Commit Graph

87 Commits

Author SHA1 Message Date
Kenneth D. Merry
5672fac935 Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.

This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.

libsbuf/Makefile:
	Add subr_prf.c for the new sbuf_hexdump() function.  This
	function is essentially the same function.

libsbuf/Symbol.map:
	Add a new shared library minor version, and include the
	sbuf_hexdump() function.

libsbuf/Version.def:
	Add version 1.4 of the libsbuf library.

libutil/hexdump.3:
	Document sbuf_hexdump() alongside hexdump(3), since it is
	essentially the same function.

camcontrol/Makefile:
	Add attrib.c.

camcontrol/attrib.c:
	Implementation of READ ATTRIBUTE support for camcontrol(8).

camcontrol/camcontrol.8:
	Document the new 'camcontrol attrib' subcommand.

camcontrol/camcontrol.c:
	Add the new 'camcontrol attrib' subcommand.

camcontrol/camcontrol.h:
	Add a function prototype for scsiattrib().

share/man/man9/sbuf.9:
	Document the existence of sbuf_hexdump() and point users to
	the hexdump(3) man page for more details.

sys/cam/scsi/scsi_all.c:
	Add a table of known attributes, text descriptions and
	handler functions.

	Add a new scsi_attrib_sbuf() function along with a number
	of other related functions that help decode attributes.

	scsi_attrib_ascii_sbuf() decodes ASCII format attributes.

	scsi_attrib_int_sbuf() decodes binary format attributes, and
	will pass them off to scsi_attrib_hexdump_sbuf() if they're
	bigger than 8 bytes.

	scsi_attrib_vendser_sbuf() decodes the vendor and drive
	serial number attribute.

	scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
	Information attribute that LTFS writes out.

sys/cam/scsi/scsi_all.h:
	Add a number of attribute-related structure definitions and
	other defines.

	Add function prototypes for all of the functions added in
	scsi_all.c.

sys/kern/subr_prf.c:
	Add a new function, sbuf_hexdump().  This is the same as
	the existing hexdump(9) function, except that it puts the
	result in an sbuf.

	This also changes subr_prf.c so that it can be compiled in
	userland for includsion in libsbuf.

	We should work to change this so that the kernel hexdump
	implementation is a wrapper around sbuf_hexdump() with a
	statically allocated sbuf with a drain.  That will require
	a drain function that goes to the kernel printf() buffer
	that can take a non-NUL terminated string as input.
	That is because an sbuf isn't NUL-terminated until it is
	finished, and we don't want to finish it while we're still
	using it.

	We should also work to consolidate the userland hexdump and
	kernel hexdump implemenatations, which are currently
	separate.  This would also mean making applications that
	currently link in libutil link in libsbuf.

sys/sys/sbuf.h:
	Add the prototype for sbuf_hexdump(), and add another copy
	of the hexdump flag values if they aren't already defined.

	Ideally the flags should be defined in one place but the
	implemenation makes it difficult to do properly.  (See
	above.)

Sponsored by:	Spectra Logic Corporation
MFC after:	1 week
2015-06-09 21:39:38 +00:00
Kenneth D. Merry
43518607b2 Significant upgrades to sa(4) and mt(1).
The primary focus of these changes is to modernize FreeBSD's
tape infrastructure so that we can take advantage of some of the
features of modern tape drives and allow support for LTFS.

Significant changes and new features include:

 o sa(4) driver status and parameter information is now exported via an
   XML structure.  This will allow for changes and improvements later
   on that will not break userland applications.  The old MTIOCGET
   status ioctl remains, so applications using the existing interface
   will not break.

 o 'mt status' now reports drive-reported tape position information
   as well as the previously available calculated tape position
   information.  These numbers will be different at times, because
   the drive-reported block numbers are relative to BOP (Beginning
   of Partition), but the block numbers calculated previously via
   sa(4) (and still provided) are relative to the last filemark.
   Both numbers are now provided.  'mt status' now also shows the
   drive INQUIRY information, serial number and any position flags
   (BOP, EOT, etc.) provided with the tape position information.
   'mt status -v' adds information on the maximum possible I/O size,
   and the underlying values used to calculate it.

 o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed.

   The extra devices were originally added as place holders for
   density-specific device nodes.  Some OSes (NetBSD, NetApp's OnTap
   and Solaris) have had device nodes that, when you write to them,
   will automatically select a given density for particular tape drives.

   This is a convenient way of switching densities, but it was never
   implemented in FreeBSD.  Only the device nodes were there, and that
   sometimes confused users.

   For modern tape devices, the density is generally not selectable
   (e.g. with LTO) or defaults to the highest availble density when
   the tape is rewritten from BOT (e.g. TS11X0).  So, for most users,
   density selection won't be necessary.  If they do need to select
   the density, it is easy enough to use 'mt density' to change it.

 o Protection information is now supported.  This is either a
   Reed-Solomon CRC or CRC32 that is included at the end of each block
   read and written.  On write, the tape drive verifies the CRC, and
   on read, the tape drive provides a CRC for the userland application
   to verify.

 o New, extensible tape driver parameter get/set interface.

 o Density reporting information.  For drives that support it,
   'mt getdensity' will show detailed information on what formats the
   tape drive supports, and what formats the tape drive supports.

 o Some mt(1) functionality moved into a new mt(3) library so that
   external applications can reuse the code.

 o The new mt(3) library includes helper routines to aid in parsing
   the XML output of the sa(4) driver, and build a tree of driver
   metadata.

 o Support for the MTLOAD (load a tape in the drive) and MTWEOFI
   (write filemark immediate) ioctls needed by IBM's LTFS
   implementation.

 o Improve device departure behavior for the sa(4) driver.  The previous
   implementation led to hangs when the device was open.

 o This has been tested on the following types of drives:
	IBM TS1150
	IBM TS1140
	IBM LTO-6
	IBM LTO-5
	HP LTO-2
	Seagate DDS-4
	Quantum DLT-4000
	Exabyte 8505
	Sony DDS-2

contrib/groff/tmac/doc-syms,
share/mk/bsd.libnames.mk,
lib/Makefile,
	Add libmt.

lib/libmt/Makefile,
lib/libmt/mt.3,
lib/libmt/mtlib.c,
lib/libmt/mtlib.h,
	New mt(3) library that contains functions moved from mt(1) and
	new functions needed to interact with the updated sa(4) driver.

