
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_SIZE) {
2008-11-20 20:01:55 +00:00
err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
if (err)
goto out3;
2008-11-20 20:01:55 +00:00
/*
* XXX - Note, we are not providing any open
* mode flags here (like FNDELAY), so we may
* block if there are locks present... this
* should be addressed in openat().
*/
/* XXX - would it be OK to generate a log record here? */
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
if (err)
goto out3;
}
2008-11-20 20:01:55 +00:00
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (mask & (ATTR_ATIME|ATTR_MTIME) ||
((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
XVA_ISSET_REQ(xvap, XAT_READONLY) ||
XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
skipaclchk, cr);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID)) {
int idmask = (mask & (ATTR_UID|ATTR_GID));
2008-11-20 20:01:55 +00:00
int take_owner;
int take_group;
/*
* NOTE: even if a new mode is being set,
* we may clear S_ISUID/S_ISGID bits.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (!(mask & ATTR_MODE))
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_mode = zp->z_mode;
2008-11-20 20:01:55 +00:00
/*
* Take ownership or chgrp to group we are a member of
*/
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
take_group = (mask & ATTR_GID) &&
zfs_groupmember(zfsvfs, vap->va_gid, cr);
2008-11-20 20:01:55 +00:00
/*
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
* If both ATTR_UID and ATTR_GID are set then take_owner and
2008-11-20 20:01:55 +00:00
* take_group must both be set in order to allow taking
* ownership.
*
* Otherwise, send the check through secpolicy_vnode_setattr()
*
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (((idmask == (ATTR_UID|ATTR_GID)) &&
take_owner && take_group) ||
((idmask == ATTR_UID) && take_owner) ||
((idmask == ATTR_GID) && take_group)) {
2008-11-20 20:01:55 +00:00
if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
skipaclchk, cr) == 0) {
/*
* Remove setuid/setgid for non-privileged users
*/
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
(void) secpolicy_setid_clear(vap, cr);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
trim_mask = (mask & (ATTR_UID|ATTR_GID));
2008-11-20 20:01:55 +00:00
} else {
need_policy = TRUE;
}
} else {
need_policy = TRUE;
}
}
mutex_enter(&zp->z_lock);
oldva.va_mode = zp->z_mode;
zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (mask & ATTR_XVATTR) {
/*
* Update xvattr mask to include only those attributes
* that are actually changing.
*
* the bits will be restored prior to actually setting
* the attributes so the caller thinks they were set.
*/
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
if (xoap->xoa_appendonly !=
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_APPENDONLY);
XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
if (xoap->xoa_nounlink !=
((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NOUNLINK);
XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
if (xoap->xoa_immutable !=
((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
if (xoap->xoa_nodump !=
((zp->z_pflags & ZFS_NODUMP) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NODUMP);
XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
if (xoap->xoa_av_modified !=
((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
if ((!S_ISREG(ip->i_mode) &&
xoap->xoa_av_quarantined) ||
xoap->xoa_av_quarantined !=
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
mutex_exit(&zp->z_lock);
err = SET_ERROR(EPERM);
goto out3;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
}
if (need_policy == FALSE &&
(XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
need_policy = TRUE;
}
}
2008-11-20 20:01:55 +00:00
mutex_exit(&zp->z_lock);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_MODE) {
2008-11-20 20:01:55 +00:00
if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
err = secpolicy_setid_setsticky_clear(ip, vap,
2008-11-20 20:01:55 +00:00
&oldva, cr);
if (err)
goto out3;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
trim_mask |= ATTR_MODE;
2008-11-20 20:01:55 +00:00
} else {
need_policy = TRUE;
}
}
if (need_policy) {
/*
* If trim_mask is set then take ownership
* has been granted or write_acl is present and user
* has the ability to modify mode. In that case remove
* UID|GID and or MODE from mask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/
if (trim_mask) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
saved_mask = vap->va_mask;
vap->va_mask &= ~trim_mask;
2008-11-20 20:01:55 +00:00
}
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2008-11-20 20:01:55 +00:00
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
if (err)
goto out3;
2008-11-20 20:01:55 +00:00
if (trim_mask)
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_mask |= saved_mask;
2008-11-20 20:01:55 +00:00
}
/*
* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask
*/
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
mask = vap->va_mask;
2008-11-20 20:01:55 +00:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((mask & (ATTR_UID | ATTR_GID))) {
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (err == 0 && xattr_obj) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
if (err)
goto out2;
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_UID) {
new_kuid = zfs_fuid_create(zfsvfs,
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
(uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
zfs_fuid_overquota(zfsvfs, B_FALSE, new_kuid)) {
if (attrzp)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(attrzp));
err = SET_ERROR(EDQUOT);
goto out2;
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_GID) {
new_kgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
zfs_fuid_overquota(zfsvfs, B_TRUE, new_kgid)) {
if (attrzp)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(attrzp));
err = SET_ERROR(EDQUOT);
goto out2;
}
}
}
tx = dmu_tx_create(zfsvfs->z_os);
2008-11-20 20:01:55 +00:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_MODE) {
uint64_t pmode = zp->z_mode;
uint64_t acl_obj;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2008-11-20 20:01:55 +00:00
zfs_acl_chmod_setattr(zp, &aclp, new_mode);
mutex_enter(&zp->z_lock);
if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
/*
* Are we upgrading ACL from old V0 format
* to V1 format?
*/
if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) ==
2008-11-20 20:01:55 +00:00
ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
2008-11-20 20:01:55 +00:00
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx, acl_obj, 0,
2008-11-20 20:01:55 +00:00
aclp->z_acl_bytes);
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2008-11-20 20:01:55 +00:00
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
}
mutex_exit(&zp->z_lock);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
} else {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if ((mask & ATTR_XVATTR) &&
XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
else
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
}
if (attrzp) {
dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
}
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err)
2009-07-02 22:44:48 +00:00
goto out;
2008-11-20 20:01:55 +00:00
count = 0;
2008-11-20 20:01:55 +00:00
/*
* Set each attribute requested.
