De-hardcode usage of ARM_TP_ADDRESS and RAS local storage, and move this
special purpose page to a more convenient place i.e. after the vectors high
page, more towards the end of address space. Previous location (0xe000_0000)
caused grief if KVA was to go beyond the default limit.
Note that ARM world rebuilding is required after this change since the
location of ARM_TP_ADDRESS is shared between kernel and userland.
Submitted by: Grzegorz Bernacki (gjb AT semihalf dot com)
Reviewed by: imp
Approved by: cognet (mentor)
The only downside is that it renames pmap_vac_me_harder() to pmap_fix_cache().
From Mark's email on -arm :
pmap_get_vac_flags(), pmap_vac_me_harder(), pmap_vac_me_kpmap(), and
pmap_vac_me_user() has been rewritten as pmap_fix_cache() to be more
efficient in the kernel map case. I also removed the reference to
the md.kro_mappings, md.krw_mappings, md.uro_mappings, and md.urw_mappings
counts.
In pmap_clearbit(), we can also skip over tests and writeback/invalidations
in the PVF_MOD and PVF_REF cases if those bits are not set in the pv_flag.
PVF_WRITE will turn caching back on and remove the PV_MOD bit.
In pmap_nuke_pv(), the vm_page_flag_clear(pg, PG_WRITEABLE) has been moved
to the pmap_fix_cache().
We can be more agressive in attempting to turn caching back on by calling
pmap_fix_cache() at times that may be appropriate to turn cache on
(a kernel mapping has been removed, a write has been removed or a read
has been removed and we know the mapping does not have multiple write
mappings to a page).
In pmap_remove_pages() the cpu_idcache_wbinv_all() is moved to happen
before the page tables are NULLed because the caches are virtually
indexed and virtually tagged.
In pmap_remove_all(), the pmap_remove_write(m) is added before the
page tables are NULLed because the caches are virtually indexed and
virtually tagged. This also removes the need for the caches fixing routine
(whichever is being used pmap_vac_me_harder() or pmap_fix_cache()) to be
called on any of these mappings.
In pmap_remove(), I simplified the cache cleaning process and removed
extra TLB removals. Basically if more than PMAP_REMOVE_CLEAN_LIST_SIZE
are removed, then just flush the entire cache.
- Introduce per-architecture stack_machdep.c to hold stack_save(9).
- Introduce per-architecture machine/stack.h to capture any common
definitions required between db_trace.c and stack_machdep.c.
- Add new kernel option "options STACK"; we will build in stack(9) if it is
defined, or also if "options DDB" is defined to provide compatibility
with existing users of stack(9).
Add new stack_save_td(9) function, which allows the capture of a stacktrace
of another thread rather than the current thread, which the existing
stack_save(9) was limited to. It requires that the thread be neither
swapped out nor running, which is the responsibility of the consumer to
enforce.
Update stack(9) man page.
Build tested: amd64, arm, i386, ia64, powerpc, sparc64, sun4v
Runtime tested: amd64 (rwatson), arm (cognet), i386 (rwatson)
The RAS implementation would set the end address, then the start
address. These were used by the kernel to restart a RAS sequence if
it was interrupted. When the thread switching code ran, it would
check these values and adjust the PC and clear them if it did.
However, there's a small flaw in this scheme. Thread T1, sets the end
address and gets preempted. Thread T2 runs and also does a RAS
operation. This resets end to zero. Thread T1 now runs again and
sets start and then begins the RAS sequence, but is preempted before
the RAS sequence executes its last instruction. The kernel code that
would ordinarily restart the RAS sequence doesn't because the PC isn't
between start and 0, so the PC isn't set to the start of the sequence.
So when T1 is resumed again, it is at the wrong location for RAS to
produce the correct results. This causes the wrong results for the
atomic sequence.
The window for the first race is 3 instructions. The window for the
second race is 5-10 instructions depending on the atomic operation.
This makes this failure fairly rare and hard to reproduce.
Mutexs are implemented in libthr using atomic operations. When the
above race would occur, a lock could get stuck locked, causing many
downstream problems, as you might expect.
Also, make sure to reset the start and end address when doing a syscall, or
a malicious process could set them before doing a syscall.
Reviewed by: imp, ups (thanks guys)
Pointy hat to: cognet
MFC After: 3 days
It should just contain the value we want to add, as if we're interrupted
between the add and the str, we will restart from the beginning. Just use
a register we can scratch instead.
MFC After: 1 week
ways:
(1) Cached pages are no longer kept in the object's resident page
splay tree and memq. Instead, they are kept in a separate per-object
splay tree of cached pages. However, access to this new per-object
splay tree is synchronized by the _free_ page queues lock, not to be
confused with the heavily contended page queues lock. Consequently, a
cached page can be reclaimed by vm_page_alloc(9) without acquiring the
object's lock or the page queues lock.
This solves a problem independently reported by tegge@ and Isilon.
Specifically, they observed the page daemon consuming a great deal of
CPU time because of pages bouncing back and forth between the cache
queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of
this problem turned out to be a deadlock avoidance strategy employed
when selecting a cached page to reclaim in vm_page_select_cache().
However, the root cause was really that reclaiming a cached page
required the acquisition of an object lock while the page queues lock
was already held. Thus, this change addresses the problem at its
root, by eliminating the need to acquire the object's lock.
Moreover, keeping cached pages in the object's primary splay tree and
memq was, in effect, optimizing for the uncommon case. Cached pages
are reclaimed far, far more often than they are reactivated. Instead,
this change makes reclamation cheaper, especially in terms of
synchronization overhead, and reactivation more expensive, because
reactivated pages will have to be reentered into the object's primary
splay tree and memq.
(2) Cached pages are now stored alongside free pages in the physical
memory allocator's buddy queues, increasing the likelihood that large
allocations of contiguous physical memory (i.e., superpages) will
succeed.
Finally, as a result of this change long-standing restrictions on when
and where a cached page can be reclaimed and returned by
vm_page_alloc(9) are eliminated. Specifically, calls to
vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and
return a formerly cached page. Consequently, a call to malloc(9)
specifying M_NOWAIT is less likely to fail.
Discussed with: many over the course of the summer, including jeff@,
Justin Husted @ Isilon, peter@, tegge@
Tested by: an earlier version by kris@
Approved by: re (kensmith)
caches with data caches after writing to memory. This typically
is required to make breakpoints work on ia64 and powerpc. For
those architectures the function is implemented.
- Rename PCPU_LAZY_INC into PCPU_INC
- Add the PCPU_ADD interface which just does an add on the pcpu member
given a specific value.
Note that for most architectures PCPU_INC and PCPU_ADD are not safe.
This is a point that needs some discussions/work in the next days.
Reviewed by: alc, bde
Approved by: jeff (mentor)
VM_PHYSSEG_SPARSE depending on whether the physical address space is
densely or sparsely populated with memory. The effect of this
definition is to determine which of two implementations of
vm_page_array and PHYS_TO_VM_PAGE() is used. The legacy
implementation is obtained by defining VM_PHYSSEG_DENSE, and a new
implementation that trades off time for space is obtained by defining
VM_PHYSSEG_SPARSE. For now, all architectures except for ia64 and
sparc64 define VM_PHYSSEG_DENSE. Defining VM_PHYSSEG_SPARSE on ia64
allows the entirety of my Itanium 2's memory to be used. Previously,
only the first 1 GB could be used. Defining VM_PHYSSEG_SPARSE on
sparc64 allows USIIIi-based systems to boot without crashing.
This change is a combination of Nathan Whitehorn's patch and my own
work in perforce.
Discussed with: kmacy, marius, Nathan Whitehorn
PR: 112194
- Add a default parent dma tag, similar to what has been done for sparc64.
- Before invalidating the dcache in POSTREAD, save the bits which are in the
same cachelines than our buffers, but not part of it, and restore them after
the invalidation.
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
Security:
Move the relocation definitions to the common elf header so that DTrace
can use them on one architecture targeted to a different one.
Add the additional ELF types defines in Sun's "Linker and Libraries"
manual.
whole the physical memory, cached, using 1MB section mappings. This reduces
the address space available for user processes a bit, but given the amount of
memory a typical arm machine has, it is not (yet) a big issue.
It then provides a uma_small_alloc() that works as it does for architectures
which have a direct mapping.
Add a new option, SKYEYE_WORKAROUNDS, which as the name suggests adds
workarounds for things skyeye doesn't simulate. Specifically :
- Use USART0 instead of DBGU as the console, make it not use DMA, and manually provoke an interrupt when we're done in the transmit function.
- Skyeye maintains an internal counter for clock, but apparently there's
no way to access it, so hack the timecounter code to return a value which
is increased at every clock interrupts. This is gross, but I didn't find a
better way to implement timecounters without hacking Skyeye to get the
counter value.
- Force the write-back of PTEs once we're done writing them, even if they
are supposed to be write-through. I don't know why I have to do that.
with malloc() or contigmalloc() as usual, but try to re-map the allocated
memory into a VA outside the KVA, non-cached, thus making the calls to
bus_dmamap_sync() for these buffers useless.
param.h. Per request, I've placed these just after the
_NO_NAMESPACE_POLLUTION ifndef. I've not renamed anything yet, but
may since we don't need the __.
Submitted by: bde, jhb, scottl, many others.
passing a pointer to an opaque clockframe structure and requiring the
MD code to supply CLKF_FOO() macros to extract needed values out of the
opaque structure, just pass the needed values directly. In practice this
means passing the pair (usermode, pc) to hardclock() and profclock() and
passing the boolean (usermode) to hardclock_cpu() and hardclock_process().
Other details:
- Axe clockframe and CLKF_FOO() macros on all architectures. Basically,
all the archs were taking a trapframe and converting it into a clockframe
one way or another. Now they can just extract the PC and usermode values
directly out of the trapframe and pass it to fooclock().
- Renamed hardclock_process() to hardclock_cpu() as the latter is more
accurate.
- On Alpha, we now run profclock() at hz (profhz == hz) rather than at
the slower stathz.
- On Alpha, for the TurboLaser machines that don't have an 8254
timecounter, call hardclock() directly. This removes an extra
conditional check from every clock interrupt on Alpha on the BSP.
There is probably room for even further pruning here by changing Alpha
to use the simplified timecounter we use on x86 with the lapic timer
since we don't get interrupts from the 8254 on Alpha anyway.
- On x86, clkintr() shouldn't ever be called now unless using_lapic_timer
is false, so add a KASSERT() to that affect and remove a condition
to slightly optimize the non-lapic case.
- Change prototypeof arm_handler_execute() so that it's first arg is a
trapframe pointer rather than a void pointer for clarity.
- Use KCOUNT macro in profclock() to lookup the kernel profiling bucket.
Tested on: alpha, amd64, arm, i386, ia64, sparc64
Reviewed by: bde (mostly)
MACHINE_ARCH and MACHINE). Their purpose was to be able to test
in cpp(1), but cpp(1) only understands integer type expressions.
Using such unsupported expressions introduced a number of subtle
bugs, which were discovered by compiling with -Wundef.
Move what can be moved (UMA zones creation, pv_entry_* initialization) from
pmap_init2() to pmap_init().
Create a new function, pmap_postinit(), called from cpu_startup(), to do the
L1 tables allocation.
pmap_init2() is now empty for arm as well.
the modified memory rather than using register operands that held a pointer
to the memory. The biggest effect is that we now correctly tell the
compiler that these functions change the memory that these functions
modify.
Reviewed by: cognet
variable and returns the previous value of the variable.
Tested on: i386, alpha, sparc64, arm (cognet)
Reviewed by: arch@
Submitted by: cognet (arm)
MFC after: 1 week
it to __MINSIGSTKSZ. Define MINSIGSTKSZ in <sys/signal.h>.
This is done in order to use MINSIGSTKSZ for the macro PTHREAD_STACK_MIN
in <pthread.h> (soon <limits.h>) without having to include the whole
<sys/signal.h> header.
Discussed with: bde
in the arm __swp() and sparc64 casa() and casax() functions is actually
being used as an input and output and not just the value of the register
that points to the memory location. This was the underlying source of
the mbuf refcount problems on sparc64 a while back. For arm this should be
a nop because __swp() has a constraint to clobber all memory which can
probably be removed now.
Reviewed by: alc, cognet
MFC after: 1 week
variables rather than void * variables. This makes it easier and simpler
to get asm constraints and volatile keywords correct.
MFC after: 3 days
Tested on: i386, alpha, sparc64
Compiled on: ia64, powerpc, amd64
Kernel toolchain busted on: arm
- Implement sampling modes and logging support in hwpmc(4).
- Separate MI and MD parts of hwpmc(4) and allow sharing of
PMC implementations across different architectures.
Add support for P4 (EMT64) style PMCs to the amd64 code.
- New pmcstat(8) options: -E (exit time counts) -W (counts
every context switch), -R (print log file).
- pmc(3) API changes, improve our ability to keep ABI compatibility
in the future. Add more 'alias' names for commonly used events.
