dependencies. A 'struct pmc_classdep' structure describes operations
on PMCs; 'struct pmc_mdep' contains one or more 'struct pmc_classdep'
structures depending on the CPU in question.
Inside PMC class dependent code, row indices are relative to the
PMCs supported by the PMC class; MI code in "hwpmc_mod.c" translates
global row indices before invoking class dependent operations.
- Augment the OP_GETCPUINFO request with the number of PMCs present
in a PMC class.
- Move code common to Intel CPUs to file "hwpmc_intel.c".
- Move TSC handling to file "hwpmc_tsc.c".
found in Soekris hardware, for instance). The hardware supports acceleration
of AES-128-CBC accessible through crypto(4) and supplies entropy to random(4).
TODO:
o Implement rndtest(4) support
o Performance enhancements
Submitted by: Patrick Lamaizière <patfbsd -at- davenulle.org>
Reviewed by: jhb, sam
MFC after: 1 week
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
current@ and stable@ for the locking patches. The driver can always be
revived if someone tests it.
This driver also sleeps in its if_init routine, so it likely doesn't really
work at all anyway in modern releases.
parts relied on the now removed NET_NEEDS_GIANT.
Most of I4B has been disconnected from the build
since July 2007 in HEAD/RELENG_7.
This is what was removed:
- configuration in /etc/isdn
- examples
- man pages
- kernel configuration
- sys/i4b (drivers, layers, include files)
- user space tools
- i4b support from ppp
- further documentation
Discussed with: rwatson, re
Make clock_if.m and subr_rtc.c standard on i386
Add hints for "atrtc" driver, for non-PnP, non-ACPI systems.
NB: Make sure to install GENERIC.hints into /boot/device.hints in these!
Nuke MD inittodr(), resettodr() functions.
Don't attach to PHP0B00 in the "attimer" dummy driver any more, and remove
comments that no longer apply for that reason.
Add new "atrtc" device driver, which handles IBM PC AT Real Time
Clock compatible devices using subr_rtc and clock_if.
This driver is not entirely clean: other code still fondles the
hardware to get a statclock interrupt on non-ACPI timer systems.
Wrap some overly long lines.
After it has settled in -current, this will be ported to amd64.
Technically this is MFC'able, but I fail to see a good reason.
cards:
o RocketRAID 172x series
o RocketRAID 174x series
o RocketRAID 2210
o RocketRAID 222x series
o RocketRAID 2240
o RocketRAID 230x series
o RocketRAID 231x series
o RocketRAID 232x series
o RocketRAID 2340
o RocketRAID 2522
Many thanks to Highpoint for their continued support of FreeBSD.
Submitted by: Highpoint
- Introduce per-architecture stack_machdep.c to hold stack_save(9).
- Introduce per-architecture machine/stack.h to capture any common
definitions required between db_trace.c and stack_machdep.c.
- Add new kernel option "options STACK"; we will build in stack(9) if it is
defined, or also if "options DDB" is defined to provide compatibility
with existing users of stack(9).
Add new stack_save_td(9) function, which allows the capture of a stacktrace
of another thread rather than the current thread, which the existing
stack_save(9) was limited to. It requires that the thread be neither
swapped out nor running, which is the responsibility of the consumer to
enforce.
Update stack(9) man page.
Build tested: amd64, arm, i386, ia64, powerpc, sparc64, sun4v
Runtime tested: amd64 (rwatson), arm (cognet), i386 (rwatson)
bumped to 800004 to note the change though userland apps should not be
affected since they use <sys/agpio.h> rather than the headers in
sys/dev/agp.
Discussed with: anholt
Repocopy by: simon
This includes:
o mtree (for legal/intel_wpi)
o manpage for i386/amd64 archs
o module for i386/amd64 archs
o NOTES for i386/amd64 archs
Approved by: mlaier (comentor)
refactored it to be a generic device.
Instead of being part of the standard kernel, there is now a 'nvram' device
for i386/amd64. It is in DEFAULTS like io and mem, and can be turned off
with 'nodevice nvram'. This matches the previous behavior when it was
first committed.
and newer CPUs (including Core 2 and Core / Core 2 based Xeons). The
driver attaches to each cpu device and creates a sysctl node in that
device's sysctl context (dev.cpu.N.temperature). When invoked, the
handler binds to the appropriate CPU to ensure a correct reading.