	This includes XML parser helper functions that application writers
	can use when writing code to query tape parameters.

rescue/rescue/Makefile:
	Add -lmt to CRUNCH_LIBS.

src/share/man/man4/mtio.4
	Clarify this man page a bit, and since it contains what is
	essentially the mtio.h header file, add new ioctls and structure
	definitions from mtio.h.

src/share/man/man4/sa.4
	Update BUGS and maintainer section.

sys/cam/scsi/scsi_all.c,
sys/cam/scsi/scsi_all.h:
	Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building
	functions.

sys/cam/scsi/scsi_sa.c
sys/cam/scsi/scsi_sa.h
	Many tape driver changes, largely outlined above.

	Increase the sa(4) driver read/write timeout from 4 to 32
	minutes.  This is based on the recommended values for IBM LTO
	5/6 drives.  This may also avoid timeouts for other tape
	hardware that can take a long time to do retries and error
	recovery.  Longer term, a better way to handle this is to ask
	the drive for recommended timeout values using the REPORT
	SUPPORTED OPCODES command.  Modern IBM and Oracle tape drives
	at least support that command, and it would allow for more
	accurate timeout values.

	Add XML status generation.  This is done with a series of
	macros to eliminate as much duplicate code as possible.  The
	new XML-based status values are reported through the new
	MTIOCEXTGET ioctl.

	Add XML driver parameter reporting, using the new MTIOCPARAMGET
	ioctl.

	Add a new driver parameter setting interface, using the new
	MTIOCPARAMSET and MTIOCSETLIST ioctls.

	Add a new MTIOCRBLIM ioctl to get block limits information.

	Add CCB/CDB building routines scsi_locate_16, scsi_locate_10,
	and scsi_read_position_10().

	scsi_locate_10 implements the LOCATE command, as does the
	existing scsi_set_position() command.  It just supports
	additional arguments and features.  If/when we figure out a
	good way to provide backward compatibility for older
	applications using the old function API, we can just revamp
	scsi_set_position().  The same goes for
	scsi_read_position_10() and the existing scsi_read_position()
	function.

	Revamp sasetpos() to take the new mtlocate structure as an
	argument.  It now will use either scsi_locate_10() or
	scsi_locate_16(), depending upon the arguments the user
	supplies.  As before, once we change position we don't have a
	clear idea of what the current logical position of the tape
	drive is.

	For tape drives that support long form position data, we
	read the current position and store that for later reporting
	after changing the position.  This should help applications
	like Bacula speed tape access under FreeBSD once they are
	modified to support the new ioctls.

	Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all
	drives that report SCSI-2 or older, as well as drives that
	report an Illegal Request type error for READ POSITION with
	the long format.  So we should automatically detect drives
	that don't support the long form and stop asking for it after
	an initial try.

	Add a partition number to the sa(4) softc.

	Improve device departure handling. The previous implementation
	led to hangs when the device was open.

	If an application had the sa(4) driver open, and attempted to
	close it after it went away, the cam_periph_release() call in
	saclose() would cause the periph to get destroyed because that
	was the last reference to it.  Because destroy_dev() was
	called from the sa(4) driver's cleanup routine (sacleanup()),
	and would block waiting for the close to happen, a deadlock
	would result.

	So instead of calling destroy_dev() from the cleanup routine,
	call destroy_dev_sched_cb() from saoninvalidate() and wait for
	the callback.

	Acquire a reference for devfs in saregister(), and release it
	in the new sadevgonecb() routine when all devfs devices for
	the particular sa(4) driver instance are gone.

	Add a new function, sasetupdev(), to centralize setting
	per-instance devfs device parameters instead of repeating the
	code in saregister().

	Add an open count to the softc, so we know how many
	peripheral driver references are a result of open
       	sessions.

	Add the D_TRACKCLOSE flag to the cdevsw flags so
	that we get a 1:1 mapping of open to close calls
	instead of a N:1 mapping.

	This should be a no-op for everything except the
	control device, since we don't allow more than one
	open on non-control devices.

	However, since we do allow multiple opens on the
	control device, the combination of the open count
	and the D_TRACKCLOSE flag should result in an
	accurate peripheral driver reference count, and an
	accurate open count.

	The accurate open count allows us to release all
	peripheral driver references that are the result
	of open contexts once we get the callback from devfs.

sys/sys/mtio.h:
	Add a number of new mt(4) ioctls and the requisite data
	structures.  None of the existing interfaces been removed
	or changed.

	This includes definitions for the following new ioctls:

	MTIOCRBLIM      /* get block limits */
	MTIOCEXTLOCATE	/* seek to position */
	MTIOCEXTGET     /* get tape status */
	MTIOCPARAMGET	/* get tape params */
	MTIOCPARAMSET	/* set tape params */
	MTIOCSETLIST	/* set N params */

usr.bin/mt/Makefile:
	mt(1) now depends on libmt, libsbuf and libbsdxml.

usr.bin/mt/mt.1:
	Document new mt(1) features and subcommands.

usr.bin/mt/mt.c:
	Implement support for mt(1) subcommands that need to
	use getopt(3) for their arguments.

	Implement a new 'mt status' command to replace the old
	'mt status' command.  The old status command has been
	renamed 'ostatus'.

	The new status function uses the MTIOCEXTGET ioctl, and
	therefore parses the XML data to determine drive status.
	The -x argument to 'mt status' allows the user to dump out
	the raw XML reported by the kernel.

	The new status display is mostly the same as the old status
	display, except that it doesn't print the redundant density
	mode information, and it does print the current partition
	number and position flags.

	Add a new command, 'mt locate', that will supersede the
	old 'mt setspos' and 'mt sethpos' commands.  'mt locate'
	implements all of the functionality of the MTIOCEXTLOCATE
	ioctl, and allows the user to change the logical position
	of the tape drive in a number of ways.  (Partition,
	block number, file number, set mark number, end of data.)
	The immediate bit and the explicit address bits are
	implemented, but not documented in the man page.