* We group settings according to the locks they need to acquire.
*
* Note: you cannot set ctime directly, although it will be
* updated as a side-effect of calling this function.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&zp->z_acl_lock);
2008-11-20 20:01:55 +00:00
mutex_enter(&zp->z_lock);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
if (attrzp) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&attrzp->z_acl_lock);
mutex_enter(&attrzp->z_lock);
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
sizeof (attrzp->z_pflags));
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID)) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_UID) {
ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
new_uid = zfs_uid_read(ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&new_uid, sizeof (new_uid));
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_UID(zfsvfs), NULL, &new_uid,
sizeof (new_uid));
ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_GID) {
ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
new_gid = zfs_gid_read(ZTOI(zp));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
NULL, &new_gid, sizeof (new_gid));
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_GID(zfsvfs), NULL, &new_gid,
sizeof (new_gid));
ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (!(mask & ATTR_MODE)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
NULL, &new_mode, sizeof (new_mode));
new_mode = zp->z_mode;
}
err = zfs_acl_chown_setattr(zp);
ASSERT(err == 0);
if (attrzp) {
err = zfs_acl_chown_setattr(attrzp);
ASSERT(err == 0);
}
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_MODE) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&new_mode, sizeof (new_mode));
zp->z_mode = ZTOI(zp)->i_mode = new_mode;
ASSERT3P(aclp, !=, NULL);
2009-07-02 22:44:48 +00:00
err = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT0(err);
if (zp->z_acl_cached)
zfs_acl_free(zp->z_acl_cached);
2009-08-18 18:43:27 +00:00
zp->z_acl_cached = aclp;
aclp = NULL;
2008-11-20 20:01:55 +00:00
}
if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
zp->z_atime_dirty = 0;
ZFS_TIME_ENCODE(&ip->i_atime, atime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
&atime, sizeof (atime));
2008-11-20 20:01:55 +00:00
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & ATTR_MTIME) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
ZTOI(zp)->i_sb->s_time_gran);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
mtime, sizeof (mtime));
2008-11-20 20:01:55 +00:00
}
if (mask & ATTR_CTIME) {
ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
ZTOI(zp)->i_sb->s_time_gran);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
ctime, sizeof (ctime));
}
if (attrzp && mask) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
sizeof (ctime));
}
2008-11-20 20:01:55 +00:00
/*
* Do this after setting timestamps to prevent timestamp
* update from toggling bit
*/
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (xoap && (mask & ATTR_XVATTR)) {
/*
* restore trimmed off masks
* so that return masks can be set for caller.
*/
if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
ASSERT(S_ISREG(ip->i_mode));
zfs_xvattr_set(zp, xvap, tx);
}
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
2009-07-02 22:44:48 +00:00
2008-11-20 20:01:55 +00:00
if (mask != 0)
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2008-11-20 20:01:55 +00:00
mutex_exit(&zp->z_lock);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&zp->z_acl_lock);
2008-11-20 20:01:55 +00:00
if (attrzp) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&attrzp->z_acl_lock);
mutex_exit(&attrzp->z_lock);
}
2009-07-02 22:44:48 +00:00
out:
if (err == 0 && attrzp) {
err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
xattr_count, tx);
ASSERT(err2 == 0);
}
2009-08-18 18:43:27 +00:00
if (aclp)
2009-07-02 22:44:48 +00:00
zfs_acl_free(aclp);
if (fuidp) {
zfs_fuid_info_free(fuidp);
fuidp = NULL;
}
if (err) {
2009-07-02 22:44:48 +00:00
dmu_tx_abort(tx);
if (attrzp)
iput(ZTOI(attrzp));
if (err == ERESTART)
goto top;
} else {
err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2009-07-02 22:44:48 +00:00
dmu_tx_commit(tx);
if (attrzp)
iput(ZTOI(attrzp));
zfs_inode_update(zp);
}
out2:
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
2008-11-20 20:01:55 +00:00
out3:
kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
kmem_free(tmpxvattr, sizeof (xvattr_t));
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (err);
}
typedef struct zfs_zlock {
krwlock_t *zl_rwlock; /* lock we acquired */
znode_t *zl_znode; /* znode we held */
struct zfs_zlock *zl_next; /* next in list */
} zfs_zlock_t;
/*
* Drop locks and release vnodes that were held by zfs_rename_lock().
*/
static void
zfs_rename_unlock(zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
while ((zl = *zlpp) != NULL) {
if (zl->zl_znode != NULL)
zfs_iput_async(ZTOI(zl->zl_znode));
2008-11-20 20:01:55 +00:00
rw_exit(zl->zl_rwlock);
*zlpp = zl->zl_next;
kmem_free(zl, sizeof (*zl));
}
}
/*
* Search back through the directory tree, using the ".." entries.
* Lock each directory in the chain to prevent concurrent renames.
* Fail any attempt to move a directory into one of its own descendants.
* XXX - z_parent_lock can overlap with map or grow locks
*/
static int
zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
znode_t *zp = tdzp;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
uint64_t rootid = ZTOZSB(zp)->z_root;
uint64_t oidp = zp->z_id;
2008-11-20 20:01:55 +00:00
krwlock_t *rwlp = &szp->z_parent_lock;
krw_t rw = RW_WRITER;
/*
* First pass write-locks szp and compares to zp->z_id.
* Later passes read-lock zp and compare to zp->z_parent.
*/
do {
if (!rw_tryenter(rwlp, rw)) {
/*
* Another thread is renaming in this path.
* Note that if we are a WRITER, we don't have any
* parent_locks held yet.
