of the MCOUNT_ENTER, MCOUNT_EXIT and MCOUNT_DECL defines. Also make
sure there's a prototype of _MCOUNT_DECL(). This allows us to build
a kernel. There are still unresolved symbols, so linking fails.
_mcount() stub when profiling is enabled. Emit this code sequence
for assembly routines as welli (MCOUNT definition in <machine/asm.h>.
We do not pass the GOT entry however as the 4th argument, because it's
not used. The _mcount() stub calls __mcount(), which does the actual
work. Define _MCOUNT_DECL to define __mcount. We do not have an
implementation of mcount(), so we define MCOUNT as empty, but have a
weak alias to _mcount() in _mcount.S.
Note that the _mcount() stub in the kernel is slightly different from
the stub in userland. This is because we do not have to worry about
nested routines in the kernel.
have been rush hour...
While here, move COMPAT_IA32 from opt_global.h to opt_compat.h like on
amd64. Consequently, it's unsafe to use the option in pcb.h. We now
unconditionally have the ia32 specific registers in the PCB.
This commit is untested.
we update the registers. That way we don't have any dirty registers to
worry about and also know that bsp=bspstore, which makes updating the
RSE related registers predictable.
This is not the end of it. We need more validity checks, but for now
this allows us to complete the gdb testsuite without crashing the
kernel.
to allow dumping per-thread machine specific notes. On ia64 we use this
function to flush the dirty registers onto the backingstore before we
write out the PRSTATUS notes.
Tested on: alpha, amd64, i386, ia64 & sparc64
Not tested on: arm, powerpc
The hardware always gives read access for privilege level 0, which
means that we cannot use the hardware access rights and privilege
level in the PTE to test whether there's a change in protection. So,
we save the original vm_prot_t in the PTE as well.
Add pmap_pte_prot() to set the proper access rights and privilege
level on the PTE given a pmap and the requested protection.
The above allows us to compare the protection in pmap_extract_and_hold()
which was missing. While in pmap_extract_and_hold(), add pmap locking.
While here, clean up most (i.e. all but one) PTE macros we inherited
from alpha. They were either unused, used inconsistently, badly named
or simply weren't beneficial. We save the wired and managed state of
the PTE in distinct (bit) fields.
While in pte.h, s/u_int64_t/uint64_t/g
pmap locking obtained from: alc@
feedback & review by: alc@
path. The basic problem is that we cannot set the single stepping flag
directly, because we don't leave the kernel via an interrupt return. So,
we need another way to set the single stepping flag.
The way we do this is by enabling the lower-privilege transfer trap, which
gets raised when we drop the privilege level. However, since we're still
running in kernel space (sec), we're not yet done. We clear the lower-
privilege transfer trap, enable the taken-branch trap and continue exiting
the kernel until we branch into user space.
Given the current code, there's a total of two traps this way before
we can raise SIGTRAP.
after a fork(2) in fork_trampoline(). By moving the epc_syscall_return
label immediately before the call to do_ast() in epc_syscall(), we not
only achieve that but also handle the detour through exception_return
when the frame corresponds to an asynchronous kernel entry. Hence, we
simplified fork_trampoline() as a side-effect.
related to breakpoints and single stepping into SIGTRAP so gdb(1) knows
why the remote target has stopped. In particular, gdb(1) needs to know
if the reason is something of its own doing.
text/data are covered on APs. This enables the kernel to boot on
a 4 way Intel Itanium-2 platform. This has a secondary effect of
keeping the TRs identical on BP and the APs.
reviewed by: marcel@
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
their own directory and module, leaving the MD parts in the MD
area (the MD parts _are_ part of the modules). /dev/mem and /dev/io
are now loadable modules, thus taking us one step further towards
a kernel created entirely out of modules. Of course, there is nothing
preventing the kernel from having these statically compiled.
brings ia64 to parity with alpha, amd64, and i386 in this area.)
- Prevent a race in pmap_find_pte(): If pmap_find_pte() sleeps in
uma_zalloc(), another thread could allocate a pte at the same address.
Instead, sleep at a higher level and retry the lookup before retrying
the allocation.
Reviewed and tested by: marcel@
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
the thread ID and call db_trace_thread().
Since arm has all the logic in db_stack_trace_cmd(), rename the
new DB_COMMAND function to db_stack_trace to avoid conflicts on
arm.
While here, have db_stack_trace parse its own arguments so that
we can use a more natural radix for IDs. If the ID is not a thread
ID, or more precisely when no thread exists with the ID, try if
there's a process with that ID and return the first thread in it.
This makes it easier to print stack traces from the ps output.
requested by: rwatson@
tested on: amd64, i386, ia64
future:
rename ttyopen() -> tty_open() and ttyclose() -> tty_close().
We need the ttyopen() and ttyclose() for the new generic cdevsw
functions for tty devices in order to have consistent naming.
pmap_protect() and pmap_remove(). In general, they require the lock in
order to modify a page's pv list or flags. In some cases, however,
pmap_protect() can avoid acquiring the lock.
pmap_remove_pages(). (The implementation of pmap_remove_pages() is
optional. If pmap_remove_pages() is unimplemented, the acquisition and
release of the page queues lock is unnecessary.)
Remove spl calls from the alpha, arm, and ia64 pmap_remove_pages().
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o ksym_start and ksym_end changed type to vm_offset_t.
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_enter() instead of breakpoint().
o Remove implementation of Debugger().
o Call kdb_trap() according to the new world order.
unwinder:
o s/db_active/kdb_active/g
o Various s/ddb/kdb/g
o Add support for unwinding from the PCB as well as the trapframe.
Abuse a spare field in the special register set to flag whether
the PCB was actually constructed from a trapframe so that we can
make the necessary adjustments.
md_var.h:
o Add RSE convenience macros.
o Add ia64_bsp_adjust() to add or subtract from BSP while taking
NaT collections into account.
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
bootp -> BOOTP
bootp.nfsroot -> BOOTP_NFSROOT
bootp.nfsv3 -> BOOTP_NFSV3
bootp.compat -> BOOTP_COMPAT
bootp.wired_to -> BOOTP_WIRED_TO
- i.e. back out the previous commit. It's already possible to
pxeboot(8) with a GENERIC kernel.
Pointed out by: dwmalone
has outlined which break numbers are software interrupts, debugger
breakpoints and ABI specific breaks. We mostly treated all break
numbers we didn't care about as debugger breakpoints.