	Add a new 'mt weofi' command to use the new MTWEOFI ioctl.
	This allows the user to ask the drive to write a filemark
	without waiting around for the operation to complete.

	Add a new 'mt getdensity' command that gets the XML-based
	tape drive density report from the sa(4) driver and displays
	it.  This uses the SCSI REPORT DENSITY SUPPORT command
	to get comprehensive information from the tape drive about
	what formats it is able to read and write.

	Add a new 'mt protect' command that allows getting and setting
	tape drive protection information.  The protection information
	is a CRC tacked on to the end of every read/write from and to
	the tape drive.

Sponsored by:	Spectra Logic
MFC after:	1 month
2015-02-23 21:59:30 +00:00
Alexander Motin
2c8cab2a4e Add support for General Statistics and Performance log page.
CTL already collects most of statistics reported there, so why not.

MFC after:	2 weeks
2015-02-11 16:10:31 +00:00
Kenneth D. Merry
e761f855a0 Improve SCSI Extended Inquiry VPD page (0x86) support.
sys/cam/scsi/scsi_all.h:
	In struct scsi_extended_inquiry_data:
	- Increase the length field to 2 bytes, as it is 2 bytes in SPC-4.
	- Add bit definitions for the various Activiate Microcode actions.
	- Add the Sequential Access Logical Block Protection support bit,
	  since we need that in the sa(4) driver.  (For modifications
	  that will come later.)
	- Add definitions for the various Multi I_T Nexus Microcode
	  Download modes.

sys/cam/ctl/ctl.c:
	As of SPC-4, a single report of "REPORTED LUNS DATA HAS CHANGED"
	is to be given per I_T nexus.  Once it is reported, the unit
	attention condition should be cleared for all LUNS attached to
	an I_T nexus.

	Previously that only happened when a REPORT LUNS command was
	processed.

	This behavior may be different (according to SAM-5) when the
	UA_INTLCK_CTRL bits are non-zero in the control mode page but
	CTL does not currently support that.

	So, in view of the spec, whenever we report a LUN inventory
	change unit attention, clear it on all LUNs for that
	particular I_T nexus.

	Add a new function, ctl_clear_ua() that will clear a unit
	attention on all LUNs for the given I_T nexus.

	One field in the extended inquiry data that we could potentially
	report at some point is the maximum supported sense data length.
	To do that, we would the SIM to report (via path inquiry
	perhaps) how much sense data it is able to send.

	Add comments to explain some of the bits that are set in the
	Extended Inquiry VPD page.

	Add a few comments to make it more clear which functions handle
	various VPD pages.

Sponsored by:	Spectra Logic
MFC after:	1 week
2015-01-30 05:23:39 +00:00
Alexander Motin
ef8daf3fed Add GET LBA STATUS command support to CTL.
It is implemented for LUNs backed by ZVOLs in "dev" mode and files.
GEOM has no such API, so for LUNs backed by raw devices all LBAs will
be reported as mapped/unknown.

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-12-04 11:34:19 +00:00
Alexander Motin
50d75c5b57 Fix check for vendor-specific peripheral qualifier.
Submitted by:	anton.rang@isilon.com
MFC after:	1 week
2014-11-13 18:15:05 +00:00
Alexander Motin
c3e7ba3e6d Add to CTL support for logical block provisioning threshold notifications.
For ZVOL-backed LUNs this allows to inform initiators if storage's used or
available spaces get above/below the configured thresholds.

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-11-06 00:48:36 +00:00
Alexander Motin
9a0190c9a1 Remove couple Copan's vendor-specific mode pages.
Those pages are highly system-/hardware-specific, the code is incomplete,
and so they hardly can be useful for anybody else.
2014-10-14 11:28:25 +00:00
Alexander Motin
523f047ea2 Some groundwork for later Informational Exceptions support.
This includes support for:
 - Read-Write Error Recovery mode page;
 - Informational Exceptions Control mode page;
 - Logical Block Provisioning mode page;
 - LOG SENSE command.

No real Informational Exceptions features yet. This is only a placeholder.

Sponsored by:	iXsystems, Inc.
2014-10-14 10:14:14 +00:00
Alexander Motin
8a41675372 Add support for WRITE ATOMIC (16) command and report SBC-4 compliance.
Atomic writes are only supported for ZVOLs in "dev" mode.  In other cases
atomicity can not be guarantied and so the command is blocked.
2014-10-08 07:48:36 +00:00
Alexander Motin
fb767c2ba2 Allow more commands to pass persistent reservation according to SPC-4 r37. 2014-09-18 22:22:14 +00:00
Alexander Motin
64c5167c91 Add support for "no Data-Out Buffer" (NDOB) flag of WRITE SAME (16) command. 2014-09-18 21:39:00 +00:00
Alexander Motin
13378399d6 Fix typo in defined ROD types in r269497.
MFC after:	3 days
2014-09-17 06:46:37 +00:00
Alexander Motin
5e5ac52b42 Add support for Extended INQUIRY Data (0x86) VPD page. 2014-09-11 22:40:11 +00:00
Alexander Motin
a3c5994cdf Oops, missed piece of r271311. 2014-09-09 14:20:55 +00:00
Alexander Motin
3406a2a083 Fix several issues and inconsistencies in UNMAP capabilities reporting.
This makes Windows 2012 to start using UNMAP on our disks.

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-08-06 08:54:31 +00:00
Alexander Motin
25eee848cd Add support for Windows dialect of EXTENDED COPY command, aka Microsoft ODX.
This allows to avoid extra network traffic when copying files on NTFS iSCSI
disks within one storage host by drag'n'dropping them in Windows Explorer
of Windows 8/2012.  It should also accelerate Hyper-V VM operations, etc.

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-08-04 01:16:20 +00:00
Alexander Motin
984a2ea91f Add support for VMWare dialect of EXTENDED COPY command, aka VAAI Clone.
This allows to clone VMs and move them between LUNs inside one storage
host without generating extra network traffic to the initiator and back,
and without being limited by network bandwidth.

LUNs participating in copy operation should have UNIQUE NAA or EUI IDs set.
For LUNs without these IDs VMWare will use traditional copy operations.

Beware: the above LUN IDs explicitly set to values non-unique from the VM
cluster point of view may cause data corruption if wrong LUN is addressed!

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-07-16 15:57:17 +00:00
Alexander Motin
b33b96e352 Enable TAS feature: notify initiator if its command was aborted by other.
That should make operation more kind to multi-initiator environment.
Without this, other initiators may find out that something bad happened
to their commands only via command timeout.
2014-07-08 16:38:05 +00:00
Alexander Motin
99ae56ac82 Add support for SCSI Ports (88h) VPD page. 2014-07-06 07:34:18 +00:00
Kenneth D. Merry
08df2e3eaf Add persistent reservation support to camcontrol(8).
camcontrol(8) now supports a new 'persist' subcommand that allows users to
issue SCSI PERSISTENT RESERVE IN / OUT commands.

sbin/camcontrol/Makefile:
	Add persist.c.

sbin/camcontrol/persist.c:
	New persistent reservation support for camcontrol(8).

	We have support for all known operation modes for PERSISTENT RESERVE
	IN and PERSISTENT RESERVE OUT.
	exceptions noted above.

sbin/camcontrol/camcontrol.8:
	Document the new 'persist' subcommand.

	In the section on the Transport ID (-I) option, explain what
	Transport IDs for each protocol should look like.  At some point
	some of this information could probably get moved off in a
	separate man page, either on Transport IDs alone or a man page
	documenting the Transport ID parsing code.

	Add a number of examples of persistent reservation commands.
	Persistent Reservations are complex enough that the average user
	probably won't be able to get the commands exactly right by just
	reading the man page.  These examples show a few basic and
	advanced examples of how to use persistent reservations.

sbin/camcontrol/camcontrol.h:
	Move the definition for camcontrol_optret here, so we can use it
	for the persistent reservation code.

	Add a definition for the new scsipersist() function.

sbin/camcontrol/camcontrol.c:
	Add 'persist' to the list of subcommands.

	Document 'persist' in the help text.

sys/cam/scsi/scsi_all.c:
	Add the scsi_persistent_reserve_in() and
	scsi_persistent_reserve_out() CCB building functions.

	Add a new function, scsi_transportid_sbuf().  This takes a
	SCSI Transport ID (documented in SPC-4), and prints it to
	an sbuf(9).  There are some transports (like ATA, USB, and
	SSA) for which there is no transport defined.  We need to
	come up with a reasonable thing to do if we're presented
	with a Transport ID that claims to be for one of those
	protocols.

	Add new routines scsi_get_nv() and scsi_nv_to_str().

	These functions do a table lookup to go between a string and an
	integer.  There are lots of table lookups needed in the
	persistent reservation code in camcontrol(8).

	Add a new function, scsi_parse_transportid(), along with leaf node
	functions to parse:
	FC, 1394 and SAS (scsi_parse_transportid_64bit())
	iSCSI (scsi_parse_transportid_iscsi())
	SPI (scsi_parse_transportid_spi())
	RDMA (scsi_parse_transportid_rdma())
	PCIe (scsi_parse_transportid_sop())

	Transport IDs.  Given a string with the general form proto,id these
	functions create a SCSI Transport ID structure.

sys/cam/scsi/scsi_all.h:
	Update the various persistent reservation data structures to
	SPC4r36l, but also rename some fields that were previously
	obsolete with the proper names from older SCSI specs.  This
	allows using older, obsolete persistent reservation types when
	desired.

	Add function prototypes for the new persistent reservation CCB
	building functions.

	Add a data strucure for the READ FULL STATUS service action
	of the PERSISTENT RESERVE IN command.

	Add Transport ID structures for all protocols described in SPC-4.

	Add a new series of SCSI_PROTO_XXX definitions, and
	redefine other defines in terms of these new definitions.

	Add a prototype for scsi_transportid_sbuf().

	Change a couple of "obsolete" persistent reservation data
	structure fields into something more meaningful, based on
	what the field was called when it was defined in the spec.
	(e.g. SPC, SPC-2, etc.)

	Create a new define, SPRI_MAX_LEN, for the maximum allocation
	length allowed for the PERSISTENT RESERVE IN command.

	Add data structures and enumerations for the new name/value
	translation functions.

	Add data structures for SCSI over PCIe Routing IDs.

	Bring the PERSISTENT RESERVE OUT Register and Move parameter list
	structure (struct scsi_per_res_out_parms) up to date with SPC-4.

	Add a data structure for the transport IDs that can optionally be
	appended to the basic PERSISTENT RESERVE OUT parameter list.

	Move SCSI protocol macro definitions out of the VPD page 0x83
	definition and combine them with the more up to date protocol
	definitions higher in the file.

	Add function prototypes for scsi_nv_to_str(), scsi_get_nv(),
	scsi_parse_transportid_64bit(), scsi_parse_transportid_spi(),
	scsi_parse_transportid_rdma(), scsi_parse_transportid_iscsi(),
	scsi_parse_transportid_sop(), and scsi_parse_transportid().

Sponsored by:	Spectra Logic Corporation
MFC after:	1 week
2014-07-03 23:09:44 +00:00
Alexander Motin
25c9d5e593 Add support for REPORT TIMESTAMP command.
MFC after:	2 weeks
2014-07-01 16:52:41 +00:00
Alexander Motin
1b08cb4ee7 Add more formal and strict command parsing and validation.
For every supported command define CDB length and mask of bits that are
allowed to be set.  This allows to remove bunch of checks through the code
and still make the validation more strict.  To properly do it for commands
supporting multiple service actions, formalize their parsing by adding
subtables for each of such commands.

As visible effect, this change allows to add support for REPORT SUPPORTED
OPERATION CODES command, reporting to client all the data about supported
SCSI commands, except timeouts.

MFC after:	2 weeks
2014-07-01 15:05:23 +00:00
Alexander Motin
f82388fd84 Allow MODE SENSE commands through Write Exclusive persistent reservation,
as required by SPC-4.

Report that fact in persistent reservation capabilities.

MFC after:	2 weeks
2014-06-26 09:42:00 +00:00
Alexander Motin
11b569f7cb Add support for VERIFY(10/12/16) and COMPARE AND WRITE SCSI commands.
Make data_submit backends method support not only read and write requests,
but also two new ones: verify and compare.  Verify just checks readability
of the data in specified location without transferring them outside.
Compare reads the specified data and compares them to received data,
returning error if they are different.

VERIFY(10/12/16) commands request either verify or compare from backend,
depending on BYTCHK CDB field.  COMPARE AND WRITE command executed in two
stages: first it requests compare, and then, if succeesed, requests write.
Atomicity of operation is guarantied by CTL request ordering code.

MFC after:	2 weeks
Sponsored by:	iXsystems, Inc.
2014-06-16 11:00:14 +00:00
Alexander Motin
f7ad1c4625 Oops! Few quick fixes for r264274. 2014-04-08 21:30:10 +00:00
Alexander Motin
ee7f31c068 Add support for SCSI UNMAP commands to CTL.
This patch adds support for three new SCSI commands: UNMAP, WRITE SAME(10)
and WRITE SAME(16).  WRITE SAME commands support both normal write mode
and UNMAP flag.  To properly report UNMAP capabilities this patch also adds
support for reporting two new VPD pages: Block limits and Logical Block
Provisioning.

UNMAP support can be enabled per-LUN by adding "-o unmap=on" to `ctladm
create` command line or "option unmap on" to lun sections of /etc/ctl.conf.

At this moment UNMAP supported for ramdisks and device-backed block LUNs.
It was tested to work great with ZFS ZVOLs.  For file-backed LUNs UNMAP
support is unfortunately missing due to absence of respective VFS KPI.

Reviewed by:	ken
MFC after:	1 month
Sponsored by:	iXsystems, Inc
2014-04-08 20:50:48 +00:00
Steven Hartland
c28078e903 Improve ZFS N-way mirror read performance by using load and locality
information.

The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.

The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.

Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.

This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.

The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.

With pre-fetch disabled (vfs.zfs.prefetch_disable=1):

== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s

With pre-fetch enabled (vfs.zfs.prefetch_disable=0):

== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s

In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.

The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc

These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487

Reviewed by:	gibbs, mav, will
MFC after:	2 weeks
Sponsored by:	Multiplay
2013-10-23 09:54:58 +00:00
Alexander Motin
8d36a71b76 Unify periph invalidation and destruction reporting.
Print message containing device model and serial number on invalidation.

Requested by:   glebius
MFC after:	1 week
2013-10-15 17:59:41 +00:00
Edward Tomasz Napierala
83fd94a416 Fix the (unused for now) SCSI_PROTO_iSCSI define to match style(9). 2013-08-21 07:45:47 +00:00
Alexander Motin
0181d54b6b Improve handling of 0x3F/0x0E "Reported LUNs data has changed" and 0x25/0x00
"Logical unit not supported" errors.  First initiates specific target rescan,
second -- destroys specific LUN.  That allows to automatically detect changes
in list of device LUNs.  This mechanism doesn't work when target is completely
idle, but probably that is all what can be done without active polling.

Reviewed by:	ken
Sponsored by:	iXsystems, Inc.
2013-07-13 13:35:09 +00:00
Steven Hartland
ef27aa40a5 Corrected ATA Passthrough defines from decimal to hex
Reviewed by:	scottl
MFC after:	1 week
2013-06-20 21:38:08 +00:00
Alexander Motin
ccba710262 Make CAM return and GEOM DISK pass through new GEOM::lunid attribute.
SPC-4 specification states that serial number may be property of device,
but not a specific logical unit.  People reported about FC storages using
serial number in that way, making it unusable for purposes of LUN multipath
detection.  SPC-4 states that designators associated with logical unit from
the VPD page 83h "Device Identification" should be used for that purpose.
Report first of them in the new attribute in such preference order: NAA,
EUI-64, T10 and SCSI name string.

While there, make GEOM DISK properly report GEOM::ident in XML output also
using d_getattr() method, if available.  This fixes serial numbers reporting
for SCSI disks in `geom disk list` output and confxml.

Discussed with:	gibbs, ken
Sponsored by:	iXsystems, Inc.
MFC after:	2 weeks
2013-06-12 13:36:20 +00:00
Steven Hartland
a428909068 Use the existence of ATA Information VPD to determine if we should attempt
to query ATA functionality via ATA Pass-Through (16) as this page is defined
as "must" for SATL devices, hence indicating that the device is at least
likely to support Pass-Through (16).

This eliminates errors produced by CTL when ATA Pass-Through (16) fails.

Switch ATA probe daerror call to SF_NO_PRINT to avoid errors printing out
for devices which return invalid errors.

Output details about supported and choosen delete method when verbose booted.

Reviewed by:	mav
Approved by:	pjd (mentor)
MFC after:	 1 week
2013-05-02 14:37:23 +00:00
Steven Hartland
90edda31ba Added automatic detection of non-rotating media which disables the
use of BIO queue sorting, hence optimising performance for devices
such as SSD's

Reviewed by:	scottl
Approved by:	pjd (mentor)
MFC after:	2 weeks
2013-04-26 16:31:03 +00:00
Steven Hartland
e88aa3fd2c Refactored scsi_xpt use of device_has_vpd to generic scsi_vpd_supported_page
so its available for use in generic scsi code.

This is a pre-requirement for using VPD queries to determine available SCSI
delete methods within scsi_da.

Reviewed by:	mav
Approved by:	pjd (mentor)
MFC after:	2 weeks
2013-04-26 16:11:03 +00:00
Steven Hartland
b1da0a9868 Added the ability to send ATA identify and Data Set Management (DSM) TRIM
commands to an ATA device attached via a SCSI control.

sys/cam/scsi/scsi_all.c:
        - Added scsi_ata_identify, scsi_ata_trim
          Which use ATA Pass-Through to send commands to the attached disk.

sys/cam/scsi/scsi_all.h:
        - Added defines for all missing ATA Pass-Through commands values.

        - Added scsi_ata_identify, scsi_ata_trim methods used in ATA TRIM
          support.

        - Added scsi_vpd_logical_block_prov structure used when querying for
          the supported sizes UNMAP commands.

        - Added scsi_vpd_block_limits structure used when querying for the
          supported sizes of the UNMAP command.

Reviewed by:	mav
Approved by:	pjd (mentor)
MFC after:	2 weeks
2013-04-26 15:53:22 +00:00
Steven Hartland
b3cc74dc3b Added ATA Pass-Through support to CAM
sys/cam/scsi/scsi_all.c:
        - Added scsi_ata_pass_16 method
          Which use ATA Pass-Through to send commands to the attached disk.

sys/cam/scsi/scsi_all.h:
        - Added defines for all missing ATA Pass-Through commands values.

        - Added scsi_ata_pass_16 method.

        - Fixed a comment typo while I'm here

Reviewed by:	mav
Approved by:	pjd (mentor)
MFC after:	2 weeks
2013-04-02 00:11:35 +00:00
Konstantin Belousov
abc1e60e0e Support unmapped i/o for the md(4).
The vnode-backed md(4) has to map the unmapped bio because VOP_READ()
and VOP_WRITE() interfaces do not allow to pass unmapped requests to
the filesystem. Vnode-backed md(4) uses pbufs instead of relying on
the bio_transient_map, to avoid usual md deadlock.

Sponsored by:	The FreeBSD Foundation
Tested by:	pho, scottl
2013-03-19 15:01:50 +00:00
Matt Jacob
10d4323996 Add missing VERIFY_10 definition.
MFC after:	1 month
2012-08-12 16:58:38 +00:00
Alexander Motin
e7493b2841 Add scsi_extract_sense_ccb() -- wrapper around scsi_extract_sense_len().
It allows to remove number of duplicate checks from several places.
2012-06-23 12:32:53 +00:00
Alexander Motin
0191d9b367 One more major cam_periph_error() rewrite to improve error handling and
reporting. It includes:
 - removing of error messages controlled by bootverbose, replacing them
with more universal and informative debugging on CAM_DEBUG_INFO level,
that is now built into the kernel by default;
 - more close following to the arguments submitted by caller, such as
SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which
errors are usual/expected at this point and which are really informative;
 - adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller
specify how much assistance it needs at this point; previously consumers
controlled that by not calling cam_periph_error() at all, but that made
behavior inconsistent and debugging complicated;
 - tuning debug messages and taken actions order to make debugging output
more readable and cause-effect relationships visible;
 - making camperiphdone() (common device recovery completion handler) to
also use cam_periph_error() in most cases, instead of own dumb code;
 - removing manual sense fetching code from cam_periph_error(); I was told
by number of people that it is SIM obligation to fetch sense data, so this
code is useless and only significantly complicates recovery logic;
 - making ada, da and pass driver to use cam_periph_error() with new limited
recovery options to handle error recovery and debugging in common way;
as one of results, CAM_REQUEUE_REQ and other retrying statuses are now
working fine with pass driver, that caused many problems before.
 - reverting r186891 by raj@ to avoid burning few seconds in tight DELAY()
loops on device probe, while device simply loads media; I think that problem
may already be fixed in other way, and even if it is not, solution must be
different.

Sponsored by:	iXsystems, Inc.
MFC after:	2 weeks
2012-06-09 13:07:44 +00:00
Alexander Motin
3d9a151daf Remove declaration of scsi_interpret_sense(), removed 11 years ago. 2012-06-06 17:28:46 +00:00
Alexander Motin
3089bb2e84 MFprojects/zfsd:
- Add low-level support for SATA Enclosure Management Bridge (SEMB)
devices -- SATA equivalents of the SCSI SES/SAF-TE devices.
 - Add some utility functions for SCSI SAF-TE devices access.

Sponsored by:	iXsystems, Inc.
2012-05-24 11:07:39 +00:00
Kenneth D. Merry
e6bd5983ca Add CAM infrastructure to allow reporting when a drive's long read capacity
data changes.

cam_ccb.h:	Add a new advanced information type, CDAI_TYPE_RCAPLONG,
		for long read capacity data.

cam_xpt_internal.h:
		Add a read capacity data pointer and length to struct cam_ed.

cam_xpt.c:	Free the read capacity buffer when a device goes away.
		While we're here, make sure we don't leak memory for other
		malloced fields in struct cam_ed.

scsi_all.c:	Update the scsi_read_capacity_16() to take a uint8_t * and
		a length instead of just a pointer to the parameter data
		structure.  This will hopefully make this function somewhat
		immune to future changes in the parameter data.

scsi_all.h:	Add some extra bit definitions to struct
		scsi_read_capacity_data_long, and bump up the structure
		size to the full size specified by SBC-3.

		Change the prototype for scsi_read_capacity_16().

scsi_da.c:	Register changes in read capacity data with the transport
		layer.  This allows the transport layer to send out an
		async notification to interested parties.  Update the
		dasetgeom() API.

		Use scsi_extract_sense_len() instead of
		scsi_extract_sense().

scsi_xpt.c:	Add support for the new CDAI_TYPE_RCAPLONG advanced
		information type.

		Make sure we set the physpath pointer to NULL after freeing
		it.  This allows blindly freeing it in the struct cam_ed
		destructor.

sys/param.h:	Bump __FreeBSD_version from 1000005 to 1000006 to make it
		easier for third party drivers to determine that the read
		capacity data async notification is available.

camcontrol.c,
mptutil/mpt_cam.c:
		Update these for the new scsi_read_capacity_16() argument
		structure.

