with system statistics monitoring tools (such as systat, vmstat...)
because of stopping RTC interrupts generation.
Restore all the timers (RTC and i8254) atomically.
Reviewed by: bde
MFC after: 1 week
Instead introduce the [M] prefix to existing keywords. e.g.
MSTD is the MP SAFE version of STD. This is prepatory for a
massive Giant lock pushdown. The old MPSAFE keyword made
syscalls.master too messy.
Begin comments MP-Safe procedures with the comment:
/*
* MPSAFE
*/
This comments means that the procedure may be called without
Giant held (The procedure itself may still need to obtain
Giant temporarily to do its thing).
sv_prepsyscall() is now MP SAFE and assumed to be MP SAFE
sv_transtrap() is now MP SAFE and assumed to be MP SAFE
ktrsyscall() and ktrsysret() are now MP SAFE (Giant Pushdown)
trapsignal() is now MP SAFE (Giant Pushdown)
Places which used to do the if (mtx_owned(&Giant)) mtx_unlock(&Giant)
test in syscall[2]() in */*/trap.c now do not. Instead they
explicitly unlock Giant if they previously obtained it, and then
assert that it is no longer held to catch broken system calls.
Rebuild syscall tables.
multiple times, others do. The last strategy, which was to assume
that already routed interrupts were good and just return them doesn't
work for some laptops. So, instead, we have a new strategy: we notice
that we have an interrupt that's already routed. We go ahead and try
to route it, none the less. We will assume that it is correctly
routed, even if the route fails. We still assume that other failures
in the bios32 call are because the interrupt is NOT routed.
Note: some laptops do not support the bios32 interface to PCI BIOS and
we need to call it via the INT 2A interface. That is another windmill
to till at later.
Also correct a minor typo and minor whitespace nits.
Strong MFC candidate.
level implementation stuff out of machine/globaldata.h to avoid exposing
UPAGES to lots more places. The end result is that we can double
the kernel stack size with 'options UPAGES=4' etc.
This is mainly being done for the benefit of a MFC to RELENG_4 at some
point. -current doesn't really need this so much since each interrupt
runs on its own kstack.
timeout callwheel and buffer cache, out of the platform specific areas
and into the machine independant area. i386 and alpha adjusted here.
Other cpus can be fixed piecemeal.
Reviewed by: freebsd-smp, jake
purely informational and can give some advance indications of tuning
problems. These are i386 only for now as it seems that the i386 is
the only one suffering kvm pressure.
trap_fatal() to make restarting from panic's slightly easier. Before if
one did 'w 0 0' in ddb, the longjmp in ddb inside of trap_fatal() would
result in Giant being held (or recursed one level deeper) which led to
problems later on. You can now drop to teh debugger, do 'w 0 0', and
continue w/o a problem.
and such was just a bad idea and one that users should be forced to
enable if they want it. This patch introduces a hw.pci.enable_pcibios
tunable for those people. This does not impact the pcibios interrupt
routing at all.
Approved by: peter, msmith
some bios vendors took it apon themselves to "censor" the
host->pci bridges from PCIBIOS callers, even when the caller
explicitly asks for them. This includes certain Compaq machines
(eg: DL360) and some laptops.
If we detect this, shut down pcibios and revert to using IO
port bashing.
Under -current, apcica does a better job anyway.
information. The default limits only effect machines with > 1GB of ram
and can be overriden with two new kernel conf variables VM_SWZONE_SIZE_MAX
and VM_BCACHE_SIZE_MAX, or with loader variables kern.maxswzone and
kern.maxbcache. This has the effect of leaving more KVM available for
sizing NMBCLUSTERS and 'maxusers' and should avoid tripups where a sysad
adds memory to a machine and then sees the kernel panic on boot due to
running out of KVM.
Also change the default swap-meta auto-sizing calculation to allocate half
of what it was previously allocating. The prior defaults were way too high.
