Enable evdev on ppc64 as well, similar to what was done for amd64 and i386
in r340387.
Evdev can be used by X and is used by wayland to handle input devices.
Approved by: mmacy
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D18026
The loader tunable 'debug.verbose_sysinit' may be used to toggle verbosity.
This is added to the debugging section of these kernconfs to be turned off
in stable branches for clarity of intent.
MFC after: never
This turns on support for kernel dump encryption and compression, and
netdump. arm and mips platforms are omitted for now, since they are more
constrained and don't benefit as much from these features.
Reviewed by: cem, manu, rgrimes
Tested by: manu (arm64)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D15465
Add I2C OPAL driver and a set of dummy-ones to allow
all I2C things on Power8 to attach.
TODO: better async token management
Submitted by: Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Sponsored by: IBM, QCM Technologies
NVMe support is ready and should be compiled-in
to the ppc64 kernel.
Submitted by: Wojciech Macek <wma@semihalf.org>
Obtained from: Semihalf
Sponsored by: IBM, QCM Technologies
Add CXGBE driver which is required for PowerNV system.
Also, remove AHCI which does not work in BigEndian.
Created by: Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Sponsored by: QCM Technologies
Make XICS to be OPAL-aware.
Created by: Nathan Whitehorn <nwhitehorn@freebsd.org>
Submitted by: Wojciech Macek <wma@semihalf.com>
Sponsored by: FreeBSD Foundation
OPAL is a dedicated firmware acting as a hypervisor.
Add generic functions to provide all access.
Created by: Nathan Whitehorn <nw@freebsd.org>
Submitted by: Wojciech Macek <wma@freebsd.org>
supported on newer POWER hardware and in graphical VMs run on the same,
which are typically XHCI-only. The 32-bit GENERIC kernel, which
does not run on hardware made in the last decade and is unlikely to
encounter XHCI devices, is left unchanged.
PR: kern/224940
Submitted by: Gustavo Romero
MFC after: 1 week
HEAD. Enable VIMAGE in GENERIC kernels and some others (where GENERIC does
not exist) on HEAD.
Disable building LINT-VIMAGE with VIMAGE being default.
This should give it a lot more exposure in the run-up to 12 to help
us evaluate whether to keep it on by default or not.
We are also hoping to get better performance testing.
The feature can be disabled using nooptions.
Requested by: many
Reviewed by: kristof, emaste, hiren
X-MFC after: never
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D12639
- em(4) igb(4) and lem(4)
- deprecate the igb device from kernel configurations
- create a symbolic link in /boot/kernel from if_em.ko to if_igb.ko
Devices tested:
- 82574L
- I218-LM
- 82546GB
- 82579LM
- I350
- I217
Please report problems to freebsd-net@freebsd.org
Partial review from jhb and suggestions on how to *not* brick folks who
originally would have lost their igbX device.
Submitted by: mmacy@nextbsd.org
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Limelight Networks and Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8299
to add actions that run when a TCP frame is sent or received on a TCP
session in the ESTABLISHED state. In the base tree, this functionality is
only used for the h_ertt module, which is used by the cc_cdg, cc_chd, cc_hd,
and cc_vegas congestion control modules.
Presently, we incur overhead to check for hooks each time a TCP frame is
sent or received on an ESTABLISHED TCP session.
This change adds a new compile-time option (TCP_HHOOK) to determine whether
to include the hhook(9) framework for TCP. To retain backwards
compatibility, I added the TCP_HHOOK option to every configuration file that
already defined "options INET". (Therefore, this patch introduces no
functional change. In order to see a functional difference, you need to
compile a custom kernel without the TCP_HHOOK option.) This change will
allow users to easily exclude this functionality from their kernel, should
they wish to do so.
Note that any users who use a custom kernel configuration and use one of the
congestion control modules listed above will need to add the TCP_HHOOK
option to their kernel configuration.
Reviewed by: rrs, lstewart, hiren (previous version), sjg (makefiles only)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D8185
PCI-express HotPlug support is implemented via bits in the slot
registers of the PCI-express capability of the downstream port along
with an interrupt that triggers when bits in the slot status register
change.
This is implemented for FreeBSD by adding HotPlug support to the
PCI-PCI bridge driver which attaches to the virtual PCI-PCI bridges
representing downstream ports on HotPlug slots. The PCI-PCI bridge
driver registers an interrupt handler to receive HotPlug events. It
also uses the slot registers to determine the current HotPlug state
and drive an internal HotPlug state machine. For simplicty of
implementation, the PCI-PCI bridge device detaches and deletes the
child PCI device when a card is removed from a slot and creates and
attaches a PCI child device when a card is inserted into the slot.
The PCI-PCI bridge driver provides a bus_child_present which claims
that child devices are present on HotPlug-capable slots only when a
card is inserted. Rather than requiring a timeout in the RC for
config accesses to not-present children, the pcib_read/write_config
methods fail all requests when a card is not present (or not yet
ready).
These changes include support for various optional HotPlug
capabilities such as a power controller, mechanical latch,
electro-mechanical interlock, indicators, and an attention button.
It also includes support for devices which require waiting for
command completion events before initiating a subsequent HotPlug
command. However, it has only been tested on ExpressCard systems
which support surprise removal and have none of these optional
capabilities.
PCI-express HotPlug support is conditional on the PCI_HP option
which is enabled by default on arm64, x86, and powerpc.
Reviewed by: adrian, imp, vangyzen (older versions)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D6136
the Open Firmware, as provided by petitboot, for example. Note that this is
not quite complete, since RTAS instantiation still depends on callable
firmware.
MFC after: 2 weeks
have chosen different (and more traditional) stateless/statuful
NAT64 as translation mechanism. Last non-trivial commits to both
faith(4) and faithd(8) happened more than 12 years ago, so I assume
it is time to drop RFC3142 in FreeBSD.
No objections from: net@
GENERIC64 for PowerPC to use vt with it.
Much to my chagrin, PS3 support seems to have bitrotted somewhat since the
last time I tried it. ehci panics on attach and interrupt handling seems
to be faulty. This should be fixed soon...
Requirements) systems from the projects/pseries branch. This in principle
includes all IBM POWER hardware released in the last 15 years with the
exception of POWER3-based systems when run in 64-bit mode. The main
development target, however, has been the PAPR logical partition support
that is the default target in KVM on POWER and QEMU -- mileage may vary
on actual hardware at present. Much of the heavy lifting here was done
by Andreas Tobler.
Approved by: re (kib)
- update powerpc/GENERIC64 as well, suggested by mdf
- update comments so that they make sense after the change, suggested by
jhb
X-MFC after: never (change specific to head)
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
most kernels before FreeBSD 9.0. Remove such modules and respective kernel
options: atadisk, ataraid, atapicd, atapifd, atapist, atapicam. Remove the
atacontrol utility and some man pages. Remove useless now options ATA_CAM.
No objections: current@, stable@
MFC after: never
As of FreeBSD 8, this driver should not be used. Applications that use
posix_openpt(2) and openpty(3) use the pts(4) that is built into the
kernel unconditionally. If it turns out high profile depend on the
pty(4) module anyway, I'd rather get those fixed. So please report any
issues to me.
The pty(4) module is still available as a kernel module of course, so a
simple `kldload pty' can be used to run old-style pseudo-terminals.
NFS client (which I guess is no longer experimental). The fstype "newnfs"
is now "nfs" and the regular/old NFS client is now fstype "oldnfs".
Although mounts via fstype "nfs" will usually work without userland
changes, an updated mount_nfs(8) binary is needed for kernels built with
"options NFSCL" but not "options NFSCLIENT". Updated mount_nfs(8) and
mount(8) binaries are needed to do mounts for fstype "oldnfs".
The GENERIC kernel configs have been changed to use options
NFSCL and NFSD (the new client and server) instead of NFSCLIENT and NFSSERVER.
For kernels being used on diskless NFS root systems, "options NFSCL"
must be in the kernel config.
Discussed on freebsd-fs@.
stack. It means that all legacy ATA drivers are disabled and replaced by
respective CAM drivers. If you are using ATA device names in /etc/fstab or
other places, make sure to update them respectively (adX -> adaY,
acdX -> cdY, afdX -> daY, astX -> saY, where 'Y's are the sequential
numbers for each type in order of detection, unless configured otherwise
with tunables, see cam(4)).
ataraid(4) functionality is now supported by the RAID GEOM class.
To use it you can load geom_raid kernel module and use graid(8) tool
for management. Instead of /dev/arX device names, use /dev/raid/rX.