Submitted by: Rui Paulo <rpaulo@fnop.net>
Sponsored by: Google Summer of Code 2007
Tested by: des, marcus, Constantine A. Murenin, Ian FREISLICH
Approved by: re (kensmith)
MFC after: 3 weeks
making the relevant files standard. This avoids duplication and
makes it easier to override/disable unwanted schemes. Since ARM
doesn't have a DEFAULTS configuration file, leave the source
files for the BSD and MBR partitioning schemes in files.arm for
now.
Implement all futex atomic operations in assembler to not depend on the
fuword() that does not allow to distinguish between -1 and failure return.
Correctly return 0 from atomic operations on success.
In collaboration with: rdivacky
Tested by: Scot Hetzel <swhetzel gmail com>, Milos Vyletel <mvyletel mzm cz>
Sponsored by: Google SoC 2007
aches as a read-only file. In a number of cases this has led to
compiles failing- usually due to some strange NFS drift which thinks
that the opt_ah.h in the compile directory is out of date wrt the
source it is copied from. When the copy is executed again, it fails
because the target is read-only. Oops. Modify the compile hooks
avoid this.
Discussed with a while back with: Sam Leffler
- Add a new apic_alloc_vectors() method to the local APIC support code
to allocate N contiguous IDT vectors (aligned on a M >= N boundary).
This function is used to allocate IDT vectors for a group of MSI
messages.
- Add MSI and MSI-X PICs. The PIC code here provides methods to manage
edge-triggered MSI messages as x86 interrupt sources. In addition to
the PIC methods, msi.c also includes methods to allocate and release
MSI and MSI-X messages. For x86, we allow for up to 128 different
MSI IRQs starting at IRQ 256 (IRQs 0-15 are reserved for ISA IRQs,
16-254 for APIC PCI IRQs, and IRQ 255 is reserved).
- Add pcib_(alloc|release)_msi[x]() methods to the MD x86 PCI bridge
drivers to bubble the request up to the nexus driver.
- Add pcib_(alloc|release)_msi[x]() methods to the x86 nexus drivers that
ask the MSI PIC code to allocate resources and IDT vectors.
MFC after: 2 months
dynamic nature (if no native aio code is available, the linux part
returns ENOSYS because of missing requisites) should be solved differently
than it is.
All this will be done in P4.
Not included in this commit is a backout of the changes to the native aio
code (removing static in some places). Those changes (and some more) will
also be needed when the reworked linux aio stuff will reenter the tree.
Requested by: rwatson
Discussed with: rwatson
Implement the linux_io_* syscalls (AIO). They are only enabled if the native
AIO code is available (either compiled in to the kernel or as a module) at
the time the functions are used. If the AIO stuff is not available there
will be a ENOSYS.
From the submitter:
---snip---
DESIGN NOTES:
1. Linux permits a process to own multiple AIO queues (distinguished by
"context"), but FreeBSD creates only one single AIO queue per process.
My code maintains a request queue (STAILQ of queue(3)) per "context",
and throws all AIO requests of all contexts owned by a process into
the single FreeBSD per-process AIO queue.
When the process calls io_destroy(2), io_getevents(2), io_submit(2) and
io_cancel(2), my code can pick out requests owned by the specified context
from the single FreeBSD per-process AIO queue according to the per-context
request queues maintained by my code.
2. The request queue maintained by my code stores contrast information between
Linux IO control blocks (struct linux_iocb) and FreeBSD IO control blocks
(struct aiocb). FreeBSD IO control block actually exists in userland memory
space, required by FreeBSD native aio_XXXXXX(2).
3. It is quite troubling that the function io_getevents() of libaio-0.3.105
needs to use Linux-specific "struct aio_ring", which is a partial mirror
of context in user space. I would rather take the address of context in
kernel as the context ID, but the io_getevents() of libaio forces me to
take the address of the "ring" in user space as the context ID.
