include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
chgsbsize(), which are called rather frequently and may be called from an
interrupt context in the case of chgsbsize(). Instead, do the hash table
lookup and maintenance when credentials are changed, which is a lot less
frequent. Add pointers to the uidinfo structures to the ucred and pcred
structures for fast access. Pass a pointer to the credential to chgproccnt()
and chgsbsize() instead of passing the uid. Add a reference count to the
uidinfo structure and use it to decide when to free the structure rather
than freeing the structure when the resource consumption drops to zero.
Move the resource tracking code from kern_proc.c to kern_resource.c. Move
some duplicate code sequences in kern_prot.c to separate helper functions.
Change KASSERTs in this code to unconditional tests and calls to panic().
1) while allocating a uidinfo struct malloc is called with M_WAITOK,
it's possible that while asleep another process by the same user
could have woken up earlier and inserted an entry into the uid
hash table. Having redundant entries causes inconsistancies that
we can't handle.
fix: do a non-waiting malloc, and if that fails then do a blocking
malloc, after waking up check that no one else has inserted an entry
for us already.
2) Because many checks for sbsize were done as "test then set" in a non
atomic manner it was possible to exceed the limits put up via races.
fix: instead of querying the count then setting, we just attempt to
set the count and leave it up to the function to return success or
failure.
3) The uidinfo code was inlining and repeating, lookups and insertions
and deletions needed to be in their own functions for clarity.
Reviewed by: green
some time ago that changes kern.randompid from a boolean to a randomness
range for the next pid assigment. Too high causes a lot of extra work
to scan for free pids, and too low merely wastes randomness entropy. It's
still possible to select a completely random range by using PID_MAX (100k)
or -1 as a shortcut to mean "the whole range".
Also, don't waste randomness when doing a wraparound.
(kern.randompid), which is currently defaulted off. Use ARC4 (RC4) for our
random number generation, which will not get me executed for violating
crypto laws; a Good Thing(tm).
Reviewed and Approved by: bde, imp
linked list to store the callbak routines. The patch converts the
lists to queue(3) TAILQs, making the code slightly clearer and ensuring
that callbacks are executed in FIFO order.
Man page also updated as necesary.
(discontinued use of M_TEMP malloc type while here anyway /phk)
Submitted by: Jake Burkholder jake@checker.org
PR: 14912
This fixes some nasty procfs problems for SMP, makes ps(1) run much faster,
and makes ps(1) even less dependent on /proc which will aid chroot and
jails alike.
To disable this facility and revert to previous behaviour:
sysctl -w kern.ps_arg_cache_limit=0
For full details see the current@FreeBSD.org mail-archives.
Alot of the code in sys/kern directly accesses the *Q_HEAD and *Q_ENTRY
structures for list operations. This patch makes all list operations
in sys/kern use the queue(3) macros, rather than directly accessing the
*Q_{HEAD,ENTRY} structures.
This batch of changes compile to the same object files.
Reviewed by: phk
Submitted by: Jake Burkholder <jake@checker.org>
PR: 14914
When creating new processes (or performing exec), the new page
directory is initialized too early. The kernel might grow before
p_vmspace is initialized for the new process. Since pmap_growkernel
doesn't yet know about the new page directory, it isn't updated, and
subsequent use causes a failure.
The fix is (1) to clear p_vmspace early, to stop pmap_growkernel
from stomping on memory, and (2) to defer part of the initialization
of new page directories until p_vmspace is initialized.
PR: kern/12378
Submitted by: tegge
Reviewed by: dfr
the caller can easily find the child proc struct. fork(), rfork() etc
syscalls set p->p_retval[] themselves. Simplify the SYSINIT_KT() code
and other kernel thread creators to not need to use pfind() to find the
child based on the pid. While here, partly tidy up some of the fork1()
code for RF_SIGSHARE etc.
This is a seriously beefed up chroot kind of thing. The process
is jailed along the same lines as a chroot does it, but with
additional tough restrictions imposed on what the superuser can do.
For all I know, it is safe to hand over the root bit inside a
prison to the customer living in that prison, this is what
it was developed for in fact: "real virtual servers".
Each prison has an ip number associated with it, which all IP
communications will be coerced to use and each prison has its own
hostname.
Needless to say, you need more RAM this way, but the advantage is
that each customer can run their own particular version of apache
and not stomp on the toes of their neighbors.
It generally does what one would expect, but setting up a jail
still takes a little knowledge.
A few notes:
I have no scripts for setting up a jail, don't ask me for them.
The IP number should be an alias on one of the interfaces.
mount a /proc in each jail, it will make ps more useable.
/proc/<pid>/status tells the hostname of the prison for
jailed processes.
Quotas are only sensible if you have a mountpoint per prison.
There are no privisions for stopping resource-hogging.
Some "#ifdef INET" and similar may be missing (send patches!)
If somebody wants to take it from here and develop it into
more of a "virtual machine" they should be most welcome!
