The primary focus of these changes is to modernize FreeBSD's
tape infrastructure so that we can take advantage of some of the
features of modern tape drives and allow support for LTFS.
Significant changes and new features include:
o sa(4) driver status and parameter information is now exported via an
XML structure. This will allow for changes and improvements later
on that will not break userland applications. The old MTIOCGET
status ioctl remains, so applications using the existing interface
will not break.
o 'mt status' now reports drive-reported tape position information
as well as the previously available calculated tape position
information. These numbers will be different at times, because
the drive-reported block numbers are relative to BOP (Beginning
of Partition), but the block numbers calculated previously via
sa(4) (and still provided) are relative to the last filemark.
Both numbers are now provided. 'mt status' now also shows the
drive INQUIRY information, serial number and any position flags
(BOP, EOT, etc.) provided with the tape position information.
'mt status -v' adds information on the maximum possible I/O size,
and the underlying values used to calculate it.
o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed.
The extra devices were originally added as place holders for
density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap
and Solaris) have had device nodes that, when you write to them,
will automatically select a given density for particular tape drives.
This is a convenient way of switching densities, but it was never
implemented in FreeBSD. Only the device nodes were there, and that
sometimes confused users.
For modern tape devices, the density is generally not selectable
(e.g. with LTO) or defaults to the highest availble density when
the tape is rewritten from BOT (e.g. TS11X0). So, for most users,
density selection won't be necessary. If they do need to select
the density, it is easy enough to use 'mt density' to change it.
o Protection information is now supported. This is either a
Reed-Solomon CRC or CRC32 that is included at the end of each block
read and written. On write, the tape drive verifies the CRC, and
on read, the tape drive provides a CRC for the userland application
to verify.
o New, extensible tape driver parameter get/set interface.
o Density reporting information. For drives that support it,
'mt getdensity' will show detailed information on what formats the
tape drive supports, and what formats the tape drive supports.
o Some mt(1) functionality moved into a new mt(3) library so that
external applications can reuse the code.
o The new mt(3) library includes helper routines to aid in parsing
the XML output of the sa(4) driver, and build a tree of driver
metadata.
o Support for the MTLOAD (load a tape in the drive) and MTWEOFI
(write filemark immediate) ioctls needed by IBM's LTFS
implementation.
o Improve device departure behavior for the sa(4) driver. The previous
implementation led to hangs when the device was open.
o This has been tested on the following types of drives:
IBM TS1150
IBM TS1140
IBM LTO-6
IBM LTO-5
HP LTO-2
Seagate DDS-4
Quantum DLT-4000
Exabyte 8505
Sony DDS-2
contrib/groff/tmac/doc-syms,
share/mk/bsd.libnames.mk,
lib/Makefile,
Add libmt.
lib/libmt/Makefile,
lib/libmt/mt.3,
lib/libmt/mtlib.c,
lib/libmt/mtlib.h,
New mt(3) library that contains functions moved from mt(1) and
new functions needed to interact with the updated sa(4) driver.
This includes XML parser helper functions that application writers
can use when writing code to query tape parameters.
rescue/rescue/Makefile:
Add -lmt to CRUNCH_LIBS.
src/share/man/man4/mtio.4
Clarify this man page a bit, and since it contains what is
essentially the mtio.h header file, add new ioctls and structure
definitions from mtio.h.
src/share/man/man4/sa.4
Update BUGS and maintainer section.
sys/cam/scsi/scsi_all.c,
sys/cam/scsi/scsi_all.h:
Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building
functions.
sys/cam/scsi/scsi_sa.c
sys/cam/scsi/scsi_sa.h
Many tape driver changes, largely outlined above.
Increase the sa(4) driver read/write timeout from 4 to 32
minutes. This is based on the recommended values for IBM LTO
5/6 drives. This may also avoid timeouts for other tape
hardware that can take a long time to do retries and error
recovery. Longer term, a better way to handle this is to ask
the drive for recommended timeout values using the REPORT
SUPPORTED OPCODES command. Modern IBM and Oracle tape drives
at least support that command, and it would allow for more
accurate timeout values.
Add XML status generation. This is done with a series of
macros to eliminate as much duplicate code as possible. The
new XML-based status values are reported through the new
MTIOCEXTGET ioctl.
Add XML driver parameter reporting, using the new MTIOCPARAMGET
ioctl.
Add a new driver parameter setting interface, using the new
MTIOCPARAMSET and MTIOCSETLIST ioctls.
Add a new MTIOCRBLIM ioctl to get block limits information.
Add CCB/CDB building routines scsi_locate_16, scsi_locate_10,
and scsi_read_position_10().
scsi_locate_10 implements the LOCATE command, as does the
existing scsi_set_position() command. It just supports
additional arguments and features. If/when we figure out a
good way to provide backward compatibility for older
applications using the old function API, we can just revamp
scsi_set_position(). The same goes for
scsi_read_position_10() and the existing scsi_read_position()
function.
Revamp sasetpos() to take the new mtlocate structure as an
argument. It now will use either scsi_locate_10() or
scsi_locate_16(), depending upon the arguments the user
supplies. As before, once we change position we don't have a
clear idea of what the current logical position of the tape
drive is.
For tape drives that support long form position data, we
read the current position and store that for later reporting
after changing the position. This should help applications
like Bacula speed tape access under FreeBSD once they are
modified to support the new ioctls.
Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all
drives that report SCSI-2 or older, as well as drives that
report an Illegal Request type error for READ POSITION with
the long format. So we should automatically detect drives
that don't support the long form and stop asking for it after
an initial try.
Add a partition number to the sa(4) softc.
Improve device departure handling. The previous implementation
led to hangs when the device was open.
If an application had the sa(4) driver open, and attempted to
close it after it went away, the cam_periph_release() call in
saclose() would cause the periph to get destroyed because that
was the last reference to it. Because destroy_dev() was
called from the sa(4) driver's cleanup routine (sacleanup()),
and would block waiting for the close to happen, a deadlock
would result.
So instead of calling destroy_dev() from the cleanup routine,
call destroy_dev_sched_cb() from saoninvalidate() and wait for
the callback.
Acquire a reference for devfs in saregister(), and release it
in the new sadevgonecb() routine when all devfs devices for
the particular sa(4) driver instance are gone.
Add a new function, sasetupdev(), to centralize setting
per-instance devfs device parameters instead of repeating the
code in saregister().
Add an open count to the softc, so we know how many
peripheral driver references are a result of open
sessions.
Add the D_TRACKCLOSE flag to the cdevsw flags so
that we get a 1:1 mapping of open to close calls
instead of a N:1 mapping.
This should be a no-op for everything except the
control device, since we don't allow more than one
open on non-control devices.
However, since we do allow multiple opens on the
control device, the combination of the open count
and the D_TRACKCLOSE flag should result in an
accurate peripheral driver reference count, and an
accurate open count.
The accurate open count allows us to release all
peripheral driver references that are the result
of open contexts once we get the callback from devfs.
sys/sys/mtio.h:
Add a number of new mt(4) ioctls and the requisite data
structures. None of the existing interfaces been removed
or changed.
This includes definitions for the following new ioctls:
MTIOCRBLIM /* get block limits */
MTIOCEXTLOCATE /* seek to position */
MTIOCEXTGET /* get tape status */
MTIOCPARAMGET /* get tape params */
MTIOCPARAMSET /* set tape params */
MTIOCSETLIST /* set N params */
usr.bin/mt/Makefile:
mt(1) now depends on libmt, libsbuf and libbsdxml.
usr.bin/mt/mt.1:
Document new mt(1) features and subcommands.
usr.bin/mt/mt.c:
Implement support for mt(1) subcommands that need to
use getopt(3) for their arguments.
Implement a new 'mt status' command to replace the old
'mt status' command. The old status command has been
renamed 'ostatus'.
The new status function uses the MTIOCEXTGET ioctl, and
therefore parses the XML data to determine drive status.
The -x argument to 'mt status' allows the user to dump out
the raw XML reported by the kernel.
The new status display is mostly the same as the old status
display, except that it doesn't print the redundant density
mode information, and it does print the current partition
number and position flags.
Add a new command, 'mt locate', that will supersede the
old 'mt setspos' and 'mt sethpos' commands. 'mt locate'
implements all of the functionality of the MTIOCEXTLOCATE
ioctl, and allows the user to change the logical position
of the tape drive in a number of ways. (Partition,
block number, file number, set mark number, end of data.)
The immediate bit and the explicit address bits are
implemented, but not documented in the man page.
