the video switch by another. Exactly as VESA does on top of VGA.
It adds linear framebuffer to S3 VESA 1.2 cards.
Obtained from: The original S3 ISA code comes from
Peter Horton <pdh@colonel-panic.com>
To use it, some dll is needed. And currently, the dll is only for NetBSD.
So one more kernel module is needed.
For more infomation,
http://chiharu.haun.org/peace/ .
Reviewed by: bp
this gives us several benefits, including:
* easier extensibility- new optional methods can be added to
ac97/mixer/channel classes without having to fixup every driver.
* forward compatibility for drivers, provided no new mandatory methods are
added.
Add detach routine and turn driver into a module so it can be loaded
and unloaded. Also take a stab at implementing multicast packet
reception so that this NIC will work with IPv6. Promiscuous mode
doesn't seem to work, but I'm not sure why. It works well enough that
I can run dhclient on it and put it on the office network though.
Also ripped out spl stuff and replaced it with mutexes.
- Move PCI core code to dev/pci.
- Split bridge code out into separate modules.
- Remove the descriptive strings from the bridge drivers. If you
want to know what a device is, use pciconf. Add support for
broadly identifying devices based on class/subclass, and for
parsing a preloaded device identification database so that if
you want to waste the memory, you can identify *anything* we know
about.
- Remove machine-dependant code from the core PCI code. APIC interrupt
mapping is performed by shadowing the intline register in machine-
dependant code.
- Bring interrupt routing support to the Alpha
(although many platforms don't yet support routing or mapping
interrupts entirely correctly). This resulted in spamming
<sys/bus.h> into more places than it really should have gone.
- Put sys/dev on the kernel/modules include path. This avoids
having to change *all* the pci*.h includes.
Providing shell scripts that do nothing but load a similarly named
kernel loadable module in out of vogue.
There is no ibcs2(4) manual page, and I haven't managed to coax
anyone into contributing one based on the linux(4) manual page.
our kernel module system learned how to handle dependencies.
Providing a whole bunch of shell scripts that do nothing but load
a similarly named kernel loadable module is out of vogue.
The svr4(8) manual page has been replaced with a much better svr4(4)
page.
- Make pccbb/cardbus kld loadable and unloadable.
- Make pccbb/cardbus use the power interface from pccard instead of inventing its own.
- some other minor fixes
out of fashion. This particular case, unlike joy(8) and friends which
are just plain silly, did more than just load a kernel loadable module.
However, /etc/rc and the linux_base port were adjusted a while back to
cope with the absence of this script.
The only outstanding reason to hang on to it would have been for the
linux(8) manual page, which clued folks into the existence of the
Linuxulator. A new linux(4) was introduced a while back. It does
a much better job.
This script just isn't useful any more.
- Layout reorganisation to enhance portability. The driver now has
a relatively MI 'core' and a FreeBSD-specific layer over the top.
Since the NetBSD people have already done their own port, this is
largely just to help me with the BSD/OS port.
- Request ID allocation changed to improve performance (I'd been
considering switching to this approach after having failed to come
up with a better way to dynamically allocate request IDs, and seeing
Andy Doran use it in the NetBSD port of the driver convinced me
that I was wasting my time doing it any other way). Now we just
allocate all the requests up front.
- Maximum request count bumped back to 255 after characterisation
of a firmware issue (off-by-one causing it to crash with 256
outstanding commands).
- Control interface implemented. This allows 3ware's '3dm' utility to
talk to the controller. 3dm will be available from 3ware shortly.
- Controller soft-reset feature added; if the controller signals a
firmware or protocol error, the controller will be reset and all
outstanding commands will be retried.
now in dirs called sys/*/random/ instead of sys/*/randomdev/*.
Introduce blocking, but only at startup; the random device will
block until the first reseed happens to prevent clients from
using untrustworthy output.
Provide a read_random() call for the rest of the kernel so that
the entropy device does not need to be present. This means that
things like IPX no longer need to have "device random" hardcoded
into thir kernel config. The downside is that read_random() will
provide very poor output until the entropy device is loaded and
reseeded. It is recommended that developers do NOT use the
read_random() call; instead, they should use arc4random() which
internally uses read_random().
Clean up the mutex and locking code a bit; this makes it possible
to unload the module again.
support which use National Semiconductor DP8393X (SONIC) as ethernet
controller. Currently, this driver is used on only PC-98.
Submitted by: Motomichi Matsuzaki <mzaki@e-mail.ne.jp>
Obtained from: NetBSD/pc98
Previously, these cards were supported by the lnc driver (and they
still are, but the pcn driver will claim them first), which is fine
except the lnc driver runs them in 16-bit LANCE compatibility mode.