*/
if (rw == RW_READER && zp->z_id > szp->z_id) {
/*
* Drop our locks and restart
*/
zfs_rename_unlock(&zl);
*zlpp = NULL;
zp = tdzp;
oidp = zp->z_id;
2008-11-20 20:01:55 +00:00
rwlp = &szp->z_parent_lock;
rw = RW_WRITER;
continue;
} else {
/*
* Wait for other thread to drop its locks
*/
rw_enter(rwlp, rw);
}
}
zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
zl->zl_rwlock = rwlp;
zl->zl_znode = NULL;
zl->zl_next = *zlpp;
*zlpp = zl;
if (oidp == szp->z_id) /* We're a descendant of szp */
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
if (oidp == rootid) /* We've hit the top */
2008-11-20 20:01:55 +00:00
return (0);
if (rw == RW_READER) { /* i.e. not the first pass */
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2008-11-20 20:01:55 +00:00
if (error)
return (error);
zl->zl_znode = zp;
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
&oidp, sizeof (oidp));
2008-11-20 20:01:55 +00:00
rwlp = &zp->z_parent_lock;
rw = RW_READER;
} while (zp->z_id != sdzp->z_id);
return (0);
}
/*
* Move an entry from the provided source directory to the target
* directory. Change the entry name as indicated.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: sdip - Source directory containing the "old entry".
2008-11-20 20:01:55 +00:00
* snm - Old entry name.
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* tdip - Target directory to contain the "new entry".
2008-11-20 20:01:55 +00:00
* tnm - New entry name.
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* sdip,tdip - ctime|mtime updated
2008-11-20 20:01:55 +00:00
*/
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
cred_t *cr, int flags)
2008-11-20 20:01:55 +00:00
{
znode_t *tdzp, *szp, *tzp;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *sdzp = ITOZ(sdip);
zfsvfs_t *zfsvfs = ITOZSB(sdip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
zfs_dirlock_t *sdl, *tdl;
dmu_tx_t *tx;
zfs_zlock_t *zl;
int cmp, serr, terr;
int error = 0;
int zflg = 0;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
if (snm == NULL || tnm == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(sdzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
tdzp = ITOZ(tdip);
ZFS_VERIFY_ZP(tdzp);
/*
* We check i_sb because snapshots and the ctldir must have different
* super blocks.
*/
if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EXDEV));
2008-11-20 20:01:55 +00:00
}
if (zfsvfs->z_utf8 && u8_validate(tnm,
2008-11-20 20:01:55 +00:00
strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
szp = NULL;
tzp = NULL;
zl = NULL;
/*
* This is to prevent the creation of links into attribute space
* by renaming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*/
if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
/*
* Lock source and target directory entries. To prevent deadlock,
* a lock ordering must be defined. We lock the directory with
* the smallest object id first, or if it's a tie, the one with
* the lexically first name.
*/
if (sdzp->z_id < tdzp->z_id) {
cmp = -1;
} else if (sdzp->z_id > tdzp->z_id) {
cmp = 1;
} else {
/*
* First compare the two name arguments without
* considering any case folding.
*/
int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2008-11-20 20:01:55 +00:00
cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
ASSERT(error == 0 || !zfsvfs->z_utf8);
2008-11-20 20:01:55 +00:00
if (cmp == 0) {
/*
* POSIX: "If the old argument and the new argument
* both refer to links to the same existing file,
* the rename() function shall return successfully
* and perform no other action."
*/
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* If the file system is case-folding, then we may
* have some more checking to do. A case-folding file
* system is either supporting mixed case sensitivity
* access or is completely case-insensitive. Note
* that the file system is always case preserving.
*
* In mixed sensitivity mode case sensitive behavior
* is the default. FIGNORECASE must be used to
* explicitly request case insensitive behavior.
*
* If the source and target names provided differ only
* by case (e.g., a request to rename 'tim' to 'Tim'),
* we will treat this as a special case in the
* case-insensitive mode: as long as the source name
* is an exact match, we will allow this to proceed as
* a name-change request.
*/
if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
(zfsvfs->z_case == ZFS_CASE_MIXED &&
2008-11-20 20:01:55 +00:00
flags & FIGNORECASE)) &&
u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2008-11-20 20:01:55 +00:00
&error) == 0) {
/*
* case preserving rename request, require exact
* name matches
*/
zflg |= ZCIEXACT;
zflg &= ~ZCILOOK;
}
}
/*
* If the source and destination directories are the same, we should
* grab the z_name_lock of that directory only once.
*/
if (sdzp == tdzp) {
zflg |= ZHAVELOCK;
rw_enter(&sdzp->z_name_lock, RW_READER);
}
2008-11-20 20:01:55 +00:00
if (cmp < 0) {
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
ZEXISTS | zflg, NULL, NULL);
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
} else {
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, zflg, NULL, NULL);
serr = zfs_dirent_lock(&sdl,
sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
NULL, NULL);
}
if (serr) {
/*
* Source entry invalid or not there.
*/
if (!terr) {
zfs_dirent_unlock(tdl);
if (tzp)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(tzp));
2008-11-20 20:01:55 +00:00
}
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
2008-11-20 20:01:55 +00:00
if (strcmp(snm, "..") == 0)
serr = EINVAL;
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (serr);
}
if (terr) {
zfs_dirent_unlock(sdl);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(szp));
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
2008-11-20 20:01:55 +00:00
if (strcmp(tnm, "..") == 0)
terr = EINVAL;
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (terr);
}
/*
* Must have write access at the source to remove the old entry
* and write access at the target to create the new entry.
* Note that if target and source are the same, this can be
* done in a single check.
*/
if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2008-11-20 20:01:55 +00:00
goto out;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ZTOI(szp)->i_mode)) {
2008-11-20 20:01:55 +00:00
/*
* Check to make sure rename is valid.
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
*/
if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2008-11-20 20:01:55 +00:00
goto out;
}
/*
* Does target exist?
*/
if (tzp) {
/*
* Source and target must be the same type.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ZTOI(szp)->i_mode)) {
if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
error = SET_ERROR(ENOTDIR);
2008-11-20 20:01:55 +00:00
goto out;
}
} else {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ZTOI(tzp)->i_mode)) {
error = SET_ERROR(EISDIR);
2008-11-20 20:01:55 +00:00
goto out;
}
}
/*
* POSIX dictates that when the source and target
* entries refer to the same file object, rename
* must do nothing and exit without error.
*/
if (szp->z_id == tzp->z_id) {
error = 0;
goto out;
}
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
if (sdzp != tdzp) {
dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tdzp);
}
if (tzp) {
dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tzp);
}
zfs_sa_upgrade_txholds(tx, szp);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
iput(ZTOI(szp));
if (tzp)
iput(ZTOI(tzp));
2008-11-20 20:01:55 +00:00
goto top;
}
dmu_tx_abort(tx);
iput(ZTOI(szp));
if (tzp)
iput(ZTOI(tzp));
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (tzp) /* Attempt to remove the existing target */
error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
if (error == 0) {
error = zfs_link_create(tdl, szp, tx, ZRENAMING);
if (error == 0) {
szp->z_pflags |= ZFS_AV_MODIFIED;
2008-11-20 20:01:55 +00:00
error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
(void *)&szp->z_pflags, sizeof (uint64_t), tx);
ASSERT0(error);
2008-11-20 20:01:55 +00:00
error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
if (error == 0) {
zfs_log_rename(zilog, tx, TX_RENAME |
(flags & FIGNORECASE ? TX_CI : 0), sdzp,
sdl->dl_name, tdzp, tdl->dl_name, szp);
} else {
/*
* At this point, we have successfully created
* the target name, but have failed to remove
* the source name. Since the create was done
* with the ZRENAMING flag, there are
* complications; for one, the link count is
* wrong. The easiest way to deal with this
* is to remove the newly created target, and
* return the original error. This must
* succeed; fortunately, it is very unlikely to
* fail, since we just created it.
*/
VERIFY3U(zfs_link_destroy(tdl, szp, tx,
ZRENAMING, NULL), ==, 0);
}
2008-11-20 20:01:55 +00:00
}
}
dmu_tx_commit(tx);
out:
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
zfs_inode_update(sdzp);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (sdzp != tdzp)
zfs_inode_update(tdzp);
zfs_inode_update(szp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(szp));
if (tzp) {
zfs_inode_update(tzp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
iput(ZTOI(tzp));
}
2008-11-20 20:01:55 +00:00
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Insert the indicated symbolic reference entry into the directory.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: dip - Directory to contain new symbolic link.
2008-11-20 20:01:55 +00:00
* link - Name for new symlink entry.
* vap - Attributes of new entry.
* target - Target path of new symlink.
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*
2008-11-20 20:01:55 +00:00
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* dip - ctime|mtime updated
2008-11-20 20:01:55 +00:00
*/
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
struct inode **ipp, cred_t *cr, int flags)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp, *dzp = ITOZ(dip);
2008-11-20 20:01:55 +00:00
zfs_dirlock_t *dl;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = ITOZSB(dip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
uint64_t len = strlen(link);
2008-11-20 20:01:55 +00:00
int error;
int zflg = ZNEW;
2009-07-02 22:44:48 +00:00
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype = TX_SYMLINK;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
2008-11-20 20:01:55 +00:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ASSERT(S_ISLNK(vap->va_mode));
2008-11-20 20:01:55 +00:00
if (name == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
2008-11-20 20:01:55 +00:00
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
if (len > MAXPATHLEN) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(ENAMETOOLONG));
2008-11-20 20:01:55 +00:00
}
if ((error = zfs_acl_ids_create(dzp, 0,
vap, cr, NULL, &acl_ids)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
top:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = NULL;
2008-11-20 20:01:55 +00:00
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
if (error) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2009-07-02 22:44:48 +00:00
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EDQUOT));
2009-07-02 22:44:48 +00:00
}
tx = dmu_tx_create(zfsvfs->z_os);
fuid_dirtied = zfsvfs->z_fuid_dirty;
2008-11-20 20:01:55 +00:00
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE + len);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Create a new object for the symlink.
* for version 4 ZPL datsets the symlink will be an SA attribute
2008-11-20 20:01:55 +00:00
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2009-07-02 22:44:48 +00:00
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
2008-11-20 20:01:55 +00:00
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
link, len, tx);
else
zfs_sa_symlink(zp, link, len, tx);
mutex_exit(&zp->z_lock);
2008-11-20 20:01:55 +00:00
zp->z_size = len;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
&zp->z_size, sizeof (zp->z_size), tx);
2008-11-20 20:01:55 +00:00
/*
* Insert the new object into the directory.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
2009-07-02 22:44:48 +00:00
zfs_inode_update(dzp);
zfs_inode_update(zp);
2009-07-02 22:44:48 +00:00
zfs_acl_ids_free(&acl_ids);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
*ipp = ZTOI(zp);
2008-11-20 20:01:55 +00:00
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Return, in the buffer contained in the provided uio structure,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* the symbolic path referred to by ip.
2008-11-20 20:01:55 +00:00
*
* IN: ip - inode of symbolic link
* uio - structure to contain the link path.
* cr - credentials of caller.
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* ip - atime updated
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
int error;
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_lookup_uio(zp->z_sa_hdl,
SA_ZPL_SYMLINK(zfsvfs), uio);
else
error = zfs_sa_readlink(zp, uio);
mutex_exit(&zp->z_lock);
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* Insert a new entry into directory tdip referencing sip.
2008-11-20 20:01:55 +00:00
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: tdip - Directory to contain new entry.
* sip - inode of new entry.
2008-11-20 20:01:55 +00:00
* name - name of new entry.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* tdip - ctime|mtime updated
* sip - ctime updated
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
int flags)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *dzp = ITOZ(tdip);
2008-11-20 20:01:55 +00:00
znode_t *tzp, *szp;
zfsvfs_t *zfsvfs = ITOZSB(tdip);
2008-11-20 20:01:55 +00:00
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uint64_t parent;
uid_t owner;
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
boolean_t waited = B_FALSE;
boolean_t is_tmpfile = 0;
uint64_t txg;
#ifdef HAVE_TMPFILE
is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
#endif
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
ASSERT(S_ISDIR(tdip->i_mode));
2008-11-20 20:01:55 +00:00
if (name == NULL)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
/*
* POSIX dictates that we return EPERM here.