To my surprise, one comment line in the file "io_getevents.c" of
libaio-0.3.105 reads:
Ben will hate me for this
REFERENCE:
1. Linux kernel source code: http://www.kernel.org/pub/linux/kernel/v2.6/
(include/linux/aio_abi.h, fs/aio.c)
2. Linux manual pages: http://www.kernel.org/pub/linux/docs/manpages/
(io_setup(2), io_destroy(2), io_getevents(2), io_submit(2), io_cancel(2))
3. Linux Scalability Effort: http://lse.sourceforge.net/io/aio.html
The design notes: http://lse.sourceforge.net/io/aionotes.txt
4. The package libaio, both source and binary:
http://rpmfind.net/linux/rpm2html/search.php?query=libaio
Simple transparent interface to Linux AIO system calls.
5. Libaio-oracle: http://oss.oracle.com/projects/libaio-oracle/
POSIX AIO implementation based on Linux AIO system calls (depending on
libaio).
---snip---
Submitted by: Li, Xiao <intron@intron.ac>
- Split out the communication protocols into their own files and use
a couple of function pointers in the softc that the commuication
protocols setup in their own attach routine.
- Add support for the SSIF interface (talking to IPMI over SMBus).
- Add an ACPI attachment.
- Add a PCI attachment that attaches to devices with the IPMI interface
subclass.
- Split the ISA attachment out into its own file: ipmi_isa.c.
- Change the code to probe the SMBIOS table for an IPMI entry to just use
pmap_mapbios() to map the table in rather than trying to setup a fake
resource on an isa device and then activating the resource to map in the
table.
- Make bus attachments leaner by adding attach functions for each
communication interface (ipmi_kcs_attach(), ipmi_smic_attach(), etc.)
that setup per-interface data.
- Formalize the model used by the driver to handle requests by adding an
explicit struct ipmi_request object that holds the state of a given
request and reply for the entire lifetime of the request. By bundling
the request into an object, it is easier to add retry logic to the various
communication backends (as well as eventually support BT mode which uses
a slightly different message format than KCS, SMIC, and SSIF).
- Add a per-softc lock and remove D_NEEDGIANT as the driver is now MPSAFE.
- Add 32-bit compatibility ioctl shims so you can use a 32-bit ipmitool
on FreeBSD/amd64.
- Add ipmi(4) to i386 and amd64 NOTES.
Submitted by: ambrisko (large portions of 2 and 3)
Sponsored by: IronPort Systems, Yahoo!
MFC after: 6 days
- TLS - complete
- pid/tid mangling - complete
- thread area - complete
- futexes - complete with issues
- clone() extension - complete with some possible minor issues
- mq*/timer*/clock* stuff - complete but untested and the mq* stuff is
disabled when not build as part of the kernel with native FreeBSD mq*
support (module support for this will come later)
Tested with:
- linux-firefox - works, tested
- linux-opera - works, tested
- linux-realplay - doesnt work, issue with futexes
- linux-skype - doesnt work, issue with futexes
- linux-rt2-demo - works, tested
- linux-acroread - doesnt work, unknown reason (coredump) and sometimes
issue with futexes
- various unix utilities in linux-base-gentoo3 and linux-base-fc4:
everything tried worked
On amd64 not everything is supported like on i386, the catchup is planned for
later when the remaining bugs in the new functions are fixed.
To test this new stuff, you have to run
sysctl compat.linux.osrelease=2.6.16
to switch back use
sysctl compat.linux.osrelease=2.4.2
Don't switch while running a linux program, strange things may or may not
happen.
Sponsored by: Google SoC 2006
Submitted by: rdivacky
Some suggestions/help by: jhb, kib, manu@NetBSD.org, netchild
and pc98 MD files. Remove nodevice and nooption lines specific
to sio(4) from ia64, powerpc and sparc64 NOTES. There were no
such lines for arm yet.
sio(4) is usable on less than half the platforms, not counting
a future mips platform. Its presence in MI files is therefore
increasingly becoming a burden.
new VIA CPUs.
For older CPUs HMAC/SHA1 and HMAC/SHA256 (and others) will still be done
in software.
Move symmetric cryptography (currently only AES-CBC 128/192/256) to
padlock_cipher.c file. Move HMAC cryptography to padlock_hash.c file.
Hardware from: Centaur Technologies
This driver was ported from OpenBSD by Shigeaki Tagashira
<shigeaki@se.hiroshima-u.ac.jp> and posted at
http://www.se.hiroshima-u.ac.jp/~shigeaki/software/freebsd-nfe.html
It was additionally cleaned up by me.
It is still a work-in-progress and thus is purposefully not in GENERIC.
And it conflicts with nve(4), so only one should be loaded.
lnc(4) on PC98 and i386. The ISA front-end supports the same non-PNP
network cards as lnc(4) did and additionally a couple of PNP ones.
Like lnc(4), the C-bus front-end of le(4) only supports C-NET(98)S
and is untested due to lack of such hardware, but given that's it's
based on the respective lnc(4) and not too different from the ISA
front-end it should be highly likely to work.
- Remove the descriptions of le(4), which where converted from lnc(4),
from sys/i386/conf/NOTES and sys/pc98/conf/NOTES as there's a common
one in sys/conf/NOTES.
the linux module, since it is not cross-platform
- move linprocfs from "files" and "options" to architecture specific files,
since it only makes sense to build this for those architectures, where we
also have a linuxolator
- disable the build of the linuxolator on our tier-2 architecture "Alpha":
* we don't have a linux_base port which supports Alpha and at the
same time is not outdated/obsoleted upstream/in a good condition/
currently working
* the upcomming new default linux base port is based upon Fedora
Core 3 (security support via http://www.fedoralegacy.org), which
isn't available for Alpha (like the current default linux base
port which is based upon Red Hat 8)
* nobody answered my request for testing it ~1 month ago on
current@ and alpha@ (it doesn't surprises me, see above)
* a SoC student wouldn't have to waste time on something which
nobody is willing to test
This does not remove the alpha specific MD files of the linuxolator yet.
Discussed on: arch (mostly silence)
Spiritual support by: scottl
This driver was generously developed and donated by Highpoint.
It is enabled for i386 only at the moment. I will enable it for amd64
shortly.
Obtained from: HighPoint Technologies, Inc.
end for isa(4).
o Add a seperate bus frontend for acpi(4) and allow ISA DMA for
it when ISA is configured in the kernel. This allows acpi(4)
attachments in non-ISA configurations, as is possible for ia64.
o Add a seperate bus frontend for pci(4) and detect known single
port parallel cards.
o Merge PC98 specific changes under pc98/cbus into the MI driver.
The changes are minor enough for conditional compilation and
in this form invites better abstraction.
o Have ppc(4) usabled on all platforms, now that ISA specifics
are untangled enough.
Major differences:
* since there is no direct map region, there is no custom uma memory
allocator to modify to include its pages in the dumps.
* Various data entries are reduced from 64 bit to 32 bit to match the
native size.
dump_add_page() and dump_drop_page() are still present in case one wants to
arrange for arbitary pages to be dumped. This is of marginal use though
because libkvm+kgdb cannot address physical memory that isn't mapped into
kvm.
enabled by default in NETSMB and smbfs.ko.
With the most of modern SMB providers requiring encryption by
default, there is little sense left in keeping the crypto part
of NETSMB optional at the build time.
This will also return smbfs.ko to its former properties users
are rather accustomed to.
Discussed with: freebsd-stable, re (scottl)
Not objected by: bp, tjr (silence)
MFC after: 5 days
Use the following kernel configuration option to enable:
options BPF_JITTER
If you want to use bpf_filter() instead (e. g., debugging), do:
sysctl net.bpf.jitter.enable=0
to turn it off.
Currently BIOCSETWF and bpf_mtap2() are unsupported, and bpf_mtap() is
partially supported because 1) no need, 2) avoid expensive m_copydata(9).
Obtained from: WinPcap 3.1 (for i386)
The following repo-copies were made (by Mark Murray):
sys/i386/isa/spkr.c -> sys/dev/speaker/spkr.c
sys/i386/include/speaker.h -> sys/dev/speaker/speaker.h
share/man/man4/man4.i386/spkr.4 -> share/man/man4/spkr.4
nearly identical to wintel/ia32, with a couple of tweaks. Since it is
so similar to ia32, it is optionally added to a i386 kernel. This
port is preliminary, but seems to work well. Further improvements
will improve the interaction with syscons(4), port Linux nforce driver
and future versions of the xbox.
This supports the 64MB and 128MB boxes. You'll need the most recent
CVS version of Cromwell (the Linux BIOS for the XBOX) to boot.
Rink will be maintaining this port, and is interested in feedback.
He's setup a website http://xbox-bsd.nl to report the latest
developments.
Any silly mistakes are my fault.
Submitted by: Rink P.W. Springer rink at stack dot nl and
Ed Schouten ed at fxq dot nl
drivers I started quite some time before.
Retire the old i386-only pcf driver, and activate the new general
driver that has been sitting in the tree already for quite some
time.
Build the i2c modules for sparc64 architectures as well (where I've
been developing all this on).
the Linux driver, since specs are unavailable. Many thanks to Adam Kirchhoff
for multiple useful testing cycles, and Ralf Wostrack for the final fix to get
it working.
PR: i386/75251
Submitted by: anholt
earlier as no one has stepped up to test recent changes to the driver.
Oddly, the module was actually turned on on ia64 though I'm fairly certain
that no ia64 machine has ever had or will ever have an ISA slot.
Axe borrowed from: phk
files after they were repo-copied to sys/dev/atkbdc. The sources of
atkbdc(4) and its children were moved to the new location in preparation
for adding an EBus front-end to atkbdc(4) for use on sparc64; i.e. in
order to not further scatter them over the whole tree which would have
been the result of adding atkbdc_ebus.c in e.g. sys/sparc64/ebus. Another
reason for the repo-copies was that some of the sources were misfiled,
e.g. sys/isa/atkbd_isa.c wasn't ISA-specific at all but for hanging
atkbd(4) off of atkbdc(4) and was renamed to atkbd_atkbdc.c accordingly.
Most of sys/isa/psm.c, i.e. expect for its PSMC PNP part, also isn't
ISA-specific.
- Separate the parts of atkbdc_isa.c which aren't actually ISA-specific
but are shareable between different atkbdc(4) bus front-ends into
atkbdc_subr.c (repo-copied from atkbdc_isa.c). While here use
bus_generic_rl_alloc_resource() and bus_generic_rl_release_resource()
respectively in atkbdc_isa.c instead of rolling own versions.
- Add sparc64 MD bits to atkbdc(4) and atkbd(4) and an EBus front-end for
atkbdc(4). PS/2 controllers and input devices are used on a couple of
Sun OEM boards and occur on either the EBus or the ISA bus. Depending on
the board it's either the only on-board mean to connect a keyboard and
mouse or an alternative to either RS232 or USB devices.
- Wrap the PSMC PNP part of psm.c in #ifdef DEV_ISA so it can be compiled
without isa(4) (e.g. for EBus-only machines). This ISA-specific part
isn't separated into its own source file, yet, as it requires more work
than was feasible for 6.0 in order to do it in a clean way. Actually
philip@ is working on a rewrite of psm(4) so a more comprehensive
clean-up and separation of hardware dependent and independent parts is
expected to happen after 6.0.
Tested on: i386, sparc64 (AX1105, AXe and AXi boards)
Reviewed by: philip
- Implement sampling modes and logging support in hwpmc(4).
- Separate MI and MD parts of hwpmc(4) and allow sharing of
PMC implementations across different architectures.
Add support for P4 (EMT64) style PMCs to the amd64 code.
- New pmcstat(8) options: -E (exit time counts) -W (counts
every context switch), -R (print log file).
- pmc(3) API changes, improve our ability to keep ABI compatibility
in the future. Add more 'alias' names for commonly used events.
- bug fixes & documentation.
here on in, if_ndis.ko will be pre-built as a module, and can be built
into a static kernel (though it's not part of GENERIC). Drivers are
created using the new ndisgen(8) script, which uses ndiscvt(8) under
the covers, along with a few other tools. The result is a driver module
that can be kldloaded into the kernel.
A driver with foo.inf and foo.sys files will be converted into
foo_sys.ko (and foo_sys.o, for those who want/need to make static
kernels). This module contains all of the necessary info from the
.INF file and the driver binary image, converted into an ELF module.