Add a new 'mt weofi' command to use the new MTWEOFI ioctl.
This allows the user to ask the drive to write a filemark
without waiting around for the operation to complete.
Add a new 'mt getdensity' command that gets the XML-based
tape drive density report from the sa(4) driver and displays
it. This uses the SCSI REPORT DENSITY SUPPORT command
to get comprehensive information from the tape drive about
what formats it is able to read and write.
Add a new 'mt protect' command that allows getting and setting
tape drive protection information. The protection information
is a CRC tacked on to the end of every read/write from and to
the tape drive.
Sponsored by: Spectra Logic
MFC after: 1 month
This makes VMWare VAAI Thin Provisioning Stun primitive activate, pausing
the virtual machine, when backing storage (ZFS pool) is getting overflowed.
MFC after: 1 week
Sponsored by: iXsystems, Inc.
This allows to avoid extra network traffic when copying files on NTFS iSCSI
disks within one storage host by drag'n'dropping them in Windows Explorer
of Windows 8/2012. It should also accelerate Hyper-V VM operations, etc.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
camcontrol(8) now supports a new 'persist' subcommand that allows users to
issue SCSI PERSISTENT RESERVE IN / OUT commands.
sbin/camcontrol/Makefile:
Add persist.c.
sbin/camcontrol/persist.c:
New persistent reservation support for camcontrol(8).
We have support for all known operation modes for PERSISTENT RESERVE
IN and PERSISTENT RESERVE OUT.
exceptions noted above.
sbin/camcontrol/camcontrol.8:
Document the new 'persist' subcommand.
In the section on the Transport ID (-I) option, explain what
Transport IDs for each protocol should look like. At some point
some of this information could probably get moved off in a
separate man page, either on Transport IDs alone or a man page
documenting the Transport ID parsing code.
Add a number of examples of persistent reservation commands.
Persistent Reservations are complex enough that the average user
probably won't be able to get the commands exactly right by just
reading the man page. These examples show a few basic and
advanced examples of how to use persistent reservations.
sbin/camcontrol/camcontrol.h:
Move the definition for camcontrol_optret here, so we can use it
for the persistent reservation code.
Add a definition for the new scsipersist() function.
sbin/camcontrol/camcontrol.c:
Add 'persist' to the list of subcommands.
Document 'persist' in the help text.
sys/cam/scsi/scsi_all.c:
Add the scsi_persistent_reserve_in() and
scsi_persistent_reserve_out() CCB building functions.
Add a new function, scsi_transportid_sbuf(). This takes a
SCSI Transport ID (documented in SPC-4), and prints it to
an sbuf(9). There are some transports (like ATA, USB, and
SSA) for which there is no transport defined. We need to
come up with a reasonable thing to do if we're presented
with a Transport ID that claims to be for one of those
protocols.
Add new routines scsi_get_nv() and scsi_nv_to_str().
These functions do a table lookup to go between a string and an
integer. There are lots of table lookups needed in the
persistent reservation code in camcontrol(8).
Add a new function, scsi_parse_transportid(), along with leaf node
functions to parse:
FC, 1394 and SAS (scsi_parse_transportid_64bit())
iSCSI (scsi_parse_transportid_iscsi())
SPI (scsi_parse_transportid_spi())
RDMA (scsi_parse_transportid_rdma())
PCIe (scsi_parse_transportid_sop())
Transport IDs. Given a string with the general form proto,id these
functions create a SCSI Transport ID structure.
sys/cam/scsi/scsi_all.h:
Update the various persistent reservation data structures to
SPC4r36l, but also rename some fields that were previously
obsolete with the proper names from older SCSI specs. This
allows using older, obsolete persistent reservation types when
desired.
Add function prototypes for the new persistent reservation CCB
building functions.
Add a data strucure for the READ FULL STATUS service action
of the PERSISTENT RESERVE IN command.
Add Transport ID structures for all protocols described in SPC-4.
Add a new series of SCSI_PROTO_XXX definitions, and
redefine other defines in terms of these new definitions.
Add a prototype for scsi_transportid_sbuf().
Change a couple of "obsolete" persistent reservation data
structure fields into something more meaningful, based on
what the field was called when it was defined in the spec.
(e.g. SPC, SPC-2, etc.)
Create a new define, SPRI_MAX_LEN, for the maximum allocation
length allowed for the PERSISTENT RESERVE IN command.