* Better choices include ENOTSUP or EISDIR.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(sip->i_mode)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
szp = ITOZ(sip);
ZFS_VERIFY_ZP(szp);
/*
* We check i_sb because snapshots and the ctldir must have different
* super blocks.
*/
if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EXDEV));
2008-11-20 20:01:55 +00:00
}
/* Prevent links to .zfs/shares files */
if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (parent == zfsvfs->z_shares_dir) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if (zfsvfs->z_utf8 && u8_validate(name,
2008-11-20 20:01:55 +00:00
strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
2008-11-20 20:01:55 +00:00
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
/*
* We do not support links between attributes and non-attributes
* because of the potential security risk of creating links
* into "normal" file space in order to circumvent restrictions
* imposed in attribute space.
*/
if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
cr, ZFS_OWNER);
if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
2008-11-20 20:01:55 +00:00
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
top:
2008-11-20 20:01:55 +00:00
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
if (error) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
if (is_tmpfile)
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, szp);
zfs_sa_upgrade_txholds(tx, dzp);
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (error) {
zfs_dirent_unlock(dl);
2009-01-15 21:59:39 +00:00
if (error == ERESTART) {
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 03:01:20 +00:00
waited = B_TRUE;
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/* unmark z_unlinked so zfs_link_create will not reject */
if (is_tmpfile)
szp->z_unlinked = 0;
2008-11-20 20:01:55 +00:00
error = zfs_link_create(dl, szp, tx, 0);
if (error == 0) {
uint64_t txtype = TX_LINK;
/*
* tmpfile is created to be in z_unlinkedobj, so remove it.
* Also, we don't log in ZIL, be cause all previous file
* operation on the tmpfile are ignored by ZIL. Instead we
* always wait for txg to sync to make sure all previous
* operation are sync safe.
*/
if (is_tmpfile) {
VERIFY(zap_remove_int(zfsvfs->z_os,
zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
} else {
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_link(zilog, tx, txtype, dzp, szp, name);
}
} else if (is_tmpfile) {
/* restore z_unlinked since when linking failed */
szp->z_unlinked = 1;
2008-11-20 20:01:55 +00:00
}
txg = dmu_tx_get_txg(tx);
2008-11-20 20:01:55 +00:00
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
if (is_tmpfile)
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
zfs_inode_update(dzp);
zfs_inode_update(szp);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
static void
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
zfs_putpage_commit_cb(void *arg)
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
{
struct page *pp = arg;
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
ClearPageError(pp);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
end_page_writeback(pp);
}
2008-11-20 20:01:55 +00:00
/*
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
* Push a page out to disk, once the page is on stable storage the
* registered commit callback will be run as notification of completion.
2008-11-20 20:01:55 +00:00
*
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
* IN: ip - page mapped for inode.
* pp - page to push (page is locked)
* wbc - writeback control data
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 if success
* error code if failure
*
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
* Timestamps:
* ip - ctime|mtime updated
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
int
zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
2008-11-20 20:01:55 +00:00
{
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
loff_t offset;
loff_t pgoff;
unsigned int pglen;
rl_t *rl;
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
dmu_tx_t *tx;
caddr_t va;
int err = 0;
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int cnt = 0;
struct address_space *mapping;
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
2009-02-18 20:51:31 +00:00
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
ASSERT(PageLocked(pp));
pgoff = page_offset(pp); /* Page byte-offset in file */
offset = i_size_read(ip); /* File length in bytes */
pglen = MIN(PAGE_SIZE, /* Page length in bytes */
P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
/* Page is beyond end of file */
if (pgoff >= offset) {
unlock_page(pp);
ZFS_EXIT(zfsvfs);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
return (0);
}
/* Truncate page length to end of file */
if (pgoff + pglen > offset)
pglen = offset - pgoff;
#if 0
2008-11-20 20:01:55 +00:00
/*
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
* FIXME: Allow mmap writes past its quota. The correct fix
* is to register a page_mkwrite() handler to count the page
* against its quota when it is about to be dirtied.
2008-11-20 20:01:55 +00:00
*/
if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
2009-07-02 22:44:48 +00:00
err = EDQUOT;
}
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
#endif
/*
* The ordering here is critical and must adhere to the following
* rules in order to avoid deadlocking in either zfs_read() or
* zfs_free_range() due to a lock inversion.
*
* 1) The page must be unlocked prior to acquiring the range lock.
* This is critical because zfs_read() calls find_lock_page()
* which may block on the page lock while holding the range lock.
*
* 2) Before setting or clearing write back on a page the range lock
* must be held in order to prevent a lock inversion with the
* zfs_free_range() function.
*
* This presents a problem because upon entering this function the
* page lock is already held. To safely acquire the range lock the
* page lock must be dropped. This creates a window where another
* process could truncate, invalidate, dirty, or write out the page.
*
* Therefore, after successfully reacquiring the range and page locks
* the current page state is checked. In the common case everything
* will be as is expected and it can be written out. However, if
* the page state has changed it must be handled accordingly.
*/
mapping = pp->mapping;
redirty_page_for_writepage(wbc, pp);
unlock_page(pp);
rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
lock_page(pp);
/* Page mapping changed or it was no longer dirty, we're done */
if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
unlock_page(pp);
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
return (0);
}
/* Another process started write block if required */
if (PageWriteback(pp)) {
unlock_page(pp);
zfs_range_unlock(rl);
if (wbc->sync_mode != WB_SYNC_NONE)
wait_on_page_writeback(pp);
ZFS_EXIT(zfsvfs);
return (0);
}
/* Clear the dirty flag the required locks are held */
if (!clear_page_dirty_for_io(pp)) {
unlock_page(pp);
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Counterpart for redirty_page_for_writepage() above. This page
* was in fact not skipped and should not be counted as if it were.
