When we truncate the msgbuf size because the last chunk is too small,
correctly terminate the phys_avail[] array - the VM system tests
the *end* for zero, not the start. This leads the VM startup to
attempt to recreate a duplicate set of pages for all physical memory.
XXX the msgbuf handling is suspiciously different on i386 vs
alpha/ia64...
* Implement a fairly simplistic parser for unwinding stack frames.
* Use unwind records for DDB's 'trace' command. Also add support for
tracing past exceptions to the context which generated the exception.
The stack unwind code requires a toolchain based on binutils-2.11.2 or
later and gcc-3.0.1 or later.
starts at offset 8; not 6. Hence the structure is 12 bytes and
not 10 bytes. Adjust the definition so that the ProcessorEnabled
flag is moved from bit 15 to bit 31 in the Flags field.
The definition now matches ACPI 2.0 Errata 1.5.
do it as a side-effect of probing for MP hardware. This allows
us to scan for local SAPICs early (especially before MBUF
initialization).
o Fix the Local SAPIC structure so that matches the Local SAPIC
table entry. Now that the Local SAPIC info is the same as the
Local APIC info, stop dumping the Local APIC entries.
o For every Local SAPIC entry in the MADT that's not disabled,
let the SMP code know about it. They represent actual CPUs.
o Register the OS_BOOT_RENDEZ entry point and provide a (bogus)
implementation for the entry point.
o Provide a mapping for internal IPI numbers to ExtINT vectors.
o In a MP system, announce the CPUs and start them by sending
IPI_AP_WAKEUP to each of them. Not that it makes a difference
at this time :-)
o Miscellaneous style fixes and other adjustments.
This emulates APM device node interface APIs (mainly ioctl) and
provides APM services for the applications. The goal is to support
most of APM applications without any changes.
Implemented ioctls in this commit are:
- APMIO_SUSPEND (mapped ACPI S3 as default but changable by sysctl)
- APMIO_STANDBY (mapped ACPI S1 as default but changable by sysctl)
- APMIO_GETINFO and APMIO_GETINFO_OLD
- APMIO_GETPWSTATUS
With above, many APM applications which get batteries, ac-line
info. and transition the system into suspend/standby mode (such as
wmapm, xbatt) should work with ACPI enabled kernel (if ACPI works well :-)
Reviewed by: arch@, audit@ and some guys
userland. The per thread ucred reference is immutable and thus needs no
locks to be read. However, until all the proc locking associated with
writes to p_ucred are completed, it is still not safe to use the per-thread
reference.
Tested on: x86 (SMP), alpha, sparc64
pcb_onfault is not set) or arrange to restart at the location in
pcb_onfault.
This ought to help the stability of a system under moderate load. It
certainly stops DDB from hanging the kernel when it tries to access a
non-present page.
{set,fill}_{,fp,db}regs() fixup:
- Add dummy {set,fill}_dbregs() on architectures that don't have them.
- KSEfy the powerpc versions (struct proc -> struct thread).
- Some architectures had the prototypes in md_var.h, some in reg.h, and
some in both; for consistency, move them to reg.h on all platforms.
These functions aren't really MD (the implementation is MD, but the interface
is MI), so they should move to an MI header, but I haven't figured out which
one yet.
Run-tested on i386, build-tested on Alpha, untested on other platforms.
- Add dummy {set,fill}_dbregs() on architectures that don't have them.
- KSEfy the powerpc versions (struct proc -> struct thread).
- Some architectures had the prototypes in md_var.h, some in reg.h, and
some in both; for consistency, move them to reg.h on all platforms.
These functions aren't really MD (the implementation is MD, but the interface
is MI), so they should move to an MI header, but I haven't figured out which
{set,fill}_{,fp,db}regs() fixup:
- Add dummy {set,fill}_dbregs() on architectures that don't have them.
- KSEfy the powerpc versions (struct proc -> struct thread).
- Some architectures had the prototypes in md_var.h, some in reg.h, and
some in both; for consistency, move them to reg.h on all platforms.
These functions aren't really MD (the implementation is MD, but the interface
is MI), so they should move to an MI header, but I haven't figured out which
one yet.
Run-tested on i386, build-tested on Alpha, untested on other platforms.
structure. This makes it possible to pre-allocate PTEs for the kernel,
which is necessary for a reliable implementation of pmap_kenter(). This
also avoids wasting space (about 48 bytes per page) for kernel mappings
and user mappings of memory-mapped devices.
This also fixes a bug with the previous version where the implementation
required the pv_entry structure to be physically contiguous but did not
enforce this (the structure size was not a power of two). This meant
that the pv_entry free list was quickly corrupted as soon as the system
was even mildly loaded.
the existence of the __gnuc_va_list type[*] because our compiler is GCC.
[*] __gnuc_va_list is defined in the GCC ginclude/stdarg.h replacement
headerwhich we don't use.
- Only release Giant in trap() if we locked it, otherwise we could release
Giant in a kernel trap if we didn't get it for a page fault and the
previous frame had grabbed the lock.
- Only get Giant for !MP safe syscalls.
be set. We need to check isr.w before isr.r so that we can correctly
handle a cmpxchg to a copy-on-write page.
This fixes the hang-after-fork problem for dynamically linked programs.
C calling conventions. This allows crt1.c to be written nearly without
any inline assembler.
* Initialise cpu_model[] so that the hw.model sysctl works properly.
Until now, the ptrace syscall was implemented as a wrapper that called
various functions in procfs depending on which ptrace operation was
requested. Most of these functions were themselves wrappers around
procfs_{read,write}_{,db,fp}regs(), with only some extra error checks,
which weren't necessary in the ptrace case anyway.
This commit moves procfs_rwmem() from procfs_mem.c into sys_process.c
(renaming it to proc_rwmem() in the process), and implements ptrace()
directly in terms of procfs_{read,write}_{,db,fp}regs() instead of
having it fake up a struct uio and then call procfs_do{,db,fp}regs().
It also moves the prototypes for procfs_{read,write}_{,db,fp}regs()
and proc_rwmem() from proc.h to ptrace.h, and marks all procfs files
except procfs_machdep.c as "optional procfs" instead of "standard".
* Don't get confused when memory regions don't lie on page boundaries -
remember our page size is typically larger than the firmware's page size.
* Add a function ia64_running_in_simulator() which is intended to detect
whether the kernel is running in SKI or on real hardware.
will be private to each CPU.
- Re-style(9) the globaldata structures. There really needs to be a MI
struct pcpu that has a MD struct mdpcpu member at some point.
* Use the bootinfo's memory map if present instead of hard-coding SKI's
memory map.
* Record the location of the I/O Port Space if present in the memory map.
to locore to process the @fptr relocations in the dynamic executable.
* Don't initialise the timer until *after* we install the timecounter to
avoid a race between timecounter initialisation and hardclock.
* Tidy up bootinfo somewhat including adding sanity checks for when the
kernel is loaded without a recognisable bootinfo.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha