- Layout reorganisation to enhance portability. The driver now has
a relatively MI 'core' and a FreeBSD-specific layer over the top.
Since the NetBSD people have already done their own port, this is
largely just to help me with the BSD/OS port.
- Request ID allocation changed to improve performance (I'd been
considering switching to this approach after having failed to come
up with a better way to dynamically allocate request IDs, and seeing
Andy Doran use it in the NetBSD port of the driver convinced me
that I was wasting my time doing it any other way). Now we just
allocate all the requests up front.
- Maximum request count bumped back to 255 after characterisation
of a firmware issue (off-by-one causing it to crash with 256
outstanding commands).
- Control interface implemented. This allows 3ware's '3dm' utility to
talk to the controller. 3dm will be available from 3ware shortly.
- Controller soft-reset feature added; if the controller signals a
firmware or protocol error, the controller will be reset and all
outstanding commands will be retried.
(a NetBSD port for NEC PC-98x1 machines). They are ncv for NCR 53C500,
nsp for Workbit Ninja SCSI-3, and stg for TMC 18C30 and 18C50.
I thank NetBSD/pc98 and bsd-nomads people.
Obtained from: NetBSD/pc98
reducues the maintenance load for the mutex code. The only MD portions
of the mutex code are in machine/mutex.h now, which include the assembly
macros for handling mutexes as well as optionally overriding the mutex
micro-operations. For example, we use optimized micro-ops on the x86
platform #ifndef I386_CPU.
- Change the behavior of the SMP_DEBUG kernel option. In the new code,
mtx_assert() only depends on INVARIANTS, allowing other kernel developers
to have working mutex assertiions without having to include all of the
mutex debugging code. The SMP_DEBUG kernel option has been renamed to
MUTEX_DEBUG and now just controls extra mutex debugging code.
- Abolish the ugly mtx_f hack. Instead, we dynamically allocate
seperate mtx_debug structures on the fly in mtx_init, except for mutexes
that are initiated very early in the boot process. These mutexes
are declared using a special MUTEX_DECLARE() macro, and use a new
flag MTX_COLD when calling mtx_init. This is still somewhat hackish,
but it is less evil than the mtx_f filler struct, and the mtx struct is
now the same size with and without mutex debugging code.
- Add some micro-micro-operation macros for doing the actual atomic
operations on the mutex mtx_lock field to make it easier for other archs
to override/optimize mutex ops if needed. These new tiny ops also clean
up the code in some places by replacing long atomic operation function
calls that spanned 2-3 lines with a short 1-line macro call.
- Don't call mi_switch() from mtx_enter_hard() when we block while trying
to obtain a sleep mutex. Calling mi_switch() would bogusly release
Giant before switching to the next process. Instead, inline most of the
code from mi_switch() in the mtx_enter_hard() function. Note that when
we finally kill Giant we can back this out and go back to calling
mi_switch().
This commit adds support for Xircom X3201 based cardbus cards.
Support for the TDK 78Q2120 MII is also added.
IBM Etherjet, Intel and Xircom cards uses these chips.
Note that as a result of this commit, some Intel/DEC 21143 based cardbus
cards will also attach, but not get link. That is being looked at.
Files:
dev/cardbus/cardbus.c
dev/cardbus/cardbusreg.h
dev/cardbus/cardbusvar.h
dev/cardbus/cardbus_cis.c
dev/cardbus/cardbus_cis.h
dev/pccbb/pccbb.c
dev/pccbb/pccbbreg.h
dev/pccbb/pccbbvar.h
dev/pccbb/pccbb_if.m
This should support:
- cardbus controllers:
* TI 113X
* TI 12XX
* TI 14XX
* Ricoh 47X
* Ricoh 46X
* ToPIC 95
* ToPIC 97
* ToPIC 100
* Cirrus Logic CLPD683x
- cardbus cards
* 3c575BT
* 3c575CT
* Xircom X3201 (includes IBM, Xircom and, Intel cards)
[ 3com support already in kernel, Xircom will be committed real soon now]
This doesn't work with 16bit pccards under NEWCARD.
Enable in your config by having "device pccbb" and "device cardbus".
(A "device pccard" will attach a pccard bus, but it means you system have
a high chance of panicing when a 16bit card is inserted)
It should be fairly simple to make a driver attach to cardbus under
NEWCARD -- simply add an entry for attaching to cardbus on a new
DRIVER_MODULE and add new device IDs as necessary. You should also make
sure the card can be detached nicely without the interrupt routine doing
something weird, like going into an infinite loop. Usually that should
entail adding an additional check when a pci register or the bus space is
read to check if it equals 0xffffffff.