Note that we cannot afford to run out of swap-meta structures so we still
stay somewhat conservative here.
but it's better than the buggy behavior we have now. If we contigmalloc()
buffers in bus_dmamem_alloc(), then we must configfree() them in
bus_dmamem_free(). Trying to free() them is wrong, and will cause
a panic (at least, it does on the alpha.)
I tripped over this when trying to kldunload my busdma-ified if_rl
driver.
traps, so that ddb can keep control (almost) no matter how it is
entered. This breaks time-critical interrupts while the system is
stopped in ddb, but I haven't noticed any significant problems except
that applications become confused about the time. Lost time will be
adjusted for later. Anyway, the half-baked disabling of interrupts in
Debugger() gives the same problems for the usual way of entering ddb.
bug for bug compatibility to ddb trap handlers after fixing the debugger
trap gates to be interrupt gates, but the fix was never committed. Now
I want the fix to apply to ddb.
- fix segment limit mis-calculation for GCODE_SEL, GDATA_SEL, GPRIV_SEL,
LUCODE_SEL and LUDATA_SEL.
- move `loader(8) metadata' related printf() after cninit().
- use atop macro (address to pages) for segment limit calculation
instead of i386_btop macro (bytes to pages).
- fix style bugs for the declarations of ints.
Reviewed by: bde, msmith (and arch & audit ML)
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
are a really nasty interface that should have been killed long ago
when 'ptrace(PT_[SG]ETREGS' etc came along. The entity that they
operate on (struct user) will not be around much longer since it
is part-per-process and part-per-thread in a post-KSE world.
gdb does not actually use this except for the obscure 'info udot'
command which does a hexdump of as much of the child's 'struct user'
as it can get. It carries its own #defines so it doesn't break
compiles.
dynamic symbol table buckets and chains. The sparc64 toolchain uses 32
bit .hash entries, unlike other 64 bits architectures (alpha), which use
64 bit entries.
Discussed with: dfr, jdp
were indices in a dense array. The cpuids are a sparse set and treat
them as such, setting up containers only for CPUs activated during
mb_init().
- Fix netstat(1) and systat(1) to treat the per-CPU stats area as a sparse
map, in accordance with the above.
This allows us to properly boot with certain CPUs disactivated. However, if
we later decide to re-activate said CPUs, we will barf until we decide to
implement CPU spinon/spinoff callback hooks to allow for said CPUs' per-CPU
containers to get configured on their activation.
Reported by: mjacob
Partially (sys/ diffs) Submitted by: mjacob
blown over by the Hurricane and had a house dropped on you by the Tornado.
Now it's time to have your parade rained on by... the Typhoon!
This commit adds driver support for 3Com 3cR990 10/100 ethernet
adapters based on the Typhoon I and Typhoon II chipsets. This is actually
a port of the OpenBSD driver with many hacks by me.
No Virginia, there isn't any support for the hardware crypto yet. However
there is support for TCP/IP checksum offload and VLANs.
Special thanks go to Jason Wright, Aaron Campbell and Theo de Raadt for
squeezing enough info out of 3Com to get this written, and for doing
most of the hard work.
Manual page is included. Compiled as a module and included in GENERIC.
the non-reserved bits of dr7.
During context restore, load dr7 in such a way as to not
disturb reserved bits.
machdep.c: Don't explicitly disallow the setting of the reserved bits
in dr7 since we now keep from setting them when we load dr7
from the PCB.
This allows one to write back the dr7 value obtained from
the system without triggering an EINVAL (one of the
reserved bits always seems to be set after taking a trace
trap).
MFC after: 7 days
we are required to do if we let user processes use the extra 128 bit
registers etc.