*/
wbc->pages_skipped--;
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
set_page_writeback(pp);
unlock_page(pp);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
tx = dmu_tx_create(zfsvfs->z_os);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
2009-01-15 21:59:39 +00:00
err = dmu_tx_assign(tx, TXG_NOWAIT);
2008-11-20 20:01:55 +00:00
if (err != 0) {
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
if (err == ERESTART)
2008-11-20 20:01:55 +00:00
dmu_tx_wait(tx);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
2008-11-20 20:01:55 +00:00
dmu_tx_abort(tx);
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
__set_page_dirty_nobuffers(pp);
ClearPageError(pp);
end_page_writeback(pp);
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
return (err);
2008-11-20 20:01:55 +00:00
}
va = kmap(pp);
ASSERT3U(pglen, <=, PAGE_SIZE);
dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
kunmap(pp);
2008-11-20 20:01:55 +00:00
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
/* Preserve the mtime and ctime provided by the inode */
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
zp->z_atime_dirty = 0;
zp->z_seq++;
err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
zfs_putpage_commit_cb, pp);
2009-08-18 18:43:27 +00:00
dmu_tx_commit(tx);
zfs_range_unlock(rl);
2008-11-20 20:01:55 +00:00
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
if (wbc->sync_mode != WB_SYNC_NONE) {
/*
* Note that this is rarely called under writepages(), because
* writepages() normally handles the entire commit for
* performance reasons.
*/
zil_commit(zfsvfs->z_log, zp->z_id);
}
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
ZFS_EXIT(zfsvfs);
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
return (err);
2008-11-20 20:01:55 +00:00
}
/*
* Update the system attributes when the inode has been dirtied. For the
* moment we only update the mode, atime, mtime, and ctime.
*/
int
zfs_dirty_inode(struct inode *ip, int flags)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
dmu_tx_t *tx;
uint64_t mode, atime[2], mtime[2], ctime[2];
sa_bulk_attr_t bulk[4];
int error = 0;
int cnt = 0;
if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
return (0);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
#ifdef I_DIRTY_TIME
/*
* This is the lazytime semantic indroduced in Linux 4.0
* This flag will only be called from update_time when lazytime is set.
* (Note, I_DIRTY_SYNC will also set if not lazytime)
* Fortunately mtime and ctime are managed within ZFS itself, so we
* only need to dirty atime.
*/
if (flags == I_DIRTY_TIME) {
zp->z_atime_dirty = 1;
goto out;
}
#endif
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
goto out;
}
mutex_enter(&zp->z_lock);
zp->z_atime_dirty = 0;
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
/* Preserve the mode, mtime and ctime provided by the inode */
ZFS_TIME_ENCODE(&ip->i_atime, atime);
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
mode = ip->i_mode;
zp->z_mode = mode;
error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
out:
ZFS_EXIT(zfsvfs);
return (error);
}
2008-11-20 20:01:55 +00:00
/*ARGSUSED*/
void
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
zfs_inactive(struct inode *ip)
2008-11-20 20:01:55 +00:00
{
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
uint64_t atime[2];
2008-11-20 20:01:55 +00:00
int error;
int need_unlock = 0;
2008-11-20 20:01:55 +00:00
/* Only read lock if we haven't already write locked, e.g. rollback */
if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
need_unlock = 1;
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
if (zp->z_sa_hdl == NULL) {
if (need_unlock)
rw_exit(&zfsvfs->z_teardown_inactive_lock);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
return;
2008-11-20 20:01:55 +00:00
}
if (zp->z_atime_dirty && zp->z_unlinked == 0) {
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
2008-11-20 20:01:55 +00:00
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
2008-11-20 20:01:55 +00:00
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
ZFS_TIME_ENCODE(&ip->i_atime, atime);
2008-11-20 20:01:55 +00:00
mutex_enter(&zp->z_lock);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 00:53:34 +00:00
(void *)&atime, sizeof (atime), tx);
2008-11-20 20:01:55 +00:00
zp->z_atime_dirty = 0;
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
}
}
zfs_zinactive(zp);
if (need_unlock)
rw_exit(&zfsvfs->z_teardown_inactive_lock);
2008-11-20 20:01:55 +00:00
}
/*
* Bounds-check the seek operation.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode seeking within
2008-11-20 20:01:55 +00:00
* ooff - old file offset
* noffp - pointer to new file offset
* ct - caller context
*
* RETURN: 0 if success
* EINVAL if new offset invalid
*/
/* ARGSUSED */
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int
zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (S_ISDIR(ip->i_mode))
2008-11-20 20:01:55 +00:00
return (0);
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
}
/*
* Fill pages with data from the disk.
2008-11-20 20:01:55 +00:00
*/
static int
zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
2008-11-20 20:01:55 +00:00
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
objset_t *os;
struct page *cur_pp;
u_offset_t io_off, total;
size_t io_len;
loff_t i_size;
unsigned page_idx;
int err;
2008-11-20 20:01:55 +00:00
os = zfsvfs->z_os;
io_len = nr_pages << PAGE_SHIFT;
i_size = i_size_read(ip);
io_off = page_offset(pl[0]);
if (io_off + io_len > i_size)
io_len = i_size - io_off;
2008-11-20 20:01:55 +00:00
/*
* Iterate over list of pages and read each page individually.