- bug fixes & documentation.
into _bus.h to help with name space polution from including all of bus.h.
In a few days, I'll commit changes to the MI code to take advantage of thse
sepration (after I've made sure that these changes don't break anything in
the main tree, I've tested in my trees, but you never know...).
Suggested by: bde (in 2002 or 2003 I think)
Reviewed in principle by: jhb
critical_enter() and critical_exit() are now solely a mechanism for
deferring kernel preemptions. They no longer have any affect on
interrupts. This means that standalone critical sections are now very
cheap as they are simply unlocked integer increments and decrements for the
common case.
Spin mutexes now use a separate KPI implemented in MD code: spinlock_enter()
and spinlock_exit(). This KPI is responsible for providing whatever MD
guarantees are needed to ensure that a thread holding a spin lock won't
be preempted by any other code that will try to lock the same lock. For
now all archs continue to block interrupts in a "spinlock section" as they
did formerly in all critical sections. Note that I've also taken this
opportunity to push a few things into MD code rather than MI. For example,
critical_fork_exit() no longer exists. Instead, MD code ensures that new
threads have the correct state when they are created. Also, we no longer
try to fixup the idlethreads for APs in MI code. Instead, each arch sets
the initial curthread and adjusts the state of the idle thread it borrows
in order to perform the initial context switch.
This change is largely a big NOP, but the cleaner separation it provides
will allow for more efficient alternative locking schemes in other parts
of the kernel (bare critical sections rather than per-CPU spin mutexes
for per-CPU data for example).
Reviewed by: grehan, cognet, arch@, others
Tested on: i386, alpha, sparc64, powerpc, arm, possibly more
sys/bus_dma.h instead of being copied in every single arch. This slightly
reorders a flag that was specific to AXP and thus changes the ABI there.
The interface still relies on bus_space definitions found in <machine/bus.h>
so it cannot be included on its own yet, but that will be fixed at a later
date. Add an MD <machine/bus_dma.h> for ever arch for consistency and to
allow for future MD augmentation of the API. sparc64 makes heavy use of
this right now due to its different bus_dma implemenation.
place.
This moves the dependency on GCC's and other compiler's features into
the central sys/cdefs.h file, while the individual source files can
then refer to #ifdef __COMPILER_FEATURE_FOO where they by now used to
refer to #if __GNUC__ > 3.1415 && __BARC__ <= 42.
By now, GCC and ICC (the Intel compiler) have been actively tested on
IA32 platforms by netchild. Extension to other compilers is supposed
to be possible, of course.
Submitted by: netchild
Reviewed by: various developers on arch@, some time ago
ARM_TP_ADDRESS, where the tp will be stored. On CPUs that support it, a cache
line will be allocated and locked for this address, so that it will never go
to RAM. On CPUs that does not, a page is allocated for it (it will be a bit
slower, and is wrong for SMP, but should be fine for UP).
The tp is still stored in the mdthread struct, and at each context switch,
ARM_TP_ADDRESS gets updated.
Suggested by: davidxu
USPACE_SVC_STACK_TOP, USPACE_SVC_STACK_BOTTOM, USPACE_UNDEF_STACK_TOP,
and USPACE_UNDEF_STACK_BOTTOM look wrong to me, so I'm leaving them
alone.
Reviewed by: arch@
Remove the cache state logic : right now, it provides more problems than it
helps.
Add helper functions for mapping devices while bootstrapping.
Reorganize the code a bit, and remove dead code.
Obtained from: NetBSD (partially)
these two reasons:
1. On ia64 a function pointer does not hold the address of the first
instruction of a functions implementation. It holds the address
of a function descriptor. Hence the user(), btrap(), eintr() and
bintr() prototypes are wrong for getting the actual code address.
2. The logic forces interrupt, trap and exception entry points to
be layed-out contiguously. This can not be achieved on ia64 and is
generally just bad programming.
The MCOUNT_FROMPC_USER macro is used to set the frompc argument to
some kernel address which represents any frompc that falls outside
the kernel text range. The macro can expand to ~0U to bail out in
that case.
The MCOUNT_FROMPC_INTR macro is used to set the frompc argument to
some kernel address to represent a call to a trap or interrupt
handler. This to avoid that the trap or interrupt handler appear to
be called from everywhere in the call graph. The macro can expand
to ~0U to prevent adjusting frompc. Note that the argument is selfpc,
not frompc.
