architecture macros (__mips_n64, __powerpc64__) when 64 bit types (and
corresponding macros) are different from 32 bit. [1]
Correct the type of INT64_MIN, INT64_MAX and UINT64_MAX.
Define (U)INTMAX_C as an alias for (U)INT64_C matching the type definition
for (u)intmax_t. Do this on all architectures for consistency.
Suggested by: bde [1]
Approved by: kib (mentor)
On some architectures UCHAR_MAX and USHRT_MAX had type unsigned int.
However, lacking integer suffixes for types smaller than int, their type
should correspond to that of an object of type unsigned char (or short)
when used in an expression with objects of type int. In that case unsigned
char (short) are promoted to int (i.e. signed) so the type of UCHAR_MAX and
USHRT_MAX should also be int.
Where MIN/MAX constants implicitly have the correct type the suffix has
been removed.
While here, correct some comments.
Reviewed by: bde
Approved by: kib (mentor)
Passing a count of zero on i386 and amd64 for [I386|AMD64]_BUS_SPACE_MEM
causes a crash/hang since the 'loop' instruction decrements the counter
before checking if it's zero.
PR: kern/80980
Discussed with: jhb
contents of the ones that were not empty were stale and unused.
- Now that <machine/mutex.h> no longer exists, there is no need to allow it
to override various helper macros in <sys/mutex.h>.
- Rename various helper macros for low-level operations on mutexes to live
in the _mtx_* or __mtx_* namespaces. While here, change the names to more
closely match the real API functions they are backing.
- Drop support for including <sys/mutex.h> in assembly source files.
Suggested by: bde (1, 2)
work properly with single-stepping in a kernel debugger. Specifically,
these routines have always disabled interrupts before increasing the nesting
count and restored the prior state of interrupts after decreasing the nesting
count to avoid problems with a nested interrupt not disabling interrupts
when acquiring a spin lock. However, trap interrupts for single-stepping
can still occur even when interrupts are disabled. Now the saved state of
interrupts is not saved in the thread until after interrupts have been
disabled and the nesting count has been increased. Similarly, the saved
state from the thread cannot be read once the nesting count has been
decreased to zero. To fix this, use temporary variables to store interrupt
state and shuffle it between the thread's MD area and the appropriate
registers.
In cooperation with: bde
MFC after: 1 month
The check for alignment should be made against the physical address and not
the virtual address that maps it.
Sponsored by: NetApp
Submitted by: Will McGovern (will at netapp dot com)
Reviewed by: mjacob, jhb
This reflects actual type used to store and compare child device orders.
Change is mostly done via a Coccinelle (soon to be devel/coccinelle)
semantic patch.
Verified by LINT+modules kernel builds.
Followup to: r212213
MFC after: 10 days
In particular, provide pagesize and pagesizes array, the canary value
for SSP use, number of host CPUs and osreldate.
Tested by: marius (sparc64)
MFC after: 1 month
IPI to a specific CPU by its cpuid. Replace calls to ipi_selected() that
constructed a mask for a single CPU with calls to ipi_cpu() instead. This
will matter more in the future when we transition from cpumask_t to
cpuset_t for CPU masks in which case building a CPU mask is more expensive.
Submitted by: peter, sbruno
Reviewed by: rookie
Obtained from: Yahoo! (x86)
MFC after: 1 month
from the inline assembly. This allows the compiler to cache invocations of
curthread since it's value does not change within a thread context.
Submitted by: zec (i386)
MFC after: 1 week
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
now it uses a very dumb first-touch allocation policy. This will change in
the future.
- Each architecture indicates the maximum number of supported memory domains
via a new VM_NDOMAIN parameter in <machine/vmparam.h>.
- Each cpu now has a PCPU_GET(domain) member to indicate the memory domain
a CPU belongs to. Domain values are dense and numbered from 0.
- When a platform supports multiple domains, the default freelist
(VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain.
The MD code is required to populate an array of mem_affinity structures.
Each entry in the array defines a range of memory (start and end) and a
domain for the range. Multiple entries may be present for a single
domain. The list is terminated by an entry where all fields are zero.
This array of structures is used to split up phys_avail[] regions that
fall in VM_FREELIST_DEFAULT into per-domain freelists.
- Each memory domain has a separate lookup-array of freelists that is
used when fulfulling a physical memory allocation. Right now the
per-domain freelists are listed in a round-robin order for each domain.
In the future a table such as the ACPI SLIT table may be used to order
the per-domain lookup lists based on the penalty for each memory domain
relative to a specific domain. The lookup lists may be examined via a
new vm.phys.lookup_lists sysctl.
- The first-touch policy is implemented by using PCPU_GET(domain) to
pick a lookup list when allocating memory.
Reviewed by: alc
name of 32bit sibling architecture instead of the host one. Do the
same for hw.machine on amd64.
Add a safety belt debug.adaptive_machine_arch sysctl, to turn the
substitution off.
Reviewed by: jhb, nwhitehorn
MFC after: 2 weeks
side-effect of purging more than the requested translation. While
this is not a problem in general, it invalidates the assumption made
during constructing the trapframe on entry into the kernel in SMP
configurations. The assumption is that only the first store to the
stack will possibly cause a TLB miss. Since the ptc.g purges the
translation caches of all CPUs in the coherency domain, a ptc.g
executed on one CPU can cause a purge on another CPU that is
currently running the critical code that saves the state to the
trapframe. This can cause an unexpected TLB miss and with interrupt
collection disabled this means an unexpected data nested TLB fault.
A data nested TLB fault will not save any context, nor provide a
way for software to determine what caused the TLB miss nor where
it occured. Careful construction of the kernel entry and exit code
allows us to handle a TLB miss in precisely orchastrated points
and thereby avoiding the need to wire the kernel stack, but the
unexpected TLB miss caused by the ptc.g instructution resulted in
an unrecoverable condition and resulting in machine checks.