Sponsored by:	Spectra Logic
2012-01-26 18:09:28 +00:00
Alexander Motin
9e259819a6 Add BIO_DELETE support for SCSI Direct Access devices (da).
Depending on device capabilities use different methods to implement it.
Currently used method can be read/set via kern.cam.da.X.delete_method
sysctls. Possible values are:
 NONE - no provisioning support reported by the device;
 DISABLE - provisioning support was disabled because of errors;
 ZERO - use WRITE SAME (10) command to write zeroes;
 WS10 - use WRITE SAME (10) command with UNMAP bit set;
 WS16 - use WRITE SAME (16) command with UNMAP bit set;
 UNMAP - use UNMAP command (equivalent of the ATA DSM TRIM command).
The last two methods (UNMAP and WS16) are defined by SBC specification and
the UNMAP method is the most advanced one. The rest of methods I've found
supported in Linux, and as soon as they were trivial to implement, then
why not? Hope they will be useful in some cases.

Unluckily I have no devices properly reporting parameters of the logical
block provisioning support via respective VPD pages (0xB0 and 0xB2). So
all info I have/use now is the flag telling whether logical block
provisioning is supported or not. As result, specific methods chosen now
by trying different ones in order (UNMAP, WS16, DISABLE) and checking
completion status to fallback if needed. I don't expect problems from this,
as if something go wrong, it should just disable itself. It may disable
even too aggressively if only some command parameter misfit.

Unlike Linux, which executes each delete with separate request, I've
implemented here the same request aggregation as implemented in ada driver.
Tests on SSDs I have show much better results doing it this way: above
8GB/s of the linear delete on Intel SATA SSD on LSI SAS HBA (mps).

Reviewed by:	silence on scsi@
MFC after:	2 month
Sponsored by:	iXsystems, Inc.
2012-01-13 10:21:17 +00:00
Kenneth D. Merry
130f4520cb Add the CAM Target Layer (CTL).
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003.  It has been shipping in
Copan (now SGI) products since 2005.

It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license.  The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.

Some CTL features:

 - Disk and processor device emulation.
 - Tagged queueing
 - SCSI task attribute support (ordered, head of queue, simple tags)
 - SCSI implicit command ordering support.  (e.g. if a read follows a mode
   select, the read will be blocked until the mode select completes.)
 - Full task management support (abort, LUN reset, target reset, etc.)
 - Support for multiple ports
 - Support for multiple simultaneous initiators
 - Support for multiple simultaneous backing stores
 - Persistent reservation support
 - Mode sense/select support
 - Error injection support
 - High Availability support (1)
 - All I/O handled in-kernel, no userland context switch overhead.

(1) HA Support is just an API stub, and needs much more to be fully
    functional.

ctl.c:			The core of CTL.  Command handlers and processing,
			character driver, and HA support are here.

ctl.h:			Basic function declarations and data structures.

ctl_backend.c,
ctl_backend.h:		The basic CTL backend API.

ctl_backend_block.c,
ctl_backend_block.h:	The block and file backend.  This allows for using
			a disk or a file as the backing store for a LUN.
			Multiple threads are started to do I/O to the
			backing device, primarily because the VFS API
			requires that to get any concurrency.

ctl_backend_ramdisk.c:	A "fake" ramdisk backend.  It only allocates a
			small amount of memory to act as a source and sink
			for reads and writes from an initiator.  Therefore
			it cannot be used for any real data, but it can be
			used to test for throughput.  It can also be used
			to test initiators' support for extremely large LUNs.

ctl_cmd_table.c:	This is a table with all 256 possible SCSI opcodes,
			and command handler functions defined for supported
			opcodes.

ctl_debug.h:		Debugging support.

ctl_error.c,
ctl_error.h:		CTL-specific wrappers around the CAM sense building
			functions.

ctl_frontend.c,
ctl_frontend.h:		These files define the basic CTL frontend port API.

ctl_frontend_cam_sim.c:	This is a CTL frontend port that is also a CAM SIM.
			This frontend allows for using CTL without any
			target-capable hardware.  So any LUNs you create in
			CTL are visible in CAM via this port.

ctl_frontend_internal.c,
ctl_frontend_internal.h:
			This is a frontend port written for Copan to do
			some system-specific tasks that required sending
			commands into CTL from inside the kernel.  This
			isn't entirely relevant to FreeBSD in general,
			but can perhaps be repurposed.

ctl_ha.h:		This is a stubbed-out High Availability API.  Much
			more is needed for full HA support.  See the
			comments in the header and the description of what
			is needed in the README.ctl.txt file for more
			details.

ctl_io.h:		This defines most of the core CTL I/O structures.
			union ctl_io is conceptually very similar to CAM's
			union ccb.

ctl_ioctl.h:		This defines all ioctls available through the CTL
			character device, and the data structures needed
			for those ioctls.

ctl_mem_pool.c,
ctl_mem_pool.h:		Generic memory pool implementation used by the
			internal frontend.

ctl_private.h:		Private data structres (e.g. CTL softc) and
			function prototypes.  This also includes the SCSI
			vendor and product names used by CTL.

ctl_scsi_all.c,
ctl_scsi_all.h:		CTL wrappers around CAM sense printing functions.

ctl_ser_table.c:	Command serialization table.  This defines what
			happens when one type of command is followed by
			another type of command.

ctl_util.c,
ctl_util.h:		CTL utility functions, primarily designed to be
			used from userland.  See ctladm for the primary
			consumer of these functions.  These include CDB
			building functions.

scsi_ctl.c:		CAM target peripheral driver and CTL frontend port.
			This is the path into CTL for commands from
			target-capable hardware/SIMs.

README.ctl.txt:		CTL code features, roadmap, to-do list.

usr.sbin/Makefile:	Add ctladm.

ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c:		ctladm(8) is the CTL management utility.
			It fills a role similar to camcontrol(8).
			It allow configuring LUNs, issuing commands,
			injecting errors and various other control
			functions.

usr.bin/Makefile:	Add ctlstat.

ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c:	ctlstat(8) fills a role similar to iostat(8).
			It reports I/O statistics for CTL.

sys/conf/files:		Add CTL files.

sys/conf/NOTES:		Add device ctl.

sys/cam/scsi_all.h:	To conform to more recent specs, the inquiry CDB
			length field is now 2 bytes long.