This is the base part of the diff I got from:
http://www.issei.org/issei/FreeBSD/sse.html
I believe this is by: Mr. SUZUKI Issei <issei@issei.org>
SMP support apparently by: Takekazu KATO <kato@chino.it.okayama-u.ac.jp>
Test code by: NAKAMURA Kazushi <kaz@kobe1995.net>, see
http://kobe1995.net/~kaz/FreeBSD/SSE.en.html
I have fixed a couple of style(9) deviations. I have some followup
commits to fix a couple of non-style things.
'dwatch'. The new commands install hardware watchpoints if supported
by the architecture and if there are enough registers to cover the
desired memory area.
No objection by: audit@, hackers@
MFC after: 2 weeks
Also removed some spl's and added some VM mutexes, but they are not actually
used yet, so this commit does not really make any operational changes
to the system.
vm_page.c relates to vm_page_t manipulation, including high level deactivation,
activation, etc... vm_pageq.c relates to finding free pages and aquiring
exclusive access to a page queue (exclusivity part not yet implemented).
And the world still builds... :-)
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
lock until after grabbing the sched_lock to avoid CURSIG racing with
psignal.
- Don't grab Giant for addupc_task() as it isn't needed.
Reported by: tegge (signal race), bde (addupc_task a while back)
startup routine more closely matches that of alpha and ia64. At some
point the common mutexes shared across all platforms probably should move
into sys/kern_mutex.c.
trace code that was brought over from NetBSD.)
- Check for "syscall_with_err_pushed" as the label prior to a syscall trap
frame rather than "Xlcall_syscall" and "Xint0x80_syscall". We don't
have a valid trapframe during the short range of code that those two
symbols now cover.
- Simplify db_next_frame() to avoid duplicating the code for the different
trap frame types.
- Don't try to trace a swapped-out process. (Brought over from NetBSD via
the new alpha trace code.)
- Replace some very poorly thought out API hacks that should have been
fixed a long while ago.
- Provide some much more flexible search functions (resource_find_*())
- Use strings for storage instead of an outgrowth of the rather
inconvenient temporary ioconf table from config(). We already had a
fallback to using strings before malloc/vm was running anyway.
- move the sysctl code to kern_intr.c
- do not use INTRCNT_COUNT, but rather eintrcnt - intrcnt to determine
the length of the intrcnt array
- move the declarations of intrnames, eintrnames, intrcnt and eintrcnt
from machine-dependent include files to sys/interrupt.h
- remove the hw.nintr sysctl, it is not needed.
- fix various style bugs
Requested by: bde
Reviewed by: bde (some time ago)
from cpu_switch(), curproc has been changed, but the sched_lock owner will
not be updated until we return to mi_switch(), thus we deadlock against
ourselves. As a workaround, push the acquire and release of sched_lock out
to the callers of set_user_ldt(). Note that we can't use a mtx_assert() in
set_user_ldt for the same reason.
Sleuting by: tmm
Tested by: tmm, dougb
simpler for npx exceptions that start as traps (no assembly required...)
and works better for npx exceptions that start as interrupts (there is
no longer a problem for nested interrupts).
Submitted by: original (pre-SMPng) version by luoqi
npxsave() went to great lengths to excecute fnsave with interrupts
enabled in case executing it froze the CPU. This case can't happen,
at least for Intel CPU/NPX's. Spurious IRQ13's don't imply spurious
freezes. Anyway, the complications were usually no-ops because IRQ13
is not used on i486's and newer CPUs, and because SMPng broke them in
rev.1.84. Forcible enabling of interrupts was changed to
write_eflags(old_eflags), but since SMPng usually calls npxsave() from
cpu_switch() with interrupts disabled, write_eflags() usually just
kept interrupts disabled.
npxinit() didn't have the usual race because it doesn't save to curpcb,
but it may have had a worse form of it since it uses the npx when it
doesn't "own" it. I'm not sure if locking prevented this. npxinit()
is normally caled with the proc lock but not sched_lock.
Use a critical region to protect pushing of curproc's npx state to
curpcb in npxexit(). Not doing so was harmless since it at worst
saved a wrong state to a dieing pcb.