Add data structures and enumerations for the new name/value
translation functions.
Add data structures for SCSI over PCIe Routing IDs.
Bring the PERSISTENT RESERVE OUT Register and Move parameter list
structure (struct scsi_per_res_out_parms) up to date with SPC-4.
Add a data structure for the transport IDs that can optionally be
appended to the basic PERSISTENT RESERVE OUT parameter list.
Move SCSI protocol macro definitions out of the VPD page 0x83
definition and combine them with the more up to date protocol
definitions higher in the file.
Add function prototypes for scsi_nv_to_str(), scsi_get_nv(),
scsi_parse_transportid_64bit(), scsi_parse_transportid_spi(),
scsi_parse_transportid_rdma(), scsi_parse_transportid_iscsi(),
scsi_parse_transportid_sop(), and scsi_parse_transportid().
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
Make data_submit backends method support not only read and write requests,
but also two new ones: verify and compare. Verify just checks readability
of the data in specified location without transferring them outside.
Compare reads the specified data and compares them to received data,
returning error if they are different.
VERIFY(10/12/16) commands request either verify or compare from backend,
depending on BYTCHK CDB field. COMPARE AND WRITE command executed in two
stages: first it requests compare, and then, if succeesed, requests write.
Atomicity of operation is guarantied by CTL request ordering code.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
(like NAA assigned) and identify the same entity (like device or port).
Otherwise there can be false positives since at least some models of
Seagate disks use same IDs for the whole device and one of its ports.
MFC after: 2 weeks
notify (enable spinup) required", instead of doing the normal
retries, poll for a change in status.
We will poll every half second for a minute for the status to
change.
Hitachi drives (and likely other SAS drives) return that ASC/ASCQ
when they are waiting to spin up. What it means is that they are
waiting for the SAS expander to send them the SAS
NOTIFY (ENABLE SPINUP) primitive.
That primitive is the mechanism expanders/enclosures use to
sequence drive spinup to avoid overloading power supplies.
Sponsored by: Spectra Logic
MFC after: 3 days
"Logical unit not supported" errors. First initiates specific target rescan,
second -- destroys specific LUN. That allows to automatically detect changes
in list of device LUNs. This mechanism doesn't work when target is completely
idle, but probably that is all what can be done without active polling.
Reviewed by: ken
Sponsored by: iXsystems, Inc.
SPC-4 specification states that serial number may be property of device,
but not a specific logical unit. People reported about FC storages using
serial number in that way, making it unusable for purposes of LUN multipath
detection. SPC-4 states that designators associated with logical unit from
the VPD page 83h "Device Identification" should be used for that purpose.
Report first of them in the new attribute in such preference order: NAA,
EUI-64, T10 and SCSI name string.
While there, make GEOM DISK properly report GEOM::ident in XML output also
using d_getattr() method, if available. This fixes serial numbers reporting
for SCSI disks in `geom disk list` output and confxml.
Discussed with: gibbs, ken
Sponsored by: iXsystems, Inc.
MFC after: 2 weeks
so its available for use in generic scsi code.
This is a pre-requirement for using VPD queries to determine available SCSI
delete methods within scsi_da.
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 2 weeks
commands to an ATA device attached via a SCSI control.
sys/cam/scsi/scsi_all.c:
- Added scsi_ata_identify, scsi_ata_trim
Which use ATA Pass-Through to send commands to the attached disk.
sys/cam/scsi/scsi_all.h:
- Added defines for all missing ATA Pass-Through commands values.
- Added scsi_ata_identify, scsi_ata_trim methods used in ATA TRIM
support.
- Added scsi_vpd_logical_block_prov structure used when querying for
the supported sizes UNMAP commands.
- Added scsi_vpd_block_limits structure used when querying for the
supported sizes of the UNMAP command.
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 2 weeks
Some failing disks tend to return vendor-specific ASC/ASCQ codes with
NOT READY sense key. It caused extremely long recovery attempts, repeating
these 120 TURs (it takes at least 1 minute) for every I/O request.
Instead of that use default error handling, doing just few retries.
Reviewed by: ken, gibbs
MFC after: 1 month
sys/cam/scsi/scsi_all.c:
- Added scsi_ata_pass_16 method
Which use ATA Pass-Through to send commands to the attached disk.
sys/cam/scsