o Save and clear the LTESR register in the interrupt handler.
o In lbc_read_reg(), return the saved LTESR register value if applicable
(i.e. when the saved value is not invalid (read: ~0U)).
o In lbc_write_reg(), clear the bits in the saved register when when it's
written to and when the asved value is not invalid.
o Also in lbc_write_reg(), the LTESR register is unlocked (in H/W) when
bit 1 of LTEATR is cleared. We use this to invalidate our saved LTESR
register value. Subsequent reads and write go to H/W directly.
While here:
o In lbc_read_reg() & lbc_write_reg(), add some belts and suspenders to
catch when register offsets are out of range.
o In lbc_attach(), initialize completely and don't leave something left
for lbc_banks_enable().
1. Define all registers. These definitions are needed to support
the FCM driver for direct-connect NAND.
2. Repurpose lbc_read_reg() and lbc_write_reg() for use by localbus
attached device drivers. Use bus_space functions directly in the
lbc driver itself.
3. Be smarter about programming LAWs and mapping memory. The ranges
defined in the FDT are per bank (= chip select) and since we can
have up to 8 banks, we could easily use more than 8 LAWs or TLB
enrties when per-bank memory ranges need multiple LAWs or TLBs
due to alignment or size constraints.
We now combine all memory ranges into the fewest possible set of
contiguous regions and program the hardware for that. Thus, a
cleverly written FDT with 8 devices may still only need 1 LAW or
1 TLB entry. Note that the memory ranges can be assigned randomly
to the banks. We sort as we build to handle that.
4. Support the FCM when programming the OR register. This is mostly
for documention purposes as we do not have a way to define the
mode for a bank.
5. Remove Semihalf-ism: do not define DEBUG (only to undefine it
again).
The following systems are affected:
- MPC8555CDS
- MPC8572DS
This overhaul covers the following major changes:
- All integrated peripherals drivers for Freescale MPC85XX SoC, which are
currently in the FreeBSD source tree are reworked and adjusted so they
derive config data out of the device tree blob (instead of hard coded /
tabelarized values).
- This includes: LBC, PCI / PCI-Express, I2C, DS1553, OpenPIC, TSEC, SEC,
QUICC, UART, CFI.
- Thanks to the common FDT infrastrucutre (fdtbus, simplebus) we retire
ocpbus(4) driver, which was based on hard-coded config data.
Note that world for these platforms has to be built WITH_FDT.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
It turns LBC control registers were not programmed correctly on MPC85XX. We
were accessing bogus addresses as the base offset (OCP85XX_LBC_OFF) was
erroneously added during offset calculations. Effectively the state of LBC
control registers was not altered by the kernel initialization code, but
everything worked as long as we coincided to use the same settings (LBC decode
windows) as firmware has initialized.
Submitted by: Lukasz Wojcik
Reviewed by: marcel
Approved by: re (kensmith)
Obtained from: Semihalf
- Make LBC resources management self-contained: introduce explicit LBC
resources definition (much like the OCP), provide dedicated rman for LB mem
space.
- Full configuration of an LB chip select device: program LAW and BR/OR, map
into KVA, handle all LB attributes (bus width, machine select, ecc,
write protect etc).
- Factor out LAW manipulation routines into shared code, adjust OCP area
accordingly.
- Other LBC fixes and clean-ups.
Obtained from: Semihalf