Not doing this was fairly harmless because savectx() is only called
for panic dumps and the bug could at worse reset the state.
savectx() is still missing saving of (volatile) debug registers, and
still isn't called for core dumps.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
- Attach a writable sysctl to bootverbose (debug.bootverbose) so it can be
toggled after boot.
- Move the printf of the version string to a SI_SUB_COPYRIGHT SYSINIT just
afer the display of the copyright message instead of doing it by hand in
three MD places.
If for some reason DEVFS is undesired, the "NODEVFS" option is
needed now.
Pending any significant issues, DEVFS will be made mandatory in
-current on july 1st so that we can start reaping the full
benefits of having it.
pcb for fork(). It was possible for the state to be saved twice when an
interrupt handler saved it concurrently. This corrupted (reset) the state
because fnsave has the (in)convenient side effect of doing an implicit
fninit. Mundane null pointer bugs were not possible, because we save to
an "arbitrary" process's pcb and not to the "right" place (npxproc).
Push the parent's %gs to the pcb for fork(). Changes to %gs before
fork() were not preserved in the child unless an accidental context
switch did the pushing. Updated the list of pcb contents which is
supposed to inhibit bugs like this. pcb_dr*, pcb_gs and pcb_ext were
missing. Copying is correct for pcb_dr*, and pcb_ext is already
handled specially (although XXX'ly).
Reducing the savectx() call to an npxsave() call in rev.1.80 was a
mistake. The above bugs are duplicated in many places, including in
savectx() itself.
The arbitraryness of the parent process pointer for the fork()
subroutines, the pcb pointer for savectx(), and the save87 pointer
for npxsave(), is illusory. These functions don't work "right" unless
the pointers are precisely curproc, curpcb, and the address of npxproc's
save87 area, respectively, although the special context in which they
are called allows savectx(&dumppcb) to sort of work and npxsave(&dummy)
to work. cpu_fork() just doesn't work unless the parent process
pointer is curproc, or the caller has pushed %gs to the pcb, or %gs
happens to already be in the pcb.
follow Linux' convention and use %gs. This adds back the setting of
%fs to a sane value in sendsig(). The value of %gs remains preserved
to whatever it was in user context.
safe from preemption and concurrent access to the LDT.
- Move the prototype for i386_extend_pcb() to <machine/pcb_ext.h>.
Reviewed by: silence on -hackers
%fs and %gs registers instead of setting them to known sane values.
%fs is going to be used for thread/KSE specific data by the new
threads library; we'll want it to be valid inside of signal handlers.
According to bde, Linux preserves the state of %fs and %gs when setting
up signal handlers, so there is precedent for doing this.
The same changes should be made in the Linux emulator, but when made,
they seem to break (at least one version of) the IBM JDK for Linux
(reported by drew).
Approved by: bde
handling, SMPng always switches the npx context away from curproc
before calling the handler, so the handler always paniced. When using
exception 16 exception handling, SMPng sometimes switches the npx
context away from curproc before calling the handler, so the handler
sometimes paniced. Also, we didn't lock the context while using it,
so we sometimes didn't detect the switch and then paniced in a less
controlled way.
Just lock the context while using it, and return without doing anything
except clearing the busy latch if the context is not for curproc. This
fixes the exception 16 case and makes the IRQ13 case harmless. In both
cases, the instruction that caused the exception is restarted and the
exception repeats. In the exception 16 case, we soon get an exception
that can be handled without doing anything special. In the IRQ13 case,
we get an easy to kill hung process.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
panic_cpu shared variable. I used a simple atomic operation here instead
of a spin lock as it seemed to be excessive overhead. Also, this can avoid
recursive panics if, for example, witness is broken.
API for IPI's that isn't tied to the Intel APIC. MD code can still use
the apic_ipi() function or dink with the apic directly if needed to send
MD IPI's.
because:
- it used a better namespace (smp_ipi_* rather than *_ipi),
- it used better constant names for the IPI's (IPI_* rather than
X*_OFFSET), and
- this API also somewhat exists for both alpha and ia64 already.