Tools, comments, patches & documentation most welcome.
Have fun...
Sponsored by: http://www.rndassociates.com/
Run for almost a year by: http://www.servetheweb.com/
- %fs register is added to trapframe and saved/restored upon kernel entry/exit.
- Per-cpu pages are no longer mapped at the same virtual address.
- Each cpu now has a separate gdt selector table. A new segment selector
is added to point to per-cpu pages, per-cpu global variables are now
accessed through this new selector (%fs). The selectors in gdt table are
rearranged for cache line optimization.
- fask_vfork is now on as default for both UP and SMP.
- Some aio code cleanup.
Reviewed by: Alan Cox <alc@cs.rice.edu>
John Dyson <dyson@iquest.net>
Julian Elischer <julian@whistel.com>
Bruce Evans <bde@zeta.org.au>
David Greenman <dg@root.com>
This takes the conditionals out of the code that has been tested by
various people for a while.
ps and friends (libkvm) will need a recompile as some proc structure
changes are made.
Submitted by: "Richard Seaman, Jr." <dick@tar.com>
shared signal handling when there is shared signal handling being
used.
This removes the main objection to making the shared signal handling
a standard ability in rfork() and friends and 'unconditionalising'
this code. (i.e. the allocation of an extra 328 bytes per process).
Signal handling information remains in the U area until such a time as
it's reference count would be incremented to > 1. At that point a new
struct is malloc'd and maintained in KVM so that it can be shared between
the processes (threads) using it.
A function to check the reference count and move the struct back to the U
area when it drops back to 1 is also supplied. Signal information is
therefore now swapable for all processes that are not sharing that
information with other processes. THis should addres the concerns raised
by Garrett and others.
Submitted by: "Richard Seaman, Jr." <dick@tar.com>
Submitted by: "Richard Seaman, Jr." <lists@tar.com>
Obtained from: linux :-)
Code to allow Linux Threads to run under FreeBSD.
By default not enabled
This code is dependent on the conditional
COMPAT_LINUX_THREADS (suggested by Garret)
This is not yet a 'real' option but will be within some number of hours.
dereference a NULL pointer, causing a panic. Instead of following
s_leader to find the session id, store it in the session structure.
Jukka found the following info:
BTW - I just found what I have been looking for. Std 1003.1
Part 1: SYSTEM API [C LANGUAGE] section 2.2.2.80 states quite
explicitly...
Session lifetime: The period between when a session is created
and the end of lifetime of all the process groups that remain
as members of the session.
So, this quite clearly tells that while there is any single
process in any process group which is a member of the session,
the session remains as an independent entity.
Reviewed by: peter
Submitted by: "Jukka A. Ukkonen" <jau@jau.tmt.tele.fi>
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
quite a while, but forgot to do so. For now, this code supports
most daemons running as kernel threads in UP kernels, and as
full processes in SMP. We will soon be able to run them as
threads in SMP, but not yet.
it in struct proc instead.
This fixes a boatload of compiler warning, and removes a lot of cruft
from the sources.
I have not removed the /*ARGSUSED*/, they will require some looking at.
libkvm, ps and other userland struct proc frobbing programs will need
recompiled.
POSIX.4. Additionally, there is some initial code that supports LIO.
This code supports AIO/LIO for all types of file descriptors, with
few if any restrictions. There will be a followup very soon that
will support significantly more efficient operation for VCHR type
files (raw.) This code is also dependent on some kernel features
that don't work under SMP yet. After I commit the changes to the
kernel to support proper address space sharing on SMP, this code
will also work under SMP.
This eliminates a lot of #ifdef SMP type code. Things like _curproc reside
in a data page that is unique on each cpu, eliminating the expensive macros
like: #define curproc (SMPcurproc[cpunumber()])
There are some unresolved bootstrap and address space sharing issues at
present, but Steve is waiting on this for other work. There is still some
strictly temporary code present that isn't exactly pretty.
This is part of a larger change that has run into some bumps, this part is
standalone so it should be safe. The temporary code goes away when the
full idle cpu support is finished.
Reviewed by: fsmp, dyson
difference of approx 3mins in make world on my P6!!! This means
that vfork now has full address space sharing, so beware with
sloppy vfork programming. Also, you really do need to apply
the previously committed popen fix in libc.
fork. (On my machine, fork is about 240usecs, vfork is 78usecs.)
Implement rfork(!RFPROC !RFMEM), which allows a thread to divorce its memory
from the other threads of a group.
Implement rfork(!RFPROC RFCFDG), which closes all file descriptors, eliminating
possible existing shares with other threads/processes.
Implement rfork(!RFPROC RFFDG), which divorces the file descriptors for a
thread from the rest of the group.
Fix the case where a thread does an exec. It is almost nonsense for a thread
to modify the other threads address space by an exec, so we
now automatically divorce the address space before modifying it.