in which the source code is written. This is controlled by the CSTD
variable, which can have one of the following values:
- "k&r" => -traditional
- "c89" or "c90" => -std=iso9899:1990
- "c94" or "c95" => -std=iso9899:199409
- "c99" => -std=iso9899:1999
The corresponding option is added to CFLAGS regardless of WARNS level.
This also removes -ansi from WARNS level 6, but adds -Wno-long-long to
work around a weird gcc bug (-ansi, which is supposedly equivalent to
-std=iso9899:1990, seems to turn long long warnings off instead of on)
If CSTD is undefined, CFLAGS are unchanged except for the -ansi /
-Wno-long-long change mentioned above for WARNS level 6.
These fields can be left as NULL if ffs_vget() allocates an inode but
fails before the dinode memory has been allocated. There are two cases
when this can occur: when we lose a race and another process has added
the inode to the hash, and when reading the inode off disk fails.
The bug was observed by Kris on one of the package-building machines.
See http://marc.theaimsgroup.com/?l=freebsd-current&m=105172731013411&w=2
In Kris's case, it was the bread() that failed because of a disk error.
The alternative to this patch is to ensure that ffs_vget() does not call
vput() when the inode that hasn't been properly initialised.
project by providing documentation (under NDA) and hardware for
testing. This commit is the first result of the cooperation, and
adds support for several of their new controllers that we didn't
support before (and probably newer would have without this arrangement).
Add support for the Promise SATA150 TX2/TX4 and the Promise TX4000
controllers. This also adds support for various motherboard fitted
Promise SATA/ATA chips.
Note that this code uses memory mapped registers to minimize overhead.
I belive FreeBSD has made another first in the Open Source world
by being able to release support for this :)
to 0 initially. It seems that the ia64 backend isn't as "smart" as the
i386 backend, which realized that those variables were only set or used
when error == 0, and thus were not used uninitialized.
things over floppy size limits, I can exclude it for release builds or
something like that. Most of the changes are to get the load_elf.c file
into a seperate elf32_ or elf64_ namespace so that you can have two
ELF loaders present at once. Note that for 64 bit kernels, it actually
starts up the kernel already in 64 bit mode with paging enabled. This
is really easy because we have a known minimum feature set.
Of note is that for amd64, we have to pass in the bios int 15 0xe821
memory map because once in long mode, you absolutely cannot make VM86
calls. amd64 does not use 'struct bootinfo' at all. It is a pure loader
metadata startup, just like sparc64 and powerpc. Much of the
infrastructure to support this was adapted from sparc64.