The pcn driver runs these chips in 32-bit mode and uses the RX alignment
feature to achieve zero-copy receive. (Which puts it in the same
class as the xl, fxp and tl chipsets.) This driver is also MI, so it
will work on the x86 and alpha platforms. (The lnc driver is still
needed to support non-PCI cards. At some point, I'll need to newbusify
it so that it too will me MI.)
The Am79c978 HomePNA adapter is also supported.
from many folk.
o The reseed process is now a kthread. With SMPng, kthreads are
pre-emptive, so the annoying jerkiness of the mouse is gone.
o The data structures are protected by mutexes now, not splfoo()/splx().
o The cryptographic routines are broken out into their own subroutines.
this facilitates review, and possible replacement if that is ever
found necessary.
Thanks to: kris, green, peter, jasone, grog, jhb
Forgotten to thank: You know who you are; no offense intended.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
cloning infrastructure standard in kern_conf. Modules are now
the same with or without devfs support.
If you need to detect if devfs is present, in modules or elsewhere,
check the integer variable "devfs_present".
This happily removes an ugly hack from kern/vfs_conf.c.
This forces a rename of the eventhandler and the standard clone
helper function.
Include <sys/eventhandler.h> in <sys/conf.h>: it's a helper #include
like <sys/queue.h>
Remove all #includes of opt_devfs.h they no longer matter.
This provides support for the Adaptec SCSI RAID controller family,
as well as the DPT SmartRAID V and VI families.
The driver will be maintained by Mark and Adaptec, and any changes
should be referred to the MAINTAINER.
- New support for 40LD firmware found in Series 475 and 471 adapters.
- Better support for 8LD firmware adapters
- Ioctl passthrough interface for userland utilities.
- Improved error handling and queueing.
- Several bugfixes (including the 'still open' shutdown bug and
closing some small race conditions).
- Zone-style command allocator, reducing memory wasted under heavy
load conditions.
- CAM interface (disabled and not fully working) for SCSI passthrough
access to non-disk devices
Thanks to AMI for supplying a pile of new adapters and various other
help in making this happen.
shouldn't be built by default. pcic and pccard are going to go
through some changes and I'll not be testing them on the alpha so I
don't want to break them for the FreeBSD/alpha folks.
elements defined by foo_if.c aren't sharable amoung modules (I'm
working on a bug report for it now), or else I don't understand
something. It showed up as kobj functions not being called.
In any event, link in the pcic and pccard parts of the modules to work
around the problem for now.
Make the umass driver depend on this module.
Makes it possible to compile the kernel without SCSI support and load it
when for example a USB floppy is conencted.
associated patch to XFree86 allows the X server to work with this chipset
on FreeBSD. Additional work will include porting the Linux 3D driver.
Submitted by: Ruslan Ermilov <ru@FreeBSD.org>
once built, 'kld_load snd_driver; kldunload snd_driver' will load all sound
drivers and unload all unattached ones. attached drivers do not yet support
unloading.
be a permanent rule, because this device may eventually be deemed
"effectively compulsory", and built by default directly into the
kernel. For the moment, however, this is useful for debugging and
development.
Reviewed by: dfr
accept filters are now loadable as well as able to be compiled into
the kernel.
two accept filters are provided, one that returns sockets when data
arrives the other when an http request is completed (doesn't work
with 0.9 requests)
Reviewed by: jmg
This should allow one to load oldcard or newcard for testing. Please
let me know if this doesn't work. Don't load this and either of pcic
or pccard. I've not tried it, but I suspect bad things will happen.
2. Newbusify the driver.
3. Build as a module.
4. Use correct minor numbers when creating device files.
5. Correctly lock control characters.
6. Return ENXIO when device not configured.
Submitted by: Tor Egge <Tor.Egge@fast.no>
7. Fix the baud_table.
Submitted by: Elliot Dierksen <ebd@oau.org>
Note:
- the old driver still lives in src/sys/i386/isa, so that you can
revert to it if something goes wrong.
- The module does not detach very well. Attaching works fine.
This means that the kernel can be totally self contained now and is not
dependent on the last buildworld to update /usr/share/mk. This might
also make it easier to build 5.x kernels on 4.0 boxes etc, assuming
gensetdefs and config(8) are updated.
are two supported chips, the NetChip 1080 (only prototypes available)
and the EzLink cable. Any other cable should be supported however as they
are all very much alike (there is a difference between them wrt
performance).
It uses Netgraph.
This driver was mostly written by Doug Ambrisko and Julian Elischer and
I would like to thank Whistle for yet another contribution. And my
aplogies to them for me sitting on the driver for so long (2 months).
Also, many thanks to Reid Augustin from NetChip for providing me with a
prototype of their 1080 chip.
Be aware of the fact that this driver is very immature and has only been
tested very lightly. If someone feels like learning about Netgraph however
this is an excellent driver to start playing with.
- Break out the support for the XMAC II's PHY into an miibus driver.
- Reorganize the probe/attach stuff using newbus. Each XMAC is now
attached to the parent GEnesis controller using newbus. This is
necessary since each XMAC must also have an attached miibus, and
the miibus read/write register routines need to be able to get
at the softc struct for each XMAC, not the one for the parent
controller. This allows me to get rid of the grotty code I added
for selecting the unit numbers for the ifnet interfaces: the unit
numbers are now derived from the newbus-assigned unit numbers,
which should track with the ifnet interface numbers. I think.
At the very least, there should never be any collisions.
- Add support for the SK-9821 and SK-9822 1000baseTX adapters. Special
thanks to SysKonnect for loaning me two adapters for testing.
vintage system, well before the ppbus changes. When I called it an
"example" module, I meant as an example for the rest of the ppbus client
drivers, not that it was worthless. I'll mail my 5.8MB world.log to
anybody who doesn't believe me.
Wrongly accused by: obrien
include this in all kernels. Declare some const *intrq_present
variables that can be checked by a module prior to using *intrq
to queue data.
Make the if_tun module capable of processing atm, ip, ip6, ipx,
natm and netatalk packets when TUNSIFHEAD is ioctl()d on.
Review not required by: freebsd-hackers
- Split terminal emulation code from the main part of the driver so
that we can have alternative terminal emulator modules if we like in
the future. (We are not quite there yet, though.)
- Put sysmouse related code in a separate file, thus, simplifying the
main part of the driver.
As some files are added to the source tree, you need to run config(8)
before you compile a new kernel next time.
You shouldn't see any functional change by this commit; this is only
internal code reorganization.
NICs. (Finally!) The PCMCIA, ISA and PCI varieties are all supported,
though only the ISA and PCI ones will work on the alpha for now.
PCCARD, ISA and PCI attachments are all provided. Also provided an
ancontrol(8) utility for configuring the NIC, man pages, and updated
pccard.conf.sample. ISA cards are supported in both ISA PnP and hard-wired
mode, although you must configure the kernel explicitly to support the
hardwired mode since you have to know the I/O address and port ahead
of time.
Special thanks to Doug Ambrisko for doing the initial newbus hackery
and getting it to work in infrastructure mode.
USB-EL1202A chipset. Between this and the other two drivers, we should
have support for pretty much every USB ethernet adapter on the market.
The only other USB chip that I know of is the SMC USB97C196, and right
now I don't know of any adapters that use it (including the ones made
by SMC :/ ).
Note that the CATC chip supports a nifty feature: read and write combining.
This allows multiple ethernet packets to be transfered in a single USB
bulk in/out transaction. However I'm again having trouble with large
bulk in transfers like I did with the ADMtek chip, which leads me to
believe that our USB stack needs some work before we can really make
use of this feature. When/if things improve, I intend to revisit the
aue and cue drivers. For now, I've lost enough sanity points.
Packets are received inside USB bulk transfer callbacks, which run at
splusb() (actually splbio()). The packet input queues are meant to be
manipulated at splimp(). However the locking apparently breaks down under
certain circumstances and the input queues can get trampled.
There's a similar problem with if_ppp, which is driven by hardware/tty
interrupts from the serial driver, but which must also manipulate the
packet input queues at splimp(). The fix there is to use a netisr, and
that's the fix I used here. (I can hear you groaning back there. Hush up.)
The usb_ethersubr module maintains a single queue of its own. When a
packet is received in the USB callback routine, it's placed on this
queue with usb_ether_input(). This routine also schedules a soft net
interrupt with schednetisr(). The ISR routine then runs later, at
splnet, outside of the USB callback/interrupt context, and passes the
packet to ether_input(), hopefully in a safe manner.
The reason this is implemented as a separate module is that there are
a limited number of NETISRs that we can use, and snarfing one up for
each driver that needs it is wasteful (there will be three once I get
the CATC driver done). It also reduces code duplication to a certain
small extent. Unfortunately, it also needs to be linked in with the
usb.ko module in order for the USB ethernet drivers to share it.
Also removed some uneeded includes from if_aue.c and if_kue.c
Fix suggested by: peter
Not rejected as a hairbrained idea by: n_hibma
-U_KERNEL became negative when all all the genassym.c's were converted
to be cross-built.
Use "genassym ... > ${.TARGET}", not "genassym -o $@ ...", so that
genassym(1) doesn't need to support -o.
Removed duplicate -D_KERNEL from CFLAGS.
Removed triplicate -D_KERNEL from flags for compiling svr4_locore.s.
-U_KERNEL became negative when all all the genassym.c's were converted
to be cross-built.
Use "genassym ... > ${.TARGET}", not "genassym -o $@ ...", so that
genassym(1) doesn't need to support -o.
Removed duplicate -D_KERNEL from flags for compiling linux_locore.s.
Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
sys/modules Makefile after completing a buildworld.
History:
The bulk of this code was obtained from NetBSD approximately one year
ago (I have taken care to preserve the original NetBSD copyrights and
I thank the authors for their work.) At that time, the OSF/1 code was
what was left over from their initial bootstrapping off of OSF/1 and
did not provide support for executing shared binaries.
I have independently added support for shared libraries, and support
for some of the more obscure system calls. This code has been
available for testing and comment since January of 1999 and running on
production machines here at Duke since April.
Known working applications include:
- Netscape (all versions I've tried)
- Mathematica 3.0.2
- Splus 3.4
- ArcInfo 7.1
- Matlab (version unknown)
- SimOS
- Atom instrumented binaries (built on a real OSF/1 system)
Applications which are known not to work:
- All applications linking to libmach
- Adobe Acrobat (uses libmach)
This has been tested with applications running against shared
libraries from OSF/1 (aka Tru64) 4.0D and 4.0F.
Reviewed by: marcel, obrien
BDE-lint by: obrien
Agreed in principal to by: msmith
needed for ages, but keeps getting cut/pasted into new Makefiles.
(Once apon a time it was used to activate mount arguments in
<sys/mount.h>, but that was killed with extreme prejudice long ago)
opt_global.h and opt_svr4.h, instead of from the command line. This
brings them in-line with most of the rest of the kernel.
svr4_ioctl.c has also failed to compile with debugging for a while
now; fixed by adding systm.h and socketvar.
Some svr4 source files are automatically generated from syscalls.master;
these have been committed as consequential changes, otherwise everyone
will have to "make svr4_sysent.c".
Changes:
sys/svr4/svr4.h include opt_global.h and opt_svr4.h
sys/svr4/svr4_ioctl.c include svr4.h, sys/systm.h and sys/socketvar.h
sys/svr4/svr4_ipc.c include svr4.h
sys/svr4/svr4_resource.c include svr4.h
sys/svr4/svr4_socket.c include svr4.h
sys/svr4/svr4_ttold.c include svr4.h
sys/svr4/syscalls.master include svr4.h
sys/svr4/svr4_syscallnames.c dependent on syscalls.master
sys/svr4/svr4_sysent.c dependent on syscalls.master
sys/svr4/svr4_syscall.h dependent on syscalls.master
sys/svr4/svr4_proto.h dependent on syscalls.master
sys/modules/svr4/Makefile create opt_global.h and opt_svr4.h
packet divert at kernel for IPv6/IPv4 translater daemon
This includes queue related patch submitted by jburkhol@home.com.
Submitted by: queue related patch from jburkhol@home.com
Reviewed by: freebsd-arch, cvs-committers
Obtained from: KAME project
which it replaces. The new driver supports all of the chips supported
by the ones it replaces, as well as many DEC/Intel 21143 10/100 cards.
This also completes my quest to convert things to miibus and add
Alpha support.
NGM_BINARY2ASCII, which convert control messages to ASCII and back.
This allows control messages to be sent and received in ASCII form
using ngctl(8), which makes ngctl a lot more useful.
This also allows all the type-specific debugging code in libnetgraph
to go away -- instead, we just ask the node itself to do the ASCII
translation for us.
Currently, all generic control messages are supported, as well as
messages associated with the following node types: async, cisco,
ksocket, and ppp.
See /usr/share/examples/netgraph/ngctl for an example of using this.
Also give ngctl(8) the ability to print out incoming data and
control messages at any time. Eventually nghook(8) may be subsumed.
Several other misc. bug fixes.
Reviewed by: julian
socket attach code. We now have at least a chance for pccard devices
appearing in the future.
This is a snapshot of ongoing work. Proceed at your own risk.