AR9287 tidyups:

* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
  on AR9280 and later, so create a method to do it.

* Use it for the AR9287 analog writes.

* Re-indent and style(9) the code.
This commit is contained in:
Adrian Chadd 2012-06-17 05:56:27 +00:00
parent 1b86b1d21a
commit 3acbfe72fc
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=237184
2 changed files with 76 additions and 74 deletions

View File

@ -484,6 +484,8 @@ isBigEndian(void)
/* Analog register writes may require a delay between each one (eg Merlin?) */
#define OS_A_REG_RMW_FIELD(_a, _r, _f, _v) \
do { OS_REG_WRITE(_a, _r, (OS_REG_READ(_a, _r) &~ (_f)) | (((_v) << _f##_S) & (_f))) ; OS_DELAY(100); } while (0)
#define OS_A_REG_WRITE(_a, _r, _v) \
do { OS_REG_WRITE(_a, _r, _v); OS_DELAY(100); } while (0)
/* wait for the register contents to have the specified value */
extern HAL_BOOL ath_hal_wait(struct ath_hal *, u_int reg,

View File

@ -45,70 +45,70 @@ static void
ar9287SetPowerCalTable(struct ath_hal *ah,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
uint8_t *pCalBChans = NULL;
uint16_t pdGainOverlap_t2;
uint16_t numPiers = 0, i;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
uint32_t regChainOffset;
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
uint8_t *pCalBChans = NULL;
uint16_t pdGainOverlap_t2;
uint16_t numPiers = 0, i;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
uint32_t regChainOffset;
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar9287_eeprom *pEepData = &ee->ee_base;
struct ar9287_eeprom *pEepData = &ee->ee_base;
xpdMask = pEepData->modalHeader.xpdGain;
xpdMask = pEepData->modalHeader.xpdGain;
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
AR9287_EEP_MINOR_VER_2)
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
else
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
AR9287_EEP_MINOR_VER_2)
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
else
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
/* Note: Kiwi should only be 2ghz.. */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR9287_NUM_2G_CAL_PIERS;
pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
}
numXpdGain = 0;
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR9287_NUM_2G_CAL_PIERS;
pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
numXpdGain++;
}
}
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
numXpdGain++;
}
}
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
int8_t txPower;
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
ar9287olcGetTxGainIndex(ah, chan,
pRawDatasetOpenLoop,
pCalBChans, numPiers,
&txPower);
ar9287olcSetPDADCs(ah, txPower, i);
}
}
if (pEepData->baseEepHeader.txMask & (1 << i)) {
int8_t txPower;
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
ar9287olcGetTxGainIndex(ah, chan,
pRawDatasetOpenLoop,
pCalBChans, numPiers,
&txPower);
ar9287olcSetPDADCs(ah, txPower, i);
}
}
*pTxPowerIndexOffset = 0;
*pTxPowerIndexOffset = 0;
}
@ -329,20 +329,20 @@ ar9287SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
#define N(a) (sizeof (a) / sizeof (a[0]))
const struct modal_eep_ar9287_header *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
uint8_t ht40PowerIncForPdadc = 2;
int i;
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
uint8_t ht40PowerIncForPdadc = 2;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar9287_eeprom *pEepData = &ee->ee_base;
@ -351,7 +351,8 @@ ar9287SetTransmitPower(struct ath_hal *ah,
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
@ -361,9 +362,9 @@ ar9287SetTransmitPower(struct ath_hal *ah,
/* Fetch per-rate power table for the given channel */
if (! ar9287SetPowerPerRateTable(ah, pEepData, chan,
&ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
&ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
@ -476,7 +477,8 @@ ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
pModal->antCtrlChain[i]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset)
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
+ regChainOffset)
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
@ -500,7 +502,6 @@ ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
pModal->rxTxMarginCh[i]);
}
if (IEEE80211_IS_CHAN_HT40(chan))
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
@ -539,8 +540,8 @@ ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
OS_DELAY(100); /* analog write */
/* Analog write - requires a 100usec delay */
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
regval &= ~(AR9287_AN_RF2G3_DB1 |
@ -556,8 +557,7 @@ ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
OS_DELAY(100); /* analog write */
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);