Since pid's are not in the kernel address space, this doesn't conflict
with the funcionality of specifying an arbitrary frame pointer to the
trace command.
- If the first function of a backtrace maps to fork_trampoline, then this
is a newly fork'd process that has not been executed yet, so just print
out the first frame and then return for that case.
- Lower the default count from 65535 to 1024. ddb doesn't trace into
userland, and if the stack gets hosed and starts looping it's less
annoying.
Specifically, the cpuid, curproc, curpcb, npxproc, and idleproc members.
Also, if witness is compiled into the kernel, then a list of all the spin
locks held by this CPU is displayed. By default the information for the
current CPU is displayed, but a decimal cpu id may be specified as a
parameter to obtain information on a specific CPU.
stylistic.
# Yes, this break K&R, but this file already used so many gcc extensions
# keeping K&R support seemed too anachronistic for me.
Didn't fix the bug where functions that can only be used in the kernel
are exported to userland.
that people use from userland in C++ programs. I've had this in my
tree for ages and just got bit by it not being in the real tree again.
This is a MFC candidate.
- Introduce lock classes and lock objects. Each lock class specifies a
name and set of flags (or properties) shared by all locks of a given
type. Currently there are three lock classes: spin mutexes, sleep
mutexes, and sx locks. A lock object specifies properties of an
additional lock along with a lock name and all of the extra stuff needed
to make witness work with a given lock. This abstract lock stuff is
defined in sys/lock.h. The lockmgr constants, types, and prototypes have
been moved to sys/lockmgr.h. For temporary backwards compatability,
sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
locks held. By making this per-cpu, we do not have to jump through
magic hoops to deal with sched_lock changing ownership during context
switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
proc->p_sleeplocks, which is a list of held sleep locks including sleep
mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
- MTX_NOWITNESS - specifies that this lock should be ignored by witness.
This is used for the mutex that blocks a sx lock for example.
- MTX_QUIET - this is not new, but you can pass this to mtx_init() now
and no events will be logged for this lock, so that one doesn't have
to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag. Use this flag to export
a mtx_initialized() macro that can be safely called from drivers. Also,
we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
more accurate file and line numbers.
and change the u_int mtx_saveintr member of struct mtx to a critical_t
mtx_savecrit.
- On the alpha we no longer need a custom _get_spin_lock() macro to avoid
an extra PAL call, so remove it.
- Partially fix using mutexes with WITNESS in modules. Change all the
_mtx_{un,}lock_{spin,}_flags() macros to accept explicit file and line
parameters and rename them to use a prefix of two underscores. Inside
of kern_mutex.c, generate wrapper functions for
_mtx_{un,}lock_{spin,}_flags() (only using a prefix of one underscore)
that are called from modules. The macros mtx_{un,}lock_{spin,}_flags()
are mapped to the __mtx_* macros inside of the kernel to inline the
usual case of mutex operations and map to the internal _mtx_* functions
in the module case so that modules will use WITNESS and KTR logging if
the kernel is compiled with support for it.
sections.
- Add implementations of the critical_enter() and critical_exit() functions
and remove restore_intr() and save_intr().
- Remove the somewhat bogus disable_intr() and enable_intr() functions on
the alpha as the alpha actually uses a priority level and not simple bit
flag on the CPU.
running in process context in order to run interrupt handlers. This
caused a big smashing of the stack on AMD K6, K5 and Intel Pentium (ie, P5)
processors because we are using npxproc as a flag to indicate whether
the state has been pushed onto the stack.
Submitted by: bde
of long and int64_t; and print the result as an unsigned long. This should
make the output from the bzero() test more readable, and avoid printing a
negative bandwidth. Note that this doesn't change the decision process,
since that is based on time elapsed, not on computed bandwidth.
For UP, we were using $tmp_stk as a stack from the data section. If the
kernel text section grew beyond ~3MB, the data section would be pushed
beyond the temporary 4MB P==V mapping. This would cause the trampoline
up to high memory to fault. The hack workaround I did was to use all of
the page table pages that we already have while preparing the initial
P==V mapping, instead of just the first one.
For SMP, the AP bootstrap process suffered the same sort of problem and
got the same treatment.
MFC candidate - this breaks on 4.x just the same..
Thanks to: Richard Todd <rmtodd@ichotolot.servalan.com>
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
- Don't try to grab Giant before postsig() in userret() as it is no longer
needed.
- Don't grab Giant before psignal() in ast() but get the proc lock instead.
supported architectures such as the alpha. This allows us to save
on kernel virtual address space, TLB entries, and (on the ia64) VHPT
entries. pmap_map() now modifies the passed in virtual address on
architectures that do not support direct-mapped segments to point to
the next available virtual address. It also returns the actual
address that the request was mapped to.
- On the IA64 don't use a special zone of PV entries needed for early
calls to pmap_kenter() during pmap_init(). This gets us in trouble
because we end up trying to use the zone allocator before it is
initialized. Instead, with the pmap_map() change, the number of needed
PV entries is small enough that we can get by with a static pool that is
used until pmap_init() is complete.
Submitted by: dfr
Debugging help: peter
Tested by: me
bolted to a ne-2000 chip. This is necessary for the NetGear FA-410TX
and other cards.
This also requires you add mii to your kernel if you have an ed driver
configured.
This code will result in a couple of timeout messages for ed on the
impacted cards. Additional work will be needed, but this does work
right now, and many people need these cards.
Submitted by: Ian Dowse <iedowse@maths.tcd.ie>
with egcs-1.1.1. bus_space_write_multi_2() had an extra operation that
should have been removed.
Remove it.
This fixes the panic when bus_space_write_multi_2() is used.
Obtained from: jake
gcc -aout -mno-underscores. The bioscall.s tweak is not an a.out
requirement really, but to work around the bugs in the antique version of
gas that used for a.out. Makefile hacks are all that is needed to
get an a.out kernel. There is no telling if it will work though.
This is little more than an academic curiosity anyway since all it is
good for is situations where the boot code is hard wired, eg: rom
bootstraps (such as the gnat box).
GENERIC:
...
size -aout kernel ; chmod 755 kernel
text data bss dec hex
3051520 368640 198688 3618848 373820
and used in C or vice versa. The elf compiler uses the same names
for both. Remove asnames.h with great prejudice; it has served its
purpose.
Note that this does not affect the ability to generate an aout kernel
due to gcc's -mno-underscores option.
moral support from: peter, jhb
to be more like Xint0x80_syscall and less like c function syscall().
- Reduce code duplication between the int0x80 and lcall handlers by
shuffling the elfags into the right place, saving the sizeof the
instruction in tf_err and jumping into the common int0x80 code.
Reviewed by: peter
depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
the the original trapframe of the syscall, trap, or interrupt that entered
the kernel. Before SMPng, ast's were handled via a psuedo trap at the
end of doerti. With the SMPng commit, ast's were broken out into a
separate ast() function that was called from doreti to match the behavior
of other architectures. Unfortunately, when this was done, the
p_md.md_regs member of curproc was not updateda in ast(), thus when
signals are handled by userret() after an interrupt that returns to
userland, we end up using a stale trapframe that will result in the
registers from the old trapframe overwriting the real trapframe and
smashing all the registers right before we return to usermode. The saved
%cs:%eip from where we were in usermode are saved in the trapframe for
example.
- Don't use an atomic operation to update cnt.v_soft in ast(). This is
the only place the variable is written to, and sched_lock is always
held when it is written, so it is already protected and the mutex release
of sched_lock asserts a memory barrier that ensures the value will be
updated in a timely fashion.
