controller. Some testing has already been done, but its still greenish.
RAID's has to be setup via the BIOS on the SuperTrak, but all RAID
types are supported by the driver. The SuperTrak rebuilds failed arrays
on the fly and supports spare disks etc etc...
Add "device pst" to your config file to use.
As usual bugsreports, suggestions etc are welcome...
Development sponsored by: Advanis
Hardware donated by: Promise Inc.
controller. Some testing has already been done, but its still greenish.
RAID's has to be setup via the BIOS on the SuperTrak, but all RAID
types are supported by the driver. The SuperTrak rebuilds failed arrays
on the fly and supports spare disks etc etc...
Add "device pst" to your config file to use.
As usual bugsreports, suggestions etc are welcome...
Development sponsored by: Advanis
Hardware donated by: Promise Inc.
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When fragmenting an IP datagram, invoke an appropriate MAC entry
point so that MAC labels may be copied (...) to the individual
IP fragment mbufs by MAC policies.
When IP options are inserted into an IP datagram when leaving a
host, preserve the label if we need to reallocate the mbuf for
alignment or size reasons.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the code managing IP fragment reassembly queues (struct ipq)
to invoke appropriate MAC entry points to maintain a MAC label on
each queue. Permit MAC policies to associate information with a queue
based on the mbuf that caused it to be created, update that information
based on further mbufs accepted by the queue, influence the decision
making process by which mbufs are accepted to the queue, and set the
label of the mbuf holding the reassembled datagram following reassembly
completetion.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When generating an IGMP message, invoke a MAC entry point to permit
the MAC framework to label its mbuf appropriately for the target
interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When generating an ARP query, invoke a MAC entry point to permit the
MAC framework to label its mbuf appropriately for the interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the MAC framework to label mbuf created using divert sockets.
These labels may later be used for access control on delivery to
another socket, or to an interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI LAbs
kernel access control.
Instrument connect(), listen(), and bind() system calls to invoke
MAC framework entry points to permit policies to authorize these
requests. This can be useful for policies that want to limit
the activity of processes involving particular types of IPC and
network activity.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label mbufs received via kernel tunnel device interfaces by invoking
appropriate MAC framework entry points.
Perform access control checks on out-going mbufs delivered via tunnel
interfaces by invoking appropriate MAC entry points:
NOTE: Currently the label for a tunnel interface is not derived from
the label of the process that opened the tunnel interface. It
probably should be.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label mbufs received via ethernet-based interfaces by invoking
appropriate MAC framework entry points.
Perform access control checks on out-going mbufs delivered via
ethernet-based interfaces by invoking appropriate MAC entry
points.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the interface management code so that MAC labels are
properly maintained on network interfaces (struct ifnet). In
particular, invoke entry points when interfaces are created and
removed. MAC policies may initialized the label interface based
on a variety of factors, including the interface name.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When decompressing data from one mbuf into another mbuf, preserve the
mbuf label by copying it to the new mbuf.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke a MAC framework entry point to authorize reception of an
incoming mbuf by the BPF descriptor, permitting MAC policies to
limit the visibility of packets delivered to particular BPF
descriptors.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument BPF so that MAC labels are properly maintained on BPF
descriptors. MAC framework entry points are invoked at BPF
instantiation and allocation, permitting the MAC framework to
derive the BPF descriptor label from the credential authorizing
the device open. Also enter the MAC framework to label mbufs
created using the BPF device.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument UFS to support per-inode MAC labels. In particular,
invoke MAC framework entry points for generically supporting the
backing of MAC labels into extended attributes. This ends up
introducing new vnode operation vector entries point at the MAC
framework entry points, as well as some explicit entry point
invocations for file and directory creation events so that the
MAC framework can push labels to disk before the directory names
become persistent (this will work better once EAs in UFS2 are
hooked into soft updates). The generic EA MAC entry points
support executing with the file system in either single label
or multilabel operation, and will fall back to the mount label
if multilabel is not specified at mount-time.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument devfs to support per-dirent MAC labels. In particular,
invoke MAC framework when devfs directory entries are instantiated
due to make_dev() and related calls, and invoke the MAC framework
when vnodes are instantiated from these directory entries. Implement
vop_setlabel() for devfs, which pushes the label update into the
devfs directory entry for semi-persistant store. This permits the MAC
framework to assign labels to devices and directories as they are
instantiated, and export access control information via devfs vnodes.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
debugging levels to off by default. Now that debug levels can be
tweaked by sysctl we don't need to go through hoops to get the
different usb parts to produce debug data.
sysctl purposes. Also add two fields to struct vnode, v_cachedfs and
v_cachedid, which hold the vnode's device and file id and are filled in
by vn_open_cred() and vn_stat().
Sponsored by: DARPA, NAI Labs