This commit defines the macros on all architectures equivalently to
the original code in sys/libkern/mcount.c. People can take it from
here...
Compile-tested on: alpha, amd64, i386, ia64 and sparc64
Boot-tested on: i386
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
to <sys/gmon.h>. Cleaned them up a little by not attempting to ifdef
for incomplete and out of date support for GUPROF in userland, as in
the sparc64 version.
It only supports sa1110 (on simics) right now, but xscale support should come
soon.
Some of the initial work has been provided by :
Stephane Potvin <sepotvin at videotron.ca>
Most of this comes from NetBSD.
level of abstraction for any and all CPU mask and CPU bitmap variables
so that platforms have the ability to break free from the hard limit
of 32 CPUs, simply because we don't have more bits in an u_int. Note
that the type is not supposed to solve massive parallelism, where
the number of CPUs can be larger than the width of the widest integral
type. As such, cpumask_t is not supposed to be a compound type. If
such would be necessary in the future, we can deal with the issues
then and there. For now, it can be assumed that the type is integral
and unsigned.
With this commit, all MD definitions start off as u_int. This allows
us to phase-in cpumask_t at our leasure without breaking anything.
Once cpumask_t is used consistently, platforms can switch to wider
(or smaller) types if such would be beneficial (or not; whatever :-)
Compile-tested on: i386
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
- Fix visibilty test for LONG_BIT and WORD_BIT. `#if defined(__FOO_VISIBLE)'
is alays wrong because __FOO_VISIBLE is always defined (to 0 for
invisibility).
sys/<arch>/include/limits.h
sys/<arch>/include/_limits.h:
- Style fixes.
Submitted by: bde
Reviewed by: bsdmike
Approved by: re (scottl)
Remove DBL_DIG, DBL_MIN, DBL_MAX and their FLT_ counterparts, they
were marked for deprecation ever since SUSv1 at least.
Only define ULLONG_MIN/MAX and LLONG_MAX if long long type is
supported.
Restore a lost comment in MI _limits.h file and remove it from
sys/limits.h where it does not belong.
to get actual constant values. This is in preparation for machine/limits.h
retirement.
Discussed on: standards@
Submitted by: Craig Rodrigues <rodrigc@attbi.com> (*)
Modified by: kan
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
under way to move the remnants of the a.out toolchain to ports. As the
comment in src/Makefile said, this stuff is deprecated and one should not
expect this to remain beyond 4.0-REL. It has already lasted WAY beyond
that.
Notable exceptions:
gcc - I have not touched the a.out generation stuff there.
ldd/ldconfig - still have some code to interface with a.out rtld.
old as/ld/etc - I have not removed these yet, pending their move to ports.
some includes - necessary for ldd/ldconfig for now.
Tested on: i386 (extensively), alpha
These types are unlikely to ever become very MD. They include:
clockid_t, ct_rune_t, fflags_t, intrmask_t, mbstate_t, off_t, pid_t,
rune_t, socklen_t, timer_t, wchar_t, and wint_t.
While moving them, make a few adjustments (submitted by bde):
o __ct_rune_t needs to be precisely `int', not necessarily __int32_t,
since the arg type of the ctype functions is int.
o __rune_t, __wchar_t and __wint_t inherit this via a typedef of
__ct_rune_t.
o Some minor wording changes in the comment blocks for ct_rune_t and
mbstate_t.
Submitted by: bde (partially)
called <machine/_types.h>.
o <machine/ansi.h> will continue to live so it can define MD clock
macros, which are only MD because of gratuitous differences between
architectures.
o Change all headers to make use of this. This mainly involves
changing:
#ifdef _BSD_FOO_T_
typedef _BSD_FOO_T_ foo_t;
#undef _BSD_FOO_T_
#endif
to:
#ifndef _FOO_T_DECLARED
typedef __foo_t foo_t;
#define _FOO_T_DECLARED
#endif
Concept by: bde
Reviewed by: jake, obrien
<stdint.h>. Previously, parts were defined in <machine/ansi.h> and
<machine/limits.h>. This resulted in two problems:
(1) Defining macros in <machine/ansi.h> gets in the way of that
header only defining types.
(2) Defining C99 limits in <machine/limits.h> adds pollution to
<limits.h>.
hardly MD, since all our platforms share the same macro. It's not
really compiler dependent either, but this helps in reducing
<machine/ansi.h> to only type definitions.