			Add several mode page definitions for CTL.

sys/cam/scsi_all.c:	Handle the new 2 byte inquiry length.

sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c:	Update for 2 byte inquiry length field.

scsi_da.h:		Add versions of the format and rigid disk pages
			that are in a more reasonable format for CTL.

amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC:	Add device ctl.

i386/conf/PAE:		The CTL frontend SIM at least does not compile
			cleanly on PAE.

Sponsored by:	Copan Systems, SGI and Spectra Logic
MFC after:	1 month
2012-01-12 00:34:33 +00:00
Alexander Motin
f67daabb25 Use READ CAPACITY(16) to get information about device physical sectors.
As soon as not all devices support READ CAPACITY(16), automatically fall
back to READ CAPACITY(10) if CAM_REQ_INVALID or SSD_KEY_ILLEGAL_REQUEST
status returned.

It also provides first bits of information about Logical Block Provisioning
(aka UNMAP/TRIM) support by the device.
2011-12-23 19:12:02 +00:00
Alexander Motin
90a987e4de Make cd driver to handle Audio CDs, reporting their 2352 bytes sectors to
GEOM and using READ CD command for reading data, same as acd driver does.
Audio CDs identified by checking respective bit of the control field of
the first track in TOC.

This fixes bunch of error messages during boot (GEOM taste) with Audio CD
inserted and allows to grab Audio CD image using just dd.

MFC after:	1 month
2011-12-22 16:40:35 +00:00
Kenneth D. Merry
1cc052e80f Add descriptor sense support to CAM, and honor sense residuals properly in
CAM.

Desriptor sense is a new sense data format that originated in SPC-3.  Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.

This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.

This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.

camcontrol.c:	Change uses of scsi_extract_sense() to use
		scsi_extract_sense_len().

		Use scsi_get_sks() instead of accessing sense key specific
		data directly.

scsi_modes:	Update the control mode page to the latest version (SPC-4).

scsi_cmds.c,
scsi_target.c:	Change references to struct scsi_sense_data to struct
		scsi_sense_data_fixed.  This should be changed to allow the
		user to specify fixed or descriptor sense, and then use
		scsi_set_sense_data() to build the sense data.

ps3cdrom.c:	Use scsi_set_sense_data() instead of setting sense data
		manually.

cam_periph.c:	Use scsi_extract_sense_len() instead of using
		scsi_extract_sense() or accessing sense data directly.

cam_ccb.h:	Bump the CAM_VERSION from 0x15 to 0x16.  The change of
		struct scsi_sense_data from 32 to 252 bytes changes the
		size of struct ccb_scsiio, but not the size of union ccb.
		So the version must be bumped to prevent structure
		mis-matches.

scsi_all.h:	Lots of updated SCSI sense data and other structures.

		Add function prototypes for the new sense data functions.

		Take out the inline implementation of scsi_extract_sense().
		It is now too large to put in a header file.

		Add macros to calculate whether fields are present and
		filled in fixed and descriptor sense data

scsi_all.c:	In scsi_op_desc(), allow the user to pass in NULL inquiry
		data, and we'll assume a direct access device in that case.

		Changed the SCSI RESERVED sense key name and description
		to COMPLETED, as it is now defined in the spec.

		Change the error recovery action for a number of read errors
		to prevent lots of retries when the drive has said that the
		block isn't accessible.  This speeds up reconstruction of
		the block by any RAID software running on top of the drive
		(e.g. ZFS).

		In scsi_sense_desc(), allow for invalid sense key numbers.
		This allows calling this routine without checking the input
		values first.

		Change scsi_error_action() to use scsi_extract_sense_len(),
		and handle things when invalid asc/ascq values are
		encountered.

		Add a new routine, scsi_desc_iterate(), that will call the
		supplied function for every descriptor in descriptor format
		sense data.

		Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
		which build descriptor and fixed format sense data.  They
		currently default to fixed format sense data.

		Add a number of scsi_get_*() functions, which get different
		types of sense data fields from either fixed or descriptor
		format sense data, if the data is present.

		Add a number of scsi_*_sbuf() functions, which print
		formatted versions of various sense data fields.  These
		functions work for either fixed or descriptor sense.

		Add a number of scsi_sense_*_sbuf() functions, which have a
		standard calling interface and print the indicated field.
		These functions take descriptors only.

		Add scsi_sense_desc_sbuf(), which will print a formatted
		version of the given sense descriptor.

		Pull out a majority of the scsi_sense_sbuf() function and
		put it into scsi_sense_only_sbuf().  This allows callers
		that don't use struct ccb_scsiio to easily utilize the
		printing routines.  Revamp that function to handle
		descriptor sense and use the new sense fetching and
		printing routines.

		Move scsi_extract_sense() into scsi_all.c, and implement it
		in terms of the new function, scsi_extract_sense_len().
		The _len() version takes a length (which should be the
		sense length - residual) and can indicate which fields are
		present and valid in the sense data.

		Add a couple of new scsi_get_*() routines to get the sense
		key, asc, and ascq only.

mly.c:		Rename struct scsi_sense_data to struct
		scsi_sense_data_fixed.

sbp_targ.c:	Use the new sense fetching routines to get sense data
		instead of accessing it directly.

sbp.c:		Change the firewire/SCSI sense data transformation code to
		use struct scsi_sense_data_fixed instead of struct
		scsi_sense_data.  This should be changed later to use
		scsi_set_sense_data().

ciss.c:		Calculate the sense residual properly.  Use
		scsi_get_sense_key() to fetch the sense key.

mps_sas.c,
mpt_cam.c:	Set the sense residual properly.

iir.c:		Use scsi_set_sense_data() instead of building sense data by
		hand.

iscsi_subr.c:	Use scsi_extract_sense_len() instead of grabbing sense data
		directly.

umass.c:	Use scsi_set_sense_data() to build sense data.

		Grab the sense key using scsi_get_sense_key().

		Calculate the sense residual properly.

isp_freebsd.h:	Use scsi_get_*() routines to grab asc, ascq, and sense key
		values.

		Calculate and set the sense residual.

MFC after:	3 days
Sponsored by:	Spectra Logic Corporation
2011-10-03 20:32:55 +00:00