Commit Graph

9 Commits

Author SHA1 Message Date
Ruslan Bukin
78b517543b Add a few macroses for conversion between DMAR unit, domain, ctx
and IOMMU unit, domain, ctx.

Reviewed by:	kib
Sponsored by:	DARPA, AFRL
Differential Revision:	https://reviews.freebsd.org/D25926
2020-08-04 20:51:05 +00:00
Ruslan Bukin
c8597a1f9f o Don't include headers from iommu.h, include them from the header
consumers instead;
o Order includes properly.

Reviewed by:	kib
Sponsored by:	DARPA/AFRL
Differential Revision:	https://reviews.freebsd.org/D25878
2020-07-29 22:08:54 +00:00
Ruslan Bukin
f2b2f31707 Move the Intel DMAR busdma backend to a generic place so
it can be used on other IOMMU systems.

Reviewed by:	kib
Sponsored by:	DARPA/AFRL
Differential Revision:	https://reviews.freebsd.org/D25720
2020-07-21 10:38:51 +00:00
Ruslan Bukin
59e37c8a54 Start splitting-out the Intel DMAR busdma backend to a generic place,
so it can be used on other IOMMU systems.

Provide MI iommu_unit, iommu_domain and iommu_ctx structs in sys/iommu.h;
use them as a first member of MD dmar_unit, dmar_domain and dmar_ctx.

Change the namespace in DMAR backend: use iommu_ prefix instead of dmar_.

Move some macroses and function prototypes to sys/iommu.h.

Reviewed by:	kib
Sponsored by:	DARPA, AFRL
Differential Revision:	https://reviews.freebsd.org/D25574
2020-07-14 10:55:19 +00:00
Konstantin Belousov
685666aaf7 bus_dma_dmar_set_buswide(9): KPI to indicate that the whole dmar
context should share page tables.

Practically it means that dma requests from any device on the bus are
translated according to the entries loaded for the bus:0:0 device.
KPI requires that the slot and function of the device be 0:0, and that
no tags for other devices on the bus were used.

The intended use are NTBs which pass TLPs from the downstream to the
host with slot:func of the downstream originator.

Reviewed and tested by:	mav
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D22434
2019-11-18 20:56:59 +00:00
Conrad Meyer
e2e050c8ef Extract eventfilter declarations to sys/_eventfilter.h
This allows replacing "sys/eventfilter.h" includes with "sys/_eventfilter.h"
in other header files (e.g., sys/{bus,conf,cpu}.h) and reduces header
pollution substantially.

EVENTHANDLER_DECLARE and EVENTHANDLER_LIST_DECLAREs were moved out of .c
files into appropriate headers (e.g., sys/proc.h, powernv/opal.h).

As a side effect of reduced header pollution, many .c files and headers no
longer contain needed definitions.  The remainder of the patch addresses
adding appropriate includes to fix those files.

LOCK_DEBUG and LOCK_FILE_LINE_ARG are moved to sys/_lock.h, as required by
sys/mutex.h since r326106 (but silently protected by header pollution prior
to this change).

No functional change (intended).  Of course, any out of tree modules that
relied on header pollution for sys/eventhandler.h, sys/lock.h, or
sys/mutex.h inclusion need to be fixed.  __FreeBSD_version has been bumped.
2019-05-20 00:38:23 +00:00
Pedro F. Giffuni
ebf5747bdb sys/x86: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 15:11:47 +00:00
Konstantin Belousov
0a110d5b17 Use VT-d interrupt remapping block (IR) to perform FSB messages
translation.  In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly.  Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.

KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.

For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.

Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain.  The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.

Some interrupts are configured before IR is initialized, e.g. ACPI
SCI.  Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled.  There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.

Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR.  Use the same identification methods
as employed by Linux.

Review:	https://reviews.freebsd.org/D1892
Reviewed by:	neel
Discussed with:	jhb
Tested by:	glebius, pho (previous versions)
Sponsored by:	The FreeBSD Foundation
MFC after:	3 weeks
2015-03-19 13:57:47 +00:00
Konstantin Belousov
86be9f0dd5 Import the driver for VT-d DMAR hardware, as specified in the revision
1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture
Specification.  The Extended Context and PASIDs from the rev. 2.2 are
not supported, but I am not aware of any released hardware which
implements them.  Code does not use queued invalidation, see comments
for the reason, and does not provide interrupt remapping services.

Code implements the management of the guest address space per domain
and allows to establish and tear down arbitrary mappings, but not
partial unmapping.  The superpages are created as needed, but not
promoted.  Faults are recorded, fault records could be obtained
programmatically, and printed on the console.

Implement the busdma(9) using DMARs.  This busdma backend avoids
bouncing and provides security against misbehaving hardware and driver
bad programming, preventing leaks and corruption of the memory by wild
DMA accesses.

By default, the implementation is compiled into amd64 GENERIC kernel
but disabled; to enable, set hw.dmar.enable=1 loader tunable.  Code is
written to work on i386, but testing there was low priority, and
driver is not enabled in GENERIC.  Even with the DMAR turned on,
individual devices could be directed to use the bounce busdma with the
hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable.  If
DMARs are capable of the pass-through translations, it is used,
otherwise, an identity-mapping page table is constructed.

The driver was tested on Xeon 5400/5500 chipset legacy machine,
Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4),
ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices.  It also
works with em(4) and igb(4), but there some fixes are needed for
drivers, which are not committed yet.  Intel GPUs do not work with
DMAR (yet).

Many thanks to John Baldwin, who explained me the newbus integration;
Peter Holm, who did all testing and helped me to discover and
understand several incredible bugs; and to Jim Harris for the access
to the EDS and BWG and for listening when I have to explain my
findings to somebody.

Sponsored by:	The FreeBSD Foundation
MFC after:	1 month
2013-10-28 13:33:29 +00:00