You can kldload this module (or add it to /boot/loader.conf) to have
it loaded automatically. Any required firmware files can be bundled
into the module as well (or converted/loaded separately).
Also, add a workaround for a problem in NdisMSleep(). During system
bootstrap (cold == 1), msleep() always returns 0 without actually
sleeping. The Intel 2200BG driver uses NdisMSleep() to wait for
the NIC's firmware to come to life, and fails to load if NdisMSleep()
doesn't actually delay. As a workaround, if msleep() (and hence
ndis_thsuspend()) returns 0, use a hard DELAY() to sleep instead).
This is not really the right thing to do, but we can't really do much
else. At the very least, this makes the Intel driver happy.
There are probably other drivers that fail in this way during bootstrap.
Unfortunately, the only workaround for those is to avoid pre-loading
them and kldload them once the system is running instead.
critical_enter() and critical_exit() are now solely a mechanism for
deferring kernel preemptions. They no longer have any affect on
interrupts. This means that standalone critical sections are now very
cheap as they are simply unlocked integer increments and decrements for the
common case.
Spin mutexes now use a separate KPI implemented in MD code: spinlock_enter()
and spinlock_exit(). This KPI is responsible for providing whatever MD
guarantees are needed to ensure that a thread holding a spin lock won't
be preempted by any other code that will try to lock the same lock. For
now all archs continue to block interrupts in a "spinlock section" as they
did formerly in all critical sections. Note that I've also taken this
opportunity to push a few things into MD code rather than MI. For example,
critical_fork_exit() no longer exists. Instead, MD code ensures that new
threads have the correct state when they are created. Also, we no longer
try to fixup the idlethreads for APs in MI code. Instead, each arch sets
the initial curthread and adjusts the state of the idle thread it borrows
in order to perform the initial context switch.
This change is largely a big NOP, but the cleaner separation it provides
will allow for more efficient alternative locking schemes in other parts
of the kernel (bare critical sections rather than per-CPU spin mutexes
for per-CPU data for example).
Reviewed by: grehan, cognet, arch@, others
Tested on: i386, alpha, sparc64, powerpc, arm, possibly more
when we create a PDO, the driver_object associated with it is that
of the parent driver, not the driver we're trying to attach. For
example, if we attach a PCI device, the PDO we pass to the NdisAddDevice()
function should contain a pointer to fake_pci_driver, not to the NDIS
driver itself. For PCI or PCMCIA devices this doesn't matter because
the child never needs to talk to the parent bus driver, but for USB,
the child needs to be able to send IRPs to the parent USB bus driver, and
for that to work the parent USB bus driver has to be hung off the PDO.
This involves modifying windrv_lookup() so that we can search for
bus drivers by name, if necessary. Our fake bus drivers attach themselves
as "PCI Bus," "PCCARD Bus" and "USB Bus," so we can search for them
using those names.
The individual attachment stubs now create and attach PDOs to the
parent bus drivers instead of hanging them off the NDIS driver's
object, and in if_ndis.c, we now search for the correct driver
object depending on the bus type, and use that to find the correct PDO.
With this fix, I can get my sample USB ethernet driver to deliver
an IRP to my fake parent USB bus driver's dispatch routines.
- Add stub modules for USB support: subr_usbd.c, usbd_var.h and
if_ndis_usb.c. The subr_usbd.c module is hooked up the build
but currently doesn't do very much. It provides the stub USB
parent driver object and a dispatch routine for
IRM_MJ_INTERNAL_DEVICE_CONTROL. The only exported function at
the moment is USBD_GetUSBDIVersion(). The if_ndis_usb.c stub
compiles, but is not hooked up to the build yet. I'm putting
these here so I can keep them under source code control as I
flesh them out.
and wd80x3 support. Make the obscure ISA cards optional, and add
those options to NOTES on i386 (note: the ifdef around the whole code
is for module building). Tweak pc98 ed support to include wd80x3 too.
Add goo for alpha too.
The affected cards are the 3Com 3C503, HP LAN+ and SIC (whatever that
is). I couldn't find any of these for sale on ebay, so they are
untested. If you have one of these cards, and send it to me, I'll
ensure that you have no future problems with it...
Minor cleanups as well by using functions rather than cut and paste
code for some probing operations (where the function call overhead is
lost in the noise).