The solution to this problem is to synchronize the kernel entry
on all CPUs with the use of the ptc.g instruction on a single CPU
by implementing a bare-bones readers-writer lock that allows N
readers (= N CPUs entering the kernel) and 1 writer (= execution
of the ptc.g instruction on some CPU). This solution wins over
a rendez-vous approach by not interrupting CPUs with an IPI.
This problem has not been observed on the Montecito.
PR: ia64/147772
MFC after: 6 days
allow pmap_enter() to be performed on an unmanaged page that doesn't have
VPO_BUSY set. Having VPO_BUSY set really only matters for managed pages.
(See, for example, pmap_remove_write().)
in particular, do not handle deferred DMA map load operations at all.
Any error, and especially EINPROGRESS, is treated as a hard error and
typically abort the current operation. The fact that the busdma code
queues the load operation for when resources (i.e. bounce buffers in
this particular case) are available makes this especially problematic.
Bounce buffering, unlike what the PR synopsis would suggest, works
fine.
While on the subject, properly implement swi_vm().
PR: 147502
MFC after: 1 week
PG_REFERENCED changes in vm_pageout_object_deactivate_pages().
Simplify this function's inner loop using TAILQ_FOREACH(), and shorten
some of its overly long lines. Update a stale comment.
Assert that PG_REFERENCED may be cleared only if the object containing
the page is locked. Add a comment documenting this.
Assert that a caller to vm_page_requeue() holds the page queues lock,
and assert that the page is on a page queue.
Push down the page queues lock into pmap_ts_referenced() and
pmap_page_exists_quick(). (As of now, there are no longer any pmap
functions that expect to be called with the page queues lock held.)
Neither pmap_ts_referenced() nor pmap_page_exists_quick() should ever
be passed an unmanaged page. Assert this rather than returning "0"
and "FALSE" respectively.
ARM:
Simplify pmap_page_exists_quick() by switching to TAILQ_FOREACH().
Push down the page queues lock inside of pmap_clearbit(), simplifying
pmap_clear_modify(), pmap_clear_reference(), and pmap_remove_write().
Additionally, this allows for avoiding the acquisition of the page
queues lock in some cases.
PowerPC/AIM:
moea*_page_exits_quick() and moea*_page_wired_mappings() will never be
called before pmap initialization is complete. Therefore, the check
for moea_initialized can be eliminated.
Push down the page queues lock inside of moea*_clear_bit(),
simplifying moea*_clear_modify() and moea*_clear_reference().
The last parameter to moea*_clear_bit() is never used. Eliminate it.
PowerPC/BookE:
Simplify mmu_booke_page_exists_quick()'s control flow.
Reviewed by: kib@
pmap_is_referenced(). Eliminate the corresponding page queues lock
acquisitions from vm_map_pmap_enter() and mincore(), respectively. In
mincore(), this allows some additional cases to complete without ever
acquiring the page queues lock.
Assert that the page is managed in pmap_is_referenced().
On powerpc/aim, push down the page queues lock acquisition from
moea*_is_modified() and moea*_is_referenced() into moea*_query_bit().
Again, this will allow some additional cases to complete without ever
acquiring the page queues lock.
Reorder a few statements in vm_page_dontneed() so that a race can't lead
to an old reference persisting. This scenario is described in detail by a
comment.
Correct a spelling error in vm_page_dontneed().
Assert that the object is locked in vm_page_clear_dirty(), and restrict the
page queues lock assertion to just those cases in which the page is
currently writeable.
Add object locking to vnode_pager_generic_putpages(). This was the one
and only place where vm_page_clear_dirty() was being called without the
object being locked.
Eliminate an unnecessary vm_page_lock() around vnode_pager_setsize()'s call
to vm_page_clear_dirty().
Change vnode_pager_generic_putpages() to the modern-style of function
definition. Also, change the name of one of the parameters to follow
virtual memory system naming conventions.
Reviewed by: kib
the arguments array instead of array itself. ia64 syscall arguments are
readily available in the frame, point args to it, do not do unnecessary
bcopy. Still reserve the array in syscall_args for ia32 emulation.
Suggested and reviewed by: marcel
MFC after: 1 month
independent code. Move this code into mincore(), and eliminate the
page queues lock from pmap_mincore().
Push down the page queues lock into pmap_clear_modify(),
pmap_clear_reference(), and pmap_is_modified(). Assert that these
functions are never passed an unmanaged page.
Eliminate an inaccurate comment from powerpc/powerpc/mmu_if.m:
Contrary to what the comment says, pmap_mincore() is not simply an
optimization. Without a complete pmap_mincore() implementation,
mincore() cannot return either MINCORE_MODIFIED or MINCORE_REFERENCED
because only the pmap can provide this information.
Eliminate the page queues lock from vfs_setdirty_locked_object(),
vm_pageout_clean(), vm_object_page_collect_flush(), and
vm_object_page_clean(). Generally speaking, these are all accesses
to the page's dirty field, which are synchronized by the containing
vm object's lock.
Reduce the scope of the page queues lock in vm_object_madvise() and
vm_page_dontneed().
Reviewed by: kib (an earlier version)
Extend struct sysvec with three new elements:
sv_fetch_syscall_args - the method to fetch syscall arguments from
usermode into struct syscall_args. The structure is machine-depended
(this might be reconsidered after all architectures are converted).
sv_set_syscall_retval - the method to set a return value for usermode
from the syscall. It is a generalization of
cpu_set_syscall_retval(9) to allow ABIs to override the way to set a
return value.
sv_syscallnames - the table of syscall names.
Use sv_set_syscall_retval in kern_sigsuspend() instead of hardcoding
the call to cpu_set_syscall_retval().
The new functions syscallenter(9) and syscallret(9) are provided that
use sv_*syscall* pointers and contain the common repeated code from
the syscall() implementations for the architecture-specific syscall
trap handlers.
Syscallenter() fetches arguments, calls syscall implementation from
ABI sysent table, and set up return frame. The end of syscall
bookkeeping is done by syscallret().
Take advantage of single place for MI syscall handling code and
implement ptrace_lwpinfo pl_flags PL_FLAG_SCE, PL_FLAG_SCX and
PL_FLAG_EXEC. The SCE and SCX flags notify the debugger that the
thread is stopped at syscall entry or return point respectively. The
EXEC flag augments SCX and notifies debugger that the process address
space was changed by one of exec(2)-family syscalls.
The i386, amd64, sparc64, sun4v, powerpc and ia64 syscall()s are
changed to use syscallenter()/syscallret(). MIPS and arm are not
converted and use the mostly unchanged syscall() implementation.
Reviewed by: jhb, marcel, marius, nwhitehorn, stas
Tested by: marcel (ia64), marius (sparc64), nwhitehorn (powerpc),
stas (mips)
MFC after: 1 month
DDB so that all the fields line up.
- Print out the tid of the per-CPU idlethread instead of the pid since
the idle process is now shared across all idle threads.
MFC after: 1 month
here, make the style of assertion used by pmap_enter() consistent
across all architectures.
On entry to pmap_remove_write(), assert that the page is neither
unmanaged nor fictitious, since we cannot remove write access to
either kind of page.
With the push down of the page queues lock, pmap_remove_write() cannot
condition its behavior on the state of the PG_WRITEABLE flag if the
page is busy. Assert that the object containing the page is locked.
This allows us to know that the page will neither become busy nor will
PG_WRITEABLE be set on it while pmap_remove_write() is running.
Correct a long-standing bug in vm_page_cowsetup(). We cannot possibly
do copy-on-write-based zero-copy transmit on unmanaged or fictitious
pages, so don't even try. Previously, the call to pmap_remove_write()
would have failed silently.
vm_page_try_to_free(). Consequently, push down the page queues lock into
pmap_enter_quick(), pmap_page_wired_mapped(), pmap_remove_all(), and
pmap_remove_write().
Push down the page queues lock into Xen's pmap_page_is_mapped(). (I
overlooked the Xen pmap in r207702.)
Switch to a per-processor counter for the total number of pages cached.
architecture from page queue lock to a hashed array of page locks
(based on a patch by Jeff Roberson), I've implemented page lock
support in the MI code and have only moved vm_page's hold_count
out from under page queue mutex to page lock. This changes
pmap_extract_and_hold on all pmaps.
Supported by: Bitgravity Inc.
Discussed with: alc, jeffr, and kib
Clearing a page table entry's accessed bit and setting the page's
PG_REFERENCED flag in pmap_protect() can't really be justified, so
don't do it. Moreover, on ia64, don't set the page's dirty field
unless pmap_protect() is removing write access.
In the end, it does help fixing /dev/io usage from multithreaded
processes.
- On i386 and amd64 the old behaviour is kept but multithreaded
processes must use the new interface in order to work well.
- Support for the other architectures is greatly improved, where
necessary, by the necessity to define very small things now.
Manpage update will happen shortly.
Sponsored by: Sandvine Incorporated
PR: threads/116181
Reviewed by: emaste, marcel
MFC after: 3 weeks
pmap_ts_referenced() is not always appropriate for checking whether or
not pages have been referenced because it clears any reference bits
that it encounters. For example, in mincore(), clearing the reference
bits has two negative consequences. First, it throws off the activity
count calculations performed by the page daemon. Specifically, a page
on which mincore() has called pmap_ts_referenced() looks less active
to the page daemon than it should. Consequently, the page could be
deactivated prematurely by the page daemon. Arguably, this problem
could be fixed by having mincore() duplicate the activity count
calculation on the page. However, there is a second problem for which
that is not a solution. In order to clear a reference on a 4KB page,
it may be necessary to demote a 2/4MB page mapping. Thus, a mincore()
by one process can have the side effect of demoting a superpage
mapping within another process!
bus number 1 in domain 1 has the devices we're looking for.
For the busses that are present, the SAL call returns an
non-NULL value for the addr parameter so use that as well
as the status code to determine whether to create a child.
Save the domain, bus number and PROM address in the softc
after assigning the driver to the new device.
This yields:
...
pcib0: <SGI PCI-X host controller> on motherboard
pci0: <PCI bus> on pcib0
pci0: domain=1, physical bus=1
...
pcib1: <SGI PCI-X host controller> on motherboard
pci1: <PCI bus> on pcib1
pci1: domain=2, physical bus=1
...
The sequence number is used as the name of a sysctl node,
under which we add the MCA records using the CPU id as the
leaf name.
Add the hw.mca.inject sysctl to provide a way to inject
MC errors and trigger machine checks.
PR: ia64/113102
o Switch to ITANIUM2 has the cpu. This has absolutely no effect
on the code, but makes for a better example.
o Drop COMPAT_FREEBSD6. We're tier 2, so you're supposed to run
8-stable or newer.
o Add PREEMPTION. It works now.
o Remove HWPMC_HOOKS. We don't have support for hwpmc yet.
o Add a bunch of new devices: atapist, hptiop, amr, ips, twa, igb,
ixgbe, ae, age, alc, ale, bce, bfe, et, jme, msk, nge, sk, ste,
stge, tx, vge, axe, rue, udav, fwip, and all USB serial.
o Remove "legacy" devices: le, vx, dc, pcn, rl, sis.
Make sure to the module list is a superset of what goes into GENERIC.
with PCI busses. Remove nexus_read_ivar() and nexus_write_ivar()
to give default behaviour. Remove <machine/nexusvar.h> as well,
because there's nothing in it that's being used.
to ia64_enable_intr(). This reduces confusion with intr_disable() and
intr_restore().
Have configure_final() call ia64_finalize_intr() instead of enable_intr()
in preparation of adding support for binding interrupts to all CPUs.
have the BSP use IPIs to trigger clock interrupts on the APs.
This allows us to run on hardware configurations for which the
ITC has non-uniform frequencies across CPUs.
While here, change the clock XIV to type IPI so as to protect
the interrupt delivery against CPU re-balancing once that's
implemented.
to the image_params struct instead of several members of that struct
individually. This makes it easier to expand its arguments in the future
without touching all platforms.
Reviewed by: jhb
other than in a potentially dangerous KASSERT.
o Hand-inline pmap_remove_page() as it's only called from 1 place and
the abstraction that pmap_remove_page() provides is not enough to
warrant the obfuscation. Eliminate the dangerous KASSERT in the
process.
o In pmap_remove_pte(), remove the KASSERT for pmap being the current
one as it's not safe in the face of CPU migration.
than in a KASSERT. The KASSERT is broken in that it's done outside the
critical section and as such isn't protected against CPU migration.
Improve pmap_invalidate_page() as follows:
o calculate vhpt_ofs inside the critical region for exactly the same
reason.
o calculate the tag outside the FOREACH loop, as it's loop-invariant.
This is more efficient.
o Replace the test and set with an atomic cmpset operation because we
are changing other CPU's VHPT tables and this avoids invalidating
after the entry got modified. Not necessarily a problem, but better
safe than sorry.
before we grab the mutex. Don't assert that they must be disabled at
that point. We pretty much bypass all logic in that case anyway and
leave immediately, so there's no harm.
preemption doesn't happen until after all pending interrupt have
been services.
While here again, simplify the EOI handling by doing it after we
call the XIV-specific handlers, rather than in each of them. The
original thought was that we may want to do an EOI first and the
actual IPI handling next, but that's mostly a micro-optimization.
cycles. This serves 2 purposes:
1. It prevents preemption and CPU migration while running SAL code.
2. It reduces the chance of stack overflows: we're supposed to enter
SAL with at least 16KB of either memory- or register stack space,
which we can't do without switching to a different stack.
This is not for multiple inclusion purposes, because _regset.h already
handles this, but to enable inclusion of the MD header by cross-tools
on non-ia64 installations. The cross-tool can include _regset.h itself
before including MD headers that depend on it.
o Introduce XIV, eXternal Interrupt Vector, to differentiate from
the interrupts vectors that are offsets in the IVT (Interrupt
Vector Table). There's a vector for external interrupts, which
are based on the XIVs.
o Keep track of allocated and reserved XIVs so that we can assign
XIVs without hardcoding anything. When XIVs are allocated, an
interrupt handler and a class is specified for the XIV. Classes
are:
1. architecture-defined: XIV 15 is returned when no external
interrupt are pending,
2. platform-defined: SAL reports which XIV is used to wakeup
an AP (typically 0xFF, but it's 0x12 for the Altix 350).
3. inter-processor interrupts: allocated for SMP support and
non-redirectable.
4. device interrupts (i.e. IRQs): allocated when devices are
discovered and are redirectable.
o Rewrite the central interrupt handler to call the per-XIV
interrupt handler and rename it to ia64_handle_intr(). Move
the per-XIV handler implementation to the file where we have
the XIV allocation/reservation. Clock interrupt handling is
moved to clock.c. IPI handling is moved to mp_machdep.c.
o Drop support for the Intel 8259A because it was broken. When
XIV 0 is received, the CPU should initiate an INTA cycle to
obtain the interrupt vector of the 8259-based interrupt. In
these cases the interrupt controller we should be talking to
WRT to masking on signalling EOI is the 8259 and not the I/O
SAPIC. This requires adriver for the Intel 8259A which isn't
available for ia64. Thus stop pretending to support ExtINTs
and instead panic() so that if we come across hardware that
has an Intel 8259A, so have something real to work with.
o With XIVs for IPIs dynamically allocatedi and also based on
priority, define the IPI_* symbols as variables rather than
constants. The variable holds the XIV allocated for the IPI.
o IPI_STOP_HARD delivers a NMI if possible. Otherwise the XIV
assigned to IPI_STOP is delivered.
a long time and has gone unnoticed just as long, because I kept
using sched_4bsd (due to sched_ule not working with preemption),
but GENERIC had sched_ule by default -- including SMP.
While here, remove unused inclusion of <machine/clock.h>, remove
totally bogus inclusion of <i386/include/specialreg.h>.
COMPAT_43TTY enables the sgtty interface. Even though its exposure has
only been removed in FreeBSD 8.0, it wasn't used by anything in the base
system in FreeBSD 5.x (possibly even 4.x?). On those releases, if your
ports/packages are less than two years old, they will prefer termios
over sgtty.
for upcoming 64-bit PowerPC and MIPS support. This renames the COMPAT_IA32
option to COMPAT_FREEBSD32, removes some IA32-specific code from MI parts
of the kernel and enhances the freebsd32 compatibility code to support
big-endian platforms.
Reviewed by: kib, jhb
o Assign vectors based on priority, because vectors have
implied priority in hardware.
o Use unordered memory accesses to the I/O sapic and use
the acceptance form of the mf instruction.
o Remove the sapicreg.h and sapicvar.h headers. All definitions
in sapicreg.h are private to sapic.c and all definitions in
sapicvar.h are either private or interface functions. Move the
interface functions to intr.h.
o Hide the definition of struct sapic.
o Eliminate IA64_PHYS_TO_RR6 and change all places where the macro is used
by calling either bus_space_map() or pmap_mapdev().
o Implement bus_space_map() in terms of pmap_mapdev() and implement
bus_space_unmap() in terms of pmap_unmapdev().
o Have ia64_pib hold the uncached virtual address of the processor interrupt
block throughout the kernel's life and access the elements of the PIB
through this structure pointer.
This is a non-functional change with the exception of using ia64_ld1() and
ia64_st8() to write to the PIB. We were still using assignments, for which
the compiler generates semaphore reads -- which cause undefined behaviour
for uncacheable memory. Note also that the memory barriers in ipi_send() are
critical for proper functioning.
With all the mapping of uncached memory done by pmap_mapdev(), we can keep
track of the translations and wire them in the CPU. This then eliminates
the need to reserve a whole region for uncached I/O and it eliminates
translation traps for device I/O accesses.
the 'debugging' section of any HEAD kernel and enable for the mainstream
ones, excluding the embedded architectures.
It may, of course, enabled on a case-by-case basis.
Sponsored by: Sandvine Incorporated
Requested by: emaste
Discussed with: kib
path. When the taken branch leaves the kernel and enters the process,
we still need to execute the instruction at that address. Don't raise
SIGTRAP when we branch into the process, but enable single-stepping
instead.
I/O port access is implemented on Itanium by reading and writing to a
special region in memory. To hide details and avoid misaligned memory
accesses, a process did I/O port reads and writes by making a MD system
call. There's one fatal problem with this approach: unprivileged access
was not being prevented. /dev/io serves that purpose on amd64/i386, so
employ it on ia64 as well. Use an ioctl for doing the actual I/O and
remove the sysarch(2) interface.
Backward compatibility is not being considered. The sysarch(2) approach
was added to support X11, but support for FreeBSD/ia64 was never fully
implemented in X11. Thus, nothing gets broken that didn't need more work
to begin with.
MFC after: 1 week
sys/conf/makeLINT.mk to only do certain things for certain
architectures.
Note that neither arm nor mips have the Makefile there, thus
essentially not (yet) supporting LINT. This would enable them
do add special treatment to sys/conf/makeLINT.mk as well chosing
one of the many configurations as LINT.
This is a hack of doing this and keeping it in a separate commit
will allow us to more easily identify and back it out.
Discussed on/with: arch, jhb (as part of the LINT-VIMAGE thread)
MFC after: 1 month
o Optimize for memory mapped I/O by making all I/O port acceses function
calls and marking the test for the IA64_BUS_SPACE_IO tag with
__predict_false(). Implement the I/O port access functions in a new
file, called bus_machdep.c.
o Change the bus_space_handle_t for memory mapped I/O to the virtual
address rather than the physical address. This eliminates the PA->VA
translation for every I/O access. The handle for I/O port access is
still the port number.
o Move inb(), outb(), inw(), outw(), inl(), outl(), and their string
variants from cpufunc.h and define them in bus.h. On ia64 these are
not CPU functions at all. In bus.h they are merely aliases for the
new I/O port access functions defined in bus_machdep.h.
o Handle the ACPI resource bug in nexus_set_resource(). There we can
do it once so that we don't have to worry about it whenever we need
to write to an I/O port that is really a memory mapped address.
The upshot of this change is that the KBI is better defined and that I/O
port access always involves a function call, allowing us to change the
actual implementation without breaking the KBI. For memory mapped I/O the
virtual address is abstracted, so that we can change the VA->PA mapping
in the kernel without causing an KBI breakage. The exception at this time
is for bus_space_map() and bus_space_unmap().
MFC after: 1 week.
This replaces d_mmap() with the d_mmap2() implementation and also
changes the type of offset to vm_ooffset_t.
Purge d_mmap2().
All driver modules will need to be rebuilt since D_VERSION is also
bumped.
Reviewed by: jhb@
MFC after: Not in this lifetime...
Fix some wrong usages.
Note: this does not affect generated binaries as this argument is not used.
PR: 137213
Submitted by: Eygene Ryabinkin (initial version)
MFC after: 1 month
The frequencies are in MHz (i.e. a value of 1000 represents 1GHz). The
frequencies are rounded to the nearest whole MHz.
While here, rename and re-type bus_frequency, processor_frequency and
itc_frequency to bus_freq, cpu_freq and itc_freq and make them static.
As unsigned integers, the hw.freq.cpu sysctl can more easily be made
generic (across all architectures) making porting easier.
MFC after: 3 days
excluded, as it's used by MI code) and mode the sysctl variables from
pcpu_stats to pcpu_md.
Adjust all references accordingly.
While nearby, change the PCPU sysctl tree so that they match the CPU
device sysctl tree -- they are now children of a static node called
"machdep.cpu" and are named only with their cpu ID.
allocating MAXCPU VHPTs up-front. This allows us to max-out MAXCPU
without memory waste -- MAXCPU is now 32 for SMP kernels.
This change also eliminates the VHPT scaling based in the total
memory in the system. It's the workload that determines the best size
of the VHPT. The workload can be affected by the amount of memory,
but not necessarily. For example, there's no performance difference
between VHPT sizes of 256KB, 512KB and 1MB when building the LINT
kernel. This was observed with a system that has 8GB of memory.
By default the kernel will allocate a 1MB VHPT. The user can tune the
system with the "machdep.vhpt.log2size" tunable.
Memory accesses are posted in program order by virtue of the
uncacheable memory attribute.
Since GCC, by default, adds acquire and release semantics to
volatile memory loads and stores, we need to use inline assembly
to guarantee it. With inline assembly, we don't need volatile
pointers anymore.
Itanium does not support semaphore instructions to uncacheable
memory.
adding statistics counters to the PCPU structure. Export the counters
through sysctl by giving each PCPU structure its own sysctl context.
While here, fix cnt.v_intr by not just having it count clock interrupts,
but every interrupt and add more counters for each interrupt source.
the kernel stack at all. The new USB stack simply caused a change
in timing that triggered a firmware bug more often. The addition
of PRINTF_BUFR_SIZE apparently triggered the same firmware bug
even more reliably.
But even with KSTACK_PAGES=5, one instance of the firmware bug
remained: booting with a CD inserted. This problem was run into
by accident after installing Debian and having to boot FreeBSD
to fixup the GPT partitioning (Thanks... not). After bumping
KSTACK_PAGES to 5, it was pretty unbelievable that the stack was
still being too small.
After updating the firmware we could boot with a CD inserted and
KSTACK_PAGES could be lowered back to 4 pages without problems.
Note: It is believed to be a timing related firmware bug, because
the machine check information showed access to the serial console
on one CPU and access to the EHCI HCD on the other CPU. Since
both are devices on the management unit and thus virtualized in
some way, any execution trace that does not include concurrent
access to the BMC from both CPUs is fine.
Note also that it's not understood exactly how increasing the
kernel stack avoided hitting the firmware bug. A change in page
faults does change timing, but it's not known if that's what's
happening here.
In any case: the problem is being monitored. Reverting back to
4 pages for the kernel stack is preferred, because it makes it
easier to switch to 16K pages (double the page size) without
wasting too much memory by not being able to half the number of
pages...
to panic when we have an unexpected TLB fault while interrupt
collection is disabled. Use a token rather than the actual address
of the restart point to avoid the need for the movl instruction.
The token is arbitrary. For the drummers: it's based on a single
paradiddle.
o Move all code into a single file for easier maintenance.
o Use a single global lock to avoid having to handle either
multiple locks or race conditions.
o Make sure to disable the high FP registers after saving
or dropping them.
o use msleep() to wait for the other CPU to save the high
FP registers.
This change fixes the high FP inconsistency panics.
A single global lock typically serializes too much, which may
be noticable when a lot of threads use the high FP registers,
but in that case it's probably better to switch the high FP
context synchronuously. Put differently: cpu_switch() should
switch the high FP registers if the incoming and outgoing
threads both use the high FP registers.
while in kernel mode, and later changing signal mask to block the
signal, was fixed for sigprocmask(2) and ptread_exit(3). The same race
exists for sigreturn(2), setcontext(2) and swapcontext(2) syscalls.
Use kern_sigprocmask() instead of direct manipulation of td_sigmask to
reschedule newly blocked signals, closing the race.
Reviewed by: davidxu
Tested by: pho
MFC after: 1 month
more stack hungry as compared to the old one that my RX2660 gets
a machine check and spontaneously reboots at the time the USB DVD
drive is found and attached to CAM as a mass storage device. This
doesn't happen always, but definitely varies per kernel build.
Likewise when using a 128-byte printf buffer. The additional 128
bytes that printf needs seems to be enough to have the memory stack
and register stack collide and causing a machine check.
Thus: Bump KSTACK_PAGES from 4 to 5.
the memory or D-cache, depending on the semantics of the platform.
vm_sync_icache() is basically a wrapper around pmap_sync_icache(),
that translates the vm_map_t argumument to pmap_t.
o Introduce pmap_sync_icache() to all PMAP implementation. For powerpc
it replaces the pmap_page_executable() function, added to solve
the I-cache problem in uiomove_fromphys().
o In proc_rwmem() call vm_sync_icache() when writing to a page that
has execute permissions. This assures that when breakpoints are
written, the I-cache will be coherent and the process will actually
hit the breakpoint.
o This also fixes the Book-E PMAP implementation that was missing
necessary locking while trying to deal with the I-cache coherency
in pmap_enter() (read: mmu_booke_enter_locked).
The key property of this change is that the I-cache is made coherent
*after* writes have been done. Doing it in the PMAP layer when adding
or changing a mapping means that the I-cache is made coherent *before*
any writes happen. The difference is key when the I-cache prefetches.
by looking at the bases used for non-relocatable executables by gnu ld(1),
and adjusting it slightly.
Discussed with: bz
Reviewed by: kan
Tested by: bz (i386, amd64), bsam (linux)
MFC after: some time
first and the native ia32 compat as middle (before other things).
o(ld)brandinfo as well as third party like linux, kfreebsd, etc.
stays on SI_ORDER_ANY coming last.
The reason for this is only to make sure that even in case we would
overflow the MAX_BRANDS sized array, the native FreeBSD brandinfo
would still be there and the system would be operational.
Reviewed by: kib
MFC after: 1 month
has proven to have a good effect when entering KDB by using a NMI,
but it completely violates all the good rules about interrupts
disabled while holding a spinlock in other occasions. This can be the
cause of deadlocks on events where a normal IPI_STOP is expected.
* Adds an new IPI called IPI_STOP_HARD on all the supported architectures.
This IPI is responsible for sending a stop message among CPUs using a
privileged channel when disponible. In other cases it just does match a
normal IPI_STOP.
Right now the IPI_STOP_HARD functionality uses a NMI on ia32 and amd64
architectures, while on the other has a normal IPI_STOP effect. It is
responsibility of maintainers to eventually implement an hard stop
when necessary and possible.
* Use the new IPI facility in order to implement a new userend SMP kernel
function called stop_cpus_hard(). That is specular to stop_cpu() but
it does use the privileged channel for the stopping facility.
* Let KDB use the newly introduced function stop_cpus_hard() and leave
stop_cpus() for all the other cases
* Disable interrupts on CPU0 when starting the process of APs suspension.
* Style cleanup and comments adding
This patch should fix the reboot/shutdown deadlocks many users are
constantly reporting on mailing lists.
Please don't forget to update your config file with the STOP_NMI
option removal
Reviewed by: jhb
Tested by: pho, bz, rink
Approved by: re (kib)
a device pager (OBJT_DEVICE) object in that it uses fictitious pages to
provide aliases to other memory addresses. The primary difference is that
it uses an sglist(9) to determine the physical addresses for a given offset
into the object instead of invoking the d_mmap() method in a device driver.
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
dependent memory attributes:
Rename vm_cache_mode_t to vm_memattr_t. The new name reflects the
fact that there are machine-dependent memory attributes that have
nothing to do with controlling the cache's behavior.
Introduce vm_object_set_memattr() for setting the default memory
attributes that will be given to an object's pages.
Introduce and use pmap_page_{get,set}_memattr() for getting and
setting a page's machine-dependent memory attributes. Add full
support for these functions on amd64 and i386 and stubs for them on
the other architectures. The function pmap_page_set_memattr() is also
responsible for any other machine-dependent aspects of changing a
page's memory attributes, such as flushing the cache or updating the
direct map. The uses include kmem_alloc_contig(), vm_page_alloc(),
and the device pager:
kmem_alloc_contig() can now be used to allocate kernel memory with
non-default memory attributes on amd64 and i386.
vm_page_alloc() and the device pager will set the memory attributes
for the real or fictitious page according to the object's default
memory attributes.
Update the various pmap functions on amd64 and i386 that map pages to
incorporate each page's memory attributes in the mapping.
Notes: (1) Inherent to this design are safety features that prevent
the specification of inconsistent memory attributes by different
mappings on amd64 and i386. In addition, the device pager provides a
warning when a device driver creates a fictitious page with memory
attributes that are inconsistent with the real page that the
fictitious page is an alias for. (2) Storing the machine-dependent
memory attributes for amd64 and i386 as a dedicated "int" in "struct
md_page" represents a compromise between space efficiency and the ease
of MFCing these changes to RELENG_7.
In collaboration with: jhb
Approved by: re (kib)
called to prefault pages. This is an obvious place for making
sure the I-cache is coherent. It was missing though. As such,
execution over NFS and ZFS file systems was failing. NFS was
fixed the wrong way (by flushing the D-cache as part of the
NFS code) in a previous commit. ZFS problems were encountered
after that and indicated that something else was wrong...
Approved by: re (kib)
o add to platforms where it was missing (arm, i386, powerpc, sparc64, sun4v)
o define as "1" on amd64 and i386 where there is no restriction
o make the type returned consistent with ALIGN
o remove _ALIGNED_POINTER
o make associated comments consistent
Reviewed by: bde, imp, marcel
Approved by: re (kensmith)
More applications (including Firefox) seem to depend on this nowadays,
so not having this enabled by default is a bad idea.
Proposed by: miwi
Patch by: Florian Smeets <flo kasimir com>
Approved by: re (kib)
required by video card drivers. Specifically, this change introduces
vm_cache_mode_t with an appropriate VM_CACHE_DEFAULT definition on all
architectures. In addition, this changes adds a vm_cache_mode_t parameter
to kmem_alloc_contig() and vm_phys_alloc_contig(). These will be the
interfaces for allocating mapped kernel memory and physical memory,
respectively, with non-default cache modes.
In collaboration with: jhb
- Modules and kernel code alike may use DPCPU_DEFINE(),
DPCPU_GET(), DPCPU_SET(), etc. akin to the statically defined
PCPU_*. Requires only one extra instruction more than PCPU_* and is
virtually the same as __thread for builtin and much faster for shared
objects. DPCPU variables can be initialized when defined.
- Modules are supported by relocating the module's per-cpu linker set
over space reserved in the kernel. Modules may fail to load if there
is insufficient space available.
- Track space available for modules with a one-off extent allocator.
Free may block for memory to allocate space for an extent.
Reviewed by: jhb, rwatson, kan, sam, grehan, marius, marcel, stas
not in cpu_exit(). The latter is called after td_md.md_highfp_mtx
has been destroyed, which results in a race condition when another
thread wants to use the high FP registers on the CPU that still has
the high FP registers in question.
goal of shipping 8.0 with MAC support in the default kernel. No policies
will be compiled in or enabled by default, but it will now be possible to
load them at boot or runtime without a kernel recompile.
While the framework is not believed to impose measurable overhead when no
policies are loaded (a result of optimization over the past few months in
HEAD), we'll continue to benchmark and optimize as the release approaches.
Please keep an eye out for performance or functionality regressions that
could be a result of this change.
Approved by: re (kensmith)
Obtained from: TrustedBSD Project
The system hostname is now stored in prison0, and the global variable
"hostname" has been removed, as has the hostname_mtx mutex. Jails may
have their own host information, or they may inherit it from the
parent/system. The proper way to read the hostname is via
getcredhostname(), which will copy either the hostname associated with
the passed cred, or the system hostname if you pass NULL. The system
hostname can still be accessed directly (and without locking) at
prison0.pr_host, but that should be avoided where possible.
The "similar information" referred to is domainname, hostid, and
hostuuid, which have also become prison parameters and had their
associated global variables removed.
Approved by: bz (mentor)
I don't want people to override the mutex when allocating a TTY. It has
to be there, to keep drivers like syscons happy. So I'm creating a
tty_alloc_mutex() which can be used in those cases. tty_alloc_mutex()
should eventually be removed.
The advantage of this approach, is that we can just remove a function,
without breaking the regular API in the future.
Once AP's are launched, their MCA state information is stored and later obtainable using a sysctl. Since the size of the MCA state information is unknown, it will be malloc'ed as needed. However, when 'ia64_ap_startup' runs, it's not yet safe to call malloc and this may cause 'panic: blockable sleep lock (sleep mutex) 8192 @ /usr/src/sys/vm/uma_core.c'. This commit avoids this issue by scheduling a separate kthread to obtain this information, which immediately terminates afterwards.
possible future I-cache coherency operation can succeed. On ARM
for example the L1 cache can be (is) virtually mapped, which
means that any I/O that uses temporary mappings will not see the
I-cache made coherent. On ia64 a similar behaviour has been
observed. By flushing the D-cache, execution of binaries backed
by md(4) and/or NFS work reliably.
For Book-E (powerpc), execution over NFS exhibits SIGILL once in
a while as well, though cpu_flush_dcache() hasn't been implemented
yet.
Doing an explicit D-cache flush as part of the non-DMA based I/O
read operation eliminates the need to do it as part of the
I-cache coherency operation itself and as such avoids pessimizing
the DMA-based I/O read operations for which D-cache are already
flushed/invalidated. It also allows future optimizations whereby
the bcopy() followed by the D-cache flush can be integrated in a
single operation, which could be implemented using on-chips DMA
engines, by-passing the D-cache altogether.
a fair number of static data structures, making this an unlikely
option to try to change without also changing source code. [1]
Change default cache line size on ia64, sparc64, and sun4v to 128
bytes, as this was what rtld-elf was already using on those
platforms. [2]
Suggested by: bde [1], jhb [2]
MFC after: 2 weeks
CACHE_LINE_SIZE constant. These constants are intended to
over-estimate the cache line size, and be used at compile-time
when a run-time tuning alternative isn't appropriate or
available.
Defaults for all architectures are 64 bytes, except powerpc
where it is 128 bytes (used on G5 systems).
MFC after: 2 weeks
Discussed on: arch@
a tag that has BUS_DMA_KEEP_PG_OFFSET set. Otherwise the page could be
reused with a non-zero offset by a tag that doesn't have
BUS_DMA_KEEP_PG_OFFSET leading to data corruption.
Sleuthing by: avg
Reviewed by: scottl
1) Move the new field (brand_note) to the end of the Brandinfo structure.
2) Add a new flag BI_BRAND_NOTE that indicates that the brand_note pointer
is valid.
3) Use the brand_note field if the flag BI_BRAND_NOTE is set and as old
modules won't have the flag set, so the new field brand_note would be
ignored.
Suggested by: jhb
Reviewed by: jhb
Approved by: kib (mentor)
MFC after: 6 days
to the full path of the image that is being executed.
Increase AT_COUNT.
Remove no longer true comment about types used in Linux ELF binaries,
listed types contain FreeBSD-specific entries.
Reviewed by: kan
".note.ABI-tag" section.
The search order of a brand is changed, now first of all the
".note.ABI-tag" is looked through.
Move code which fetch osreldate for ELF binary to check_note() handler.
PR: 118473
Approved by: kib (mentor)
offset. This is needed for the ehci hardware buffer rings that assume
this behavior.
This is an interim solution, and a more general one is being worked
on. This solution doesn't break anything that doesn't ask for it
directly. The mbuf and uio variants with this flag likely don't work
and haven't been tested.
Universe builds with these changes. I don't have a huge-memory
machine to test these changes with, but will be happy to work with
folks that do and hps if this changes turns out not to be sufficient.
Submitted by: alfred@ from Hans Peter Selasky's original
while holding a spin mutex. Instead, it now shoves the machine check
records onto a queue that is later drained to add sysctl nodes for each
record. While a routine to drain the queue is present, it is not currently
called.
Reviewed by: marcel
Sgtty is a programming interface that has been replaced by termios over
the years. In June we already removed <sgtty.h>, which exposes the
ioctl()'s that are implemented by this interface. The importance of this
flag is overrated right now.
of the ABI of the currently executing image. Change some places to test
the flags instead of explicit comparing with address of known sysentvec
structures to determine ABI features.
Discussed with: dchagin, imp, jhb, peter
and ifnet functions
- add memory barriers to <machine/atomic.h>
- update drivers to only conditionally define their own
- add lockless producer / consumer ring buffer
- remove ring buffer implementation from cxgb and update its callers
- add if_transmit(struct ifnet *ifp, struct mbuf *m) to ifnet to
allow drivers to efficiently manage multiple hardware queues
(i.e. not serialize all packets through one ifq)
- expose if_qflush to allow drivers to flush any driver managed queues
This work was supported by Bitgravity Inc. and Chelsio Inc.
all to date and the latter also is only used in ia64 and powerpc
code which no longer serves a real purpose after bring-up and just
can be removed as well. Note that architectures like sun4u also
provide no means of implementing IPI'ing a CPU itself natively
in the first place.
Suggested by: jhb
Reviewed by: arch, grehan, jhb
After I removed all the unit2minor()/minor2unit() calls from the kernel
yesterday, I realised calling minor() everywhere is quite confusing.
Character devices now only have the ability to store a unit number, not
a minor number. Remove the confusion by using dev2unit() everywhere.
This commit could also be considered as a bug fix. A lot of drivers call
minor(), while they should actually be calling dev2unit(). In -CURRENT
this isn't a problem, but it turns out we never had any problem reports
related to that issue in the past. I suspect not many people connect
more than 256 pieces of the same hardware.
Reviewed by: kib
to the C99 style. At least, it is easier to read sysent definitions
that way, and search for the actual instances of sigcode etc.
Explicitely initialize sysentvec.sv_maxssiz that was missed in most
sysvecs.
No objection from: jhb
MFC after: 1 month
and bcmp are not the same thing. 'man bcmp' states that the return is
"non-zero" if the two byte strings are not identical. Where as,
'man memcmp' states that the return is the "difference between the
first two differing bytes (treated as unsigned char values" if the
two byte strings are not identical.
So provide a proper memcmp(9), but it is a C implementation not a tuned
assembly implementation. Therefore bcmp(9) should be preferred over memcmp(9).
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
Use the new inline function in ia64_invalidate_icache().
While there, add proper synchronization so that we know
the fc.i instructions have taken effect when we return.
Now that st_rdev is being automatically generated by the kernel, there
is no need to define static major/minor numbers for the iodev and
memdev. We still need the minor numbers for the memdev, however, to
distinguish between /dev/mem and /dev/kmem.
Approved by: philip (mentor)
inlining resulted in constant propagation to the extend that cmpval
was known to the compiler to be URWLOCK_WRITE_OWNER (= 0x80000000U).
Unfortunately, instead of zero-extending the unsigned constant, it
was sign-extended. As such, the cmpxchg instruction was comparing
0x0000000080000000LU to 0xffffffff80000000LU and obviously didn't
perform the exchange.
But, since the value returned by cmpxhg equalled cmpval (when zero-
extended), the _thr_rtld_lock_release() function thought the exchange
did happen and as such returned as if having released the lock. This
was not the case. Subsequent locking requests found rw_state non-zero
and the thread in question entered the kernel and block indefinitely.
The work-around is to zero-extend by casting to uint64_t.