- Don't hold sched_lock around addupc_task() as this apparently breaks
profiling badly due to sched_lock being held across copyin().
Reported by: bde (2)
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
- Use swi_* function names.
- Use void * to hold cookies to handlers instead of struct intrhand *.
- In sio.c, use 'driver_name' instead of "sio" as the name of the driver
lock to minimize diffs with cy(4).
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
by myself. It solves a serious vm_map corruption problem that can occur
with the buffer cache when block sizes > 64K are used. This code has been
heavily tested in -stable but only tested somewhat on -current. An MFC
will occur in a few days. My additions include the vm_map_simplify_entry()
and minor buffer cache boundry case fix.
Make the buffer cache use a system map for buffer cache KVM rather then a
normal map.
Ensure that VM objects are not allocated for system maps. There were cases
where a buffer map could wind up with a backing VM object -- normally
harmless, but this could also result in the buffer cache blocking in places
where it assumes no blocking will occur, possibly resulting in corrupted
maps.
Fix a minor boundry case in the buffer cache size limit is reached that
could result in non-optimal code.
Add vm_map_simplify_entry() calls to prevent 'creeping proliferation'
of vm_map_entry's in the buffer cache's vm_map. Previously only a simple
linear optimization was made. (The buffer vm_map typically has only a
handful of vm_map_entry's. This stabilizes it at that level permanently).
PR: 20609
Submitted by: (Tor Egge) tegge
- If possible, context switch to the thread directly in sched_ithd(),
rather than triggering a delayed ast reschedule.
- Disable interrupts while restoring fpu state in the trap handler,
in order to ensure that we are not preempted in the middle, which
could cause migration to another cpu.
Reviewed by: peter
Tested by: peter (alpha)
problem is that a mutex lock, prior to this change, is acquired before
the curproc is set to idleproc, so we mess ourselves up by calling
the mutex lock routine with curproc == NULL.
Moving it up after the aps_ready spin-wait has us hopefully setting it
after idleproc is setup.
Solved by: jake (the allmighty) :-)
instead of a trapframe directly. (Requested by bde.)
- Convert the alpha switch_trampoline to call fork_exit() and use the MI
fork_return() instead of child_return().
- Axe child_return().
that name as a variable. Use mtx_owned(&Giant) where appropriate
instead.
- Proc locking.
- P_FOO -> PS_FOO.
- Update comments about enable interrupts during trap and why this may be
bad if we trap while holding a spin mutex.
- Don't bother resetting p to curproc in syscall() in case we are the child
returning from fork. The child hasn't returned from fork through syscall
in a while.
- Remove fork_return() as it has been superseded by the MI version.
the alpha mp_machdep.c.
- Proc locking.
- Catch up to the P_FOO -> PS_FOO proc flags changes.
- Stick ap_init()'s prototype with the other prototypes.
- Remove the Xforwardirq IPI.
- Remove unused simplelocks.
- Don't try to psignal() from forward_statclock(), but set the appropriate
signal pending flag in p_sflag instead.
- Add in KTR_SMP tracepoints for various SMP functions. (Brought over
from the alpha port)
- Setup proc0.p_heldmtx, proc0.contested, and curproc earlier so that we
can use mutexes.
- Initialize sched_lock and Giant earlier and enter Giant during init386.
- Use suser(9) instead of checking cr_uid directly.
inline functions non-inlined. Hide parts of the mutex implementation that
should not be exposed.
Make sure that WITNESS code is not executed during boot until the mutexes
are fully initialized by SI_SUB_MUTEX (the original motivation for this
commit).
Submitted by: peter
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
for SMP; just use the same ones as UP. These weren't used without
holding Giant anyway, and the routines that use them would have to
be protected from pre-emption to avoid migrating cpus.
appropriate function, rather than doing a horse-and-buggy
acquire. They now take the mutex type as an arg and can be
used with sleep as well as spin mutexes.