2008-11-20 20:01:55 +00:00
*/
page_idx = 0;
2008-11-20 20:01:55 +00:00
for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
2009-02-18 20:51:31 +00:00
caddr_t va;
Fix out-of-bound access in zfs_fillpage The original code will do an out-of-bound access on pl[] during last iteration. ================================================================== BUG: KASAN: stack-out-of-bounds in zfs_getpage+0x14c/0x2d0 [zfs] Read of size 8 by task tmpfile/7850 page:ffffea00017c6dc0 count:0 mapcount:0 mapping: (null) index:0x0 flags: 0xffff8000000000() page dumped because: kasan: bad access detected CPU: 3 PID: 7850 Comm: tmpfile Tainted: G OE 4.6.0+ #3 ffff88005f1b7678 0000000006dbe035 ffff88005f1b7508 ffffffff81635618 ffff88005f1b7678 ffff88005f1b75a0 ffff88005f1b7590 ffffffff81313ee8 ffffea0001ae8dd0 ffff88005f1b7670 0000000000000246 0000000041b58ab3 Call Trace: [<ffffffff81635618>] dump_stack+0x63/0x8b [<ffffffff81313ee8>] kasan_report_error+0x528/0x560 [<ffffffff81278f20>] ? filemap_map_pages+0x5f0/0x5f0 [<ffffffff813144b8>] kasan_report+0x58/0x60 [<ffffffffc12250dc>] ? zfs_getpage+0x14c/0x2d0 [zfs] [<ffffffff81312e4e>] __asan_load8+0x5e/0x70 [<ffffffffc12250dc>] zfs_getpage+0x14c/0x2d0 [zfs] [<ffffffffc1252131>] zpl_readpage+0xd1/0x180 [zfs] [<ffffffff81353c3a>] SyS_execve+0x3a/0x50 [<ffffffff810058ef>] do_syscall_64+0xef/0x180 [<ffffffff81d0ee25>] entry_SYSCALL64_slow_path+0x25/0x25 Memory state around the buggy address: ffff88005f1b7500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88005f1b7580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff88005f1b7600: 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 f4 ^ ffff88005f1b7680: f4 f4 f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 ffff88005f1b7700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4705 Issue #4708
2016-05-27 22:39:34 +00:00
cur_pp = pl[page_idx++];
va = kmap(cur_pp);
2009-07-02 22:44:48 +00:00
err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
DMU_READ_PREFETCH);
kunmap(cur_pp);
2008-11-20 20:01:55 +00:00
if (err) {
/* convert checksum errors into IO errors */
if (err == ECKSUM)
err = SET_ERROR(EIO);
2008-11-20 20:01:55 +00:00
return (err);
}
}
2009-02-18 20:51:31 +00:00
2008-11-20 20:01:55 +00:00
return (0);
}
/*
* Uses zfs_fillpage to read data from the file and fill the pages.
2008-11-20 20:01:55 +00:00
*
* IN: ip - inode of file to get data from.
* pl - list of pages to read
* nr_pages - number of pages to read
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
* vp - atime updated
*/
/* ARGSUSED */
int
zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
2008-11-20 20:01:55 +00:00
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int err;
2009-02-18 20:51:31 +00:00
if (pl == NULL)
return (0);
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
err = zfs_fillpage(ip, pl, nr_pages);
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (err);
}
/*
* Check ZFS specific permissions to memory map a section of a file.
2008-11-20 20:01:55 +00:00
*
* IN: ip - inode of the file to mmap
* off - file offset
* addrp - start address in memory region
* len - length of memory region
* vm_flags- address flags
2008-11-20 20:01:55 +00:00
*
* RETURN: 0 if success
* error code if failure
2008-11-20 20:01:55 +00:00
*/
/*ARGSUSED*/
int
zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
unsigned long vm_flags)
2008-11-20 20:01:55 +00:00
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if ((vm_flags & VM_WRITE) && (zp->z_pflags &
(ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
2008-11-20 20:01:55 +00:00
}
if ((vm_flags & (VM_READ | VM_EXEC)) &&
(zp->z_pflags & ZFS_AV_QUARANTINED)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
2008-11-20 20:01:55 +00:00
}
if (off < 0 || len > MAXOFFSET_T - off) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(ENXIO));
2008-11-20 20:01:55 +00:00
}
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
/*
* convoff - converts the given data (start, whence) to the
* given whence.
*/
int
convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
{
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vattr_t vap;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
int error;
if ((lckdat->l_whence == 2) || (whence == 2)) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
return (error);
}
switch (lckdat->l_whence) {
case 1:
lckdat->l_start += offset;
break;
case 2:
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
lckdat->l_start += vap.va_size;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
/* FALLTHRU */
case 0:
break;
default:
return (SET_ERROR(EINVAL));
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
}
if (lckdat->l_start < 0)
return (SET_ERROR(EINVAL));
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
switch (whence) {
case 1:
lckdat->l_start -= offset;
break;
case 2:
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
lckdat->l_start -= vap.va_size;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
/* FALLTHRU */
case 0:
break;
default:
return (SET_ERROR(EINVAL));
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
}
lckdat->l_whence = (short)whence;
return (0);
}
2008-11-20 20:01:55 +00:00
/*
* Free or allocate space in a file. Currently, this function only
* supports the `F_FREESP' command. However, this command is somewhat
* misnamed, as its functionality includes the ability to allocate as
* well as free space.
*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* IN: ip - inode of file to free data in.
2008-11-20 20:01:55 +00:00
* cmd - action to take (only F_FREESP supported).
* bfp - section of file to free/alloc.
* flag - current file open mode flags.
* offset - current file offset.
* cr - credentials of caller [UNUSED].
*
* RETURN: 0 on success, error code on failure.
2008-11-20 20:01:55 +00:00
*
* Timestamps:
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* ip - ctime|mtime updated
2008-11-20 20:01:55 +00:00
*/
/* ARGSUSED */
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
offset_t offset, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
uint64_t off, len;
int error;
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if (cmd != F_FREESP) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
/*
* Callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfs_is_readonly(zfsvfs)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if ((error = convoff(ip, bfp, 0, offset))) {
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
if (bfp->l_len < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
2008-11-20 20:01:55 +00:00
}
/*
* Permissions aren't checked on Solaris because on this OS
* zfs_space() can only be called with an opened file handle.
* On Linux we can get here through truncate_range() which
* operates directly on inodes, so we need to check access rights.