Remove use of kvtop, since they aren't required anymore. This driver
needs to get its memory mapped act together, however, and use bus
space. It doesn't right now.
This reduces the size of if_ed.ko from about 51k to 33k on my laptop.
Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can
simulate driver stacking.
In Windows, each loaded driver image is attached to a DRIVER_OBJECT
structure. Windows uses the registry to match up a given vendor/device
ID combination with a corresponding DRIVER_OBJECT. When a driver image
is first loaded, its DriverEntry() routine is invoked, which sets up
the AddDevice() function pointer in the DRIVER_OBJECT and creates
a dispatch table (based on IRP major codes). When a Windows bus driver
detects a new device, it creates a Physical Device Object (PDO) for
it. This is a DEVICE_OBJECT structure, with semantics analagous to
that of a device_t in FreeBSD. The Windows PNP manager will invoke
the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT
and the PDO.
The AddDevice() function then creates a new DRIVER_OBJECT structure of
its own. This is known as the Functional Device Object (FDO) and
corresponds roughly to a private softc instance. The driver uses
IoAttachDeviceToDeviceStack() to add this device object to the
driver stack for this PDO. Subsequent drivers (called filter drivers
in Windows-speak) can be loaded which add themselves to the stack.
When someone issues an IRP to a device, it travel along the stack
passing through several possible filter drivers until it reaches
the functional driver (which actually knows how to talk to the hardware)
at which point it will be completed. This is how Windows achieves
driver layering.
Project Evil now simulates most of this. if_ndis now has a modevent
handler which will use MOD_LOAD and MOD_UNLOAD events to drive the
creation and destruction of DRIVER_OBJECTs. (The load event also
does the relocation/dynalinking of the image.) We don't have a registry,
so the DRIVER_OBJECTS are stored in a linked list for now. Eventually,
the list entry will contain the vendor/device ID list extracted from
the .INF file. When ndis_probe() is called and detectes a supported
device, it will create a PDO for the device instance and attach it
to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call
our NdisAddDevice() handler to create the FDO. The NDIS miniport block
is now a device extension hung off the FDO, just as it is in Windows.
The miniport characteristics table is now an extension hung off the
DRIVER_OBJECT as well (the characteristics are the same for all devices
handled by a given driver, so they don't need to be per-instance.)
We also do an IoAttachDeviceToDeviceStack() to put the FDO on the
stack for the PDO. There are a couple of fake bus drivers created
for the PCI and pccard buses. Eventually, there will be one for USB,
which will actually accept USB IRP.s
Things should still work just as before, only now we do things in
the proper order and maintain the correct framework to support passing
IRPs between drivers.
Various changes:
- corrected the comments about IRQL handling in subr_hal.c to more
accurately reflect reality
- update ndiscvt to make the drv_data symbol in ndis_driver_data.h a
global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it.
- Obtain the softc pointer from the miniport block by referencing
the PDO rather than a private pointer of our own (nmb_ifp is no
longer used)
- implement IoAttachDeviceToDeviceStack(), IoDetachDevice(),
IoGetAttachedDevice(), IoAllocateDriverObjectExtension(),
IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(),
IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(),
IoInitializeIrp()
- fix a few mistakes in the driver_object and device_object definitions
- add a new module, kern_windrv.c, to handle the driver registration
and relocation/dynalinkign duties (which don't really belong in
kern_ndis.c).
- made ndis_block and ndis_chars in the ndis_softc stucture pointers
and modified all references to it
- fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they
work correctly with the new driver_object mechanism
- changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver()
(which is now deprecated)
- used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines
instead of kludged up alloc/free routines
- added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
the ISA and CBUS (called isa on pc98) attachments. Eliminate all PC98
ifdefs in the process (the driver in pc98/pc98/mse.c was a copy of the one
in i386/isa/mse.c with PC98 ifdefs). Create a module for this driver.
I've tested this my PC-9821RaS40 with moused. I've not tested this on i386
because I have no InPort cards, or similar such things. NEC standardized
on bus mice very early, long before ps/2 mice ports apeared, so all PC-98
machines supported by FreeBSD/pc98 have bus mice, I believe.
Reviewed by: nyan-san