Any problems, please let me know.
Reviewed by: imp
now in dirs called sys/*/random/ instead of sys/*/randomdev/*.
Introduce blocking, but only at startup; the random device will
block until the first reseed happens to prevent clients from
using untrustworthy output.
Provide a read_random() call for the rest of the kernel so that
the entropy device does not need to be present. This means that
things like IPX no longer need to have "device random" hardcoded
into thir kernel config. The downside is that read_random() will
provide very poor output until the entropy device is loaded and
reseeded. It is recommended that developers do NOT use the
read_random() call; instead, they should use arc4random() which
internally uses read_random().
Clean up the mutex and locking code a bit; this makes it possible
to unload the module again.
description:
How it works:
--
Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.
File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:
fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);
printf("new file is %d\n", (int)st.st_ino);
Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:
fd = open("5", O_RDWR);
The creation permissions depend entirely if you have write access to the
root directory of the filesystem.
To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.
--
What this entails:
* patching conf/files and conf/options to include IFS as a new compile
option (and since ifs depends upon FFS, include the FFS routines)
* An entry in i386/conf/NOTES indicating IFS exists and where to go for
an explanation
* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
routines require (ffs_mount() and ffs_reload())
* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
routines. IFS replaces some of the vfsops, and a handful of vnops -
most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
Any other directory operation is marked as invalid.
What this results in:
* an IFS partition's create permissions are controlled by the perm/ownership of
the root mount point, just like a normal directory
* Each inode has perm and ownership too
* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
completely seperate filesystem here
* Softupdates doesn't work with IFS, and really I don't think it needs it.
Besides, fsck's are FAST. (Try it :-)
* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
this particular inode, and unravelling THAT code isn't trivial. Therefore,
useful inodes start at 3.
Enjoy, and feedback is definitely appreciated!
and initialized during boot. This avoids bloating sizeof(struct lock).
As a side effect, it is no longer necessary to enforce the assumtion that
lockinit()/lockdestroy() calls are paired, so the LK_VALID flag has been
removed.
Idea taken from: BSD/OS.
disk drivers along with a load of fixes to context switching, fork
handling and a load of other stuff I can't remember now. This takes us as
far as start_init() before it dies. I guess now I will have to finish off
the VM system and syscall handling :-).
platforms.
While here, work around a strange quirk in config(8) that I do not yet
understand. Rearrange which atapi* files have 'optional' vs. 'count'
so that you can have atapifd without atapicd. The only difference should
be that this works instead of having a link error because atapi-all.o got
left out of the kernel.
support which use National Semiconductor DP8393X (SONIC) as ethernet
controller. Currently, this driver is used on only PC-98.
Submitted by: Motomichi Matsuzaki <mzaki@e-mail.ne.jp>
Obtained from: NetBSD/pc98
drivers (again). These drivers have not compiled for 5-6 months.
Now that the new sound code supports MIDI, the major reason we had for
reviving it is gone. It is a far better investment polishing the new
midi code than trying to keep this on life support. Come 5.0-REL, if
there are major shortcomings in the pcm sound driver then maybe we can
rethink this, but until then we should focus on pcm.
Remember, these have not been compilable since ~April-May this year.
that it's enabled in acpireg.h only if DIAGNOSTIC option is specified.
ACPICA OSD functions will be compiled in machine/acpi_machdep.c again
tentatively (if DIAGNOSTIC option is specified).
# Should we have acpica_osd.c ?
- Move all register I/O into acpi_io.c
- Move event handling into acpi_event.c
- Reorganise headers into acpivar/acpireg/acpiio
- Move find-RSDT and find-ACPI-owned-memory into acpi_machdep
- Allocate all resources (except those detailed only by AML)
as real resources. Add infrastructure that will make adding
resource support to AML code easy.
- Remove all ACPI #ifdefs in non-ACPI code
- Removed unnecessary includes
- Minor style and commenting fixes
Reviewed by: iwasaki
not work on any real hardware (or fully work on any simulator). Much more
needs to happen before this is actually functional but its nice to see
the FreeBSD copyright message appear in the ia64 simulator.
sequencer files. Different platforms place the included files in different
locations and it is easier to modify the include path passed as arguments
to the assembler than adding #ifdef support to the assembler.
Previously, these cards were supported by the lnc driver (and they
still are, but the pcn driver will claim them first), which is fine
except the lnc driver runs them in 16-bit LANCE compatibility mode.
The pcn driver runs these chips in 32-bit mode and uses the RX alignment
feature to achieve zero-copy receive. (Which puts it in the same
class as the xl, fxp and tl chipsets.) This driver is also MI, so it
will work on the x86 and alpha platforms. (The lnc driver is still
needed to support non-PCI cards. At some point, I'll need to newbusify
it so that it too will me MI.)
The Am79c978 HomePNA adapter is also supported.
The code for suspend/resume is derived from APM device driver.
Some people suggested the original code is somewhat buggy, but I'd
like to just move it from apm.c without any major changes for the
initial version. This code should be refined later.
To use pmtimer to adjust time at resume time, add
device pmtimer
in your kernel config file, and add
hint.pmtimer.0.at="isa"
in your device.hints
Reviewed by: -current, bde
from many folk.
o The reseed process is now a kthread. With SMPng, kthreads are
pre-emptive, so the annoying jerkiness of the mouse is gone.
o The data structures are protected by mutexes now, not splfoo()/splx().
o The cryptographic routines are broken out into their own subroutines.
this facilitates review, and possible replacement if that is ever
found necessary.
Thanks to: kris, green, peter, jasone, grog, jhb
Forgotten to thank: You know who you are; no offense intended.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
to recycle inodes after a destroy_dev() but not until all mounts
have picked up the change.
Add support for an overflow table for DEVFS inodes. The static
table defaults to 1024 inodes, if that fills, an overflow table
of 32k inodes is allocated. Both numbers can be changed at
compile time, the size of the overflow table also with the
sysctl vfs.devfs.noverflow.
Use atomic instructions to barrier between make_dev()/destroy_dev()
and the mounts.
Add lockmgr() locking of directories for operations accessing or
modifying the directory TAILQs.
Various nitpicking here and there.
This provides support for the Adaptec SCSI RAID controller family,
as well as the DPT SmartRAID V and VI families.
The driver will be maintained by Mark and Adaptec, and any changes
should be referred to the MAINTAINER.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.
Remove old DEVFS support fields from dev_t.
Make uid, gid & mode members of dev_t and set them in make_dev().
Use correct uid, gid & mode in make_dev in disk minilayer.
Add support for registering alias names for a dev_t using the
new function make_dev_alias(). These will show up as symlinks
in DEVFS.
Use makedev() rather than make_dev() for MFSs magic devices to prevent
DEVFS from noticing this abuse.
Add a field for DEVFS inode number in dev_t.
Add new DEVFS in fs/devfs.
Add devfs cloning to:
disk minilayer (ie: ad(4), sd(4), cd(4) etc etc)
md(4), tun(4), bpf(4), fd(4)
If DEVFS add -d flag to /sbin/inits args to make it mount devfs.
Add commented out DEVFS to GENERIC
doesn't exist. This could bite you by allowing you merrily install your
modules one on top of the other as the regular file ${DESTDIR}/modules
and think it completed properly...
The tap driver is used to present a virtual Ethernet interface to the
system. Packets presented by the network stack to the interface are
made available to a character device in /dev. With tap and the bridge
code, you can make remote bridge configurations where both sides of
the bridge are separated by userland daemons.
This driver also has a special naming hack to allow it to serve a similar
purpose to the vmware port.
Submitted by: myevmenkin@att.com, vsilyaev@mindspring.com
associated patch to XFree86 allows the X server to work with this chipset
on FreeBSD. Additional work will include porting the Linux 3D driver.
Submitted by: Ruslan Ermilov <ru@FreeBSD.org>
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
(I had been busy for my own research activity until the last weekend)
Supported devices:
SB Midi Port (sbc + midi)
SB OPL3 (sbc + midi)
16550 UART (midi, needs a trick in your hint)
CS461x Midi Port (csa + midi)
OSS-compatible sequencer (seq)
Supported playing software:
playmidi (We definitely need more)
Notes:
/dev/midistat now reports installed midi drivers. /dev/sndstat reports
only pcm drivers. We need the new name(pcmstat?).
EMU8000(SB AWE) does not sound yet but does get probed so that the OPL3
synth on an AWE card works.
TODO:
MSS/PCI bridge drivers
Midi-tty interface to support general serial devices
Modules