*/
if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
return (error);
}
2008-11-20 20:01:55 +00:00
off = bfp->l_start;
len = bfp->l_len; /* 0 means from off to end of file */
error = zfs_freesp(zp, off, len, flag, TRUE);
2008-11-20 20:01:55 +00:00
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_fid(struct inode *ip, fid_t *fidp)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
uint32_t gen;
uint64_t gen64;
2008-11-20 20:01:55 +00:00
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int size, i, error;
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
&gen64, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
gen = (uint32_t)gen64;
2008-11-20 20:01:55 +00:00
size = SHORT_FID_LEN;
2008-11-20 20:01:55 +00:00
zfid = (zfid_short_t *)fidp;
zfid->zf_len = size;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* Must have a non-zero generation number to distinguish from .zfs */
if (gen == 0)
gen = 1;
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (0);
}
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
int error;
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
error = zfs_getacl(zp, vsecp, skipaclchk, cr);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
/*ARGSUSED*/
2010-12-17 19:18:08 +00:00
int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
2008-11-20 20:01:55 +00:00
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
2008-11-20 20:01:55 +00:00
int error;
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
zilog_t *zilog = zfsvfs->z_log;
2008-11-20 20:01:55 +00:00
ZFS_ENTER(zfsvfs);
2008-11-20 20:01:55 +00:00
ZFS_VERIFY_ZP(zp);
2008-11-20 20:01:55 +00:00
error = zfs_setacl(zp, vsecp, skipaclchk, cr);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
2008-11-20 20:01:55 +00:00
return (error);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#ifdef HAVE_UIO_ZEROCOPY
/*
* Tunable, both must be a power of 2.
*
* zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
* zcr_blksz_max: if set to less than the file block size, allow loaning out of
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
* an arcbuf for a partial block read
*/
int zcr_blksz_min = (1 << 10); /* 1K */
int zcr_blksz_max = (1 << 17); /* 128K */
/*ARGSUSED*/
static int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ITOZSB(ip);
int max_blksz = zfsvfs->z_max_blksz;
uio_t *uio = &xuio->xu_uio;
ssize_t size = uio->uio_resid;
offset_t offset = uio->uio_loffset;
int blksz;
int fullblk, i;
arc_buf_t *abuf;
ssize_t maxsize;
int preamble, postamble;
if (xuio->xu_type != UIOTYPE_ZEROCOPY)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
switch (ioflag) {
case UIO_WRITE:
/*
* Loan out an arc_buf for write if write size is bigger than
* max_blksz, and the file's block size is also max_blksz.
*/
blksz = max_blksz;
if (size < blksz || zp->z_blksz != blksz) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Caller requests buffers for write before knowing where the
* write offset might be (e.g. NFS TCP write).
*/
if (offset == -1) {
preamble = 0;
} else {
preamble = P2PHASE(offset, blksz);
if (preamble) {
preamble = blksz - preamble;
size -= preamble;
}
}
postamble = P2PHASE(size, blksz);
size -= postamble;
fullblk = size / blksz;
(void) dmu_xuio_init(xuio,
(preamble != 0) + fullblk + (postamble != 0));
/*
* Have to fix iov base/len for partial buffers. They
* currently represent full arc_buf's.
*/
if (preamble) {
/* data begins in the middle of the arc_buf */
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf,
blksz - preamble, preamble);
}
for (i = 0; i < fullblk; i++) {
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf, 0, blksz);
}
if (postamble) {
/* data ends in the middle of the arc_buf */
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf, 0, postamble);
}
break;
case UIO_READ:
/*
* Loan out an arc_buf for read if the read size is larger than
* the current file block size. Block alignment is not
* considered. Partial arc_buf will be loaned out for read.
*/
blksz = zp->z_blksz;
if (blksz < zcr_blksz_min)
blksz = zcr_blksz_min;
if (blksz > zcr_blksz_max)
blksz = zcr_blksz_max;
/* avoid potential complexity of dealing with it */
if (blksz > max_blksz) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
maxsize = zp->z_size - uio->uio_loffset;
if (size > maxsize)
size = maxsize;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
if (size < blksz) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
break;
default:
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
uio->uio_extflg = UIO_XUIO;
XUIO_XUZC_RW(xuio) = ioflag;
ZFS_EXIT(zfsvfs);
return (0);
}
/*ARGSUSED*/
static int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
{
int i;
arc_buf_t *abuf;
int ioflag = XUIO_XUZC_RW(xuio);
ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
i = dmu_xuio_cnt(xuio);
while (i-- > 0) {
abuf = dmu_xuio_arcbuf(xuio, i);
/*
* if abuf == NULL, it must be a write buffer
* that has been returned in zfs_write().
*/
if (abuf)
dmu_return_arcbuf(abuf);
ASSERT(abuf || ioflag == UIO_WRITE);
}
dmu_xuio_fini(xuio);
return (0);
}
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 19:16:06 +00:00
#endif /* HAVE_UIO_ZEROCOPY */
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(zfs_open);
EXPORT_SYMBOL(zfs_close);
EXPORT_SYMBOL(zfs_read);
EXPORT_SYMBOL(zfs_write);
EXPORT_SYMBOL(zfs_access);
EXPORT_SYMBOL(zfs_lookup);
EXPORT_SYMBOL(zfs_create);
EXPORT_SYMBOL(zfs_tmpfile);
EXPORT_SYMBOL(zfs_remove);
EXPORT_SYMBOL(zfs_mkdir);
EXPORT_SYMBOL(zfs_rmdir);
EXPORT_SYMBOL(zfs_readdir);
EXPORT_SYMBOL(zfs_fsync);
EXPORT_SYMBOL(zfs_getattr);
EXPORT_SYMBOL(zfs_getattr_fast);
EXPORT_SYMBOL(zfs_setattr);
EXPORT_SYMBOL(zfs_rename);
EXPORT_SYMBOL(zfs_symlink);
EXPORT_SYMBOL(zfs_readlink);
EXPORT_SYMBOL(zfs_link);
EXPORT_SYMBOL(zfs_inactive);
EXPORT_SYMBOL(zfs_space);
EXPORT_SYMBOL(zfs_fid);
EXPORT_SYMBOL(zfs_getsecattr);
EXPORT_SYMBOL(zfs_setsecattr);
EXPORT_SYMBOL(zfs_getpage);
EXPORT_SYMBOL(zfs_putpage);
EXPORT_SYMBOL(zfs_dirty_inode);
EXPORT_SYMBOL(zfs_map);
/* CSTYLED */
module_param(zfs_delete_blocks, ulong, 0644);
MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-03 22:09:28 +00:00
module_param(zfs_read_chunk_size, long, 0644);
MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
#endif