proper solution which is to not use the TERMINATE pointer, but rather
link to a halted TD. The initial fix was due to a misunderstanding
about how the EHCI hardware works. Thanks to Alan Stern for clearing
this up. This patch can increase mass storage read performance
significantly when the IRQ rate is less than 8000 IRQ/s.
Approved by: thompsa (mentor)
* libusb_strerror()
* libusb_get_driver[_np]()
* libusb_detach_kernel_driver[_np]()
- Factor out setting of non-blocking flag inside libusb.
- Add missing NULL check after libusb_get_device() call.
- Correct some wrong error codes due to copy and paste error.
PR: usb/150546
Submitted by: Robert Jenssen, Alexander Leidinger
Approved by: thompsa (mentor)
header parser uses m_pullup(9) to get access to mbuf chain.
m_pullup(9) can allocate new mbuf chain and free old one if the
space left in the mbuf chain is not enough to hold requested
contiguous bytes. Previously drivers can use stale ip/tcp header
pointer if m_pullup(9) returned new mbuf chain.
Reported by: Andrew Boyer (aboyer <> averesystems dot com)
MFC after: 10 days
port such that reading station address from second port always
returned 0xFF:0xFF:0xFF:0xFF:0xFF:0xFF Unfortunately it seems there
is no easy way to know whether SROM is shared or not. Workaround
the issue by traversing dc(4) device list and see whether we're
using second port and use station address of controller 0 as base
station address of second port.
PR: kern/79262
MFC after: 2 weeks
getting more and more popular, as source of precise time, and the gpsd
daemon from ports is using the shared memory to synchronize with ntpd.
Reviewed by: roberto
instead of using SIGISMEMBER to test every interesting signal, just
unmask the signal set and let cursig() return one, get the signal
after it returns, call reschedule_signal() after signals are blocked
again.
In kern_sigprocmask(), don't call reschedule_signal() when it is
unnecessary.
In reschedule_signal(), replace SIGISEMPTY() + SIGISMEMBER() with
sig_ffs(), rename variable 'i' to sig.
immediately written into the stack after the call. Instead let the caller
manage the "space left".
Previously, growstackstr()'s assumption causes problems with STACKSTRNUL()
where we want to be able to turn a stack into a C string, and later
pretend the NUL is not there.
This fixes a bug in STACKSTRNUL() (that grew the stack) where:
1. STADJUST() called after a STACKSTRNUL() results in an improper adjust.
This can be seen in ${var%pattern} and ${var%%pattern} evaluation.
2. Memory leak in STPUTC() called after a STACKSTRNUL().
Reviewed by: jilles
auto polling such that it made all controllers obtain link status
information from the state of the LNKRDY input signal. Broadcom
recommends disabling auto polling such that driver should rely on
PHY interrupts for link status change indications. Unfortunately it
seems some controllers(BCM5703, BCM5704 and BCM5705) have PHY
related issues so Linux took other approach to workaround it.
bge(4) didn't follow that and it used to enable auto polling to
workaround it. Restore this old behavior for BCM5700 family
controllers and BCM5705 to use auto polling. For BCM5700 and
BCM5701, it seems it does not need to enable auto polling but I
restored it for safety.
Special thanks to marius who tried lots of patches with patience.
Reported by: marius
Tested by: marius
- correct the ethernet payload remainder which
must be post-offseted by -14 bytes instead of
0 bytes. This is not very clearly defined in the
NCM specification.
- add development feature about limiting the
maximum datagram count in each NCM payload.
- zero-pad alignment data
- add TX-interval tuning sysctl
Approved by: thompsa (mentor)
Link UP state could be reported first before actual completion of
auto-negotiation. This change makes bge(4) reprogram BGE_MAC_MODE,
BGE_TX_MODE and BGE_RX_MODE register only after controller got a
valid link.
Previously rl(4) continuously checked whether there are RX events
or TX completions in forever loop. This caused TX starvation under
high RX load as well as consuming too much CPU cycles in the
interrupt handler. If interrupt was shared with other devices which
may be always true due to USB devices in these days, rl(4) also
tried to process the interrupt. This means polling(4) was the only
way to mitigate the these issues.
To address these issues, rl(4) now disables interrupts when it
knows the interrupt is ours and limit the number of iteration of
the loop to 16. The interrupt would be enabled again before exiting
interrupt handler if the driver is still running. Because RX buffer
is 64KB in size, the number of iterations in the loop has nothing
to do with number of RX packets being processed. This change
ensures sending TX frames under high RX load.
RX handler drops a driver lock to pass received frames to upper
stack such that there is a window that user can down the interface.
So rl(4) now checks whether driver is still running before serving
RX or TX completion in the loop.
While I'm here, exit interrupt handler when driver initialized
controller.
With this change, now rl(4) can send frames under high RX load even
though the TX performance is still not good(rl(4) controllers can't
queue more than 4 frames at a time so low TX performance was one of
design issue of rl(4) controllers). It's much better than previous
TX starvation and you should not notice RX performance drop with
this change. Controller still shows poor performance under high
network load but for many cases it's now usable without resorting
to polling(4).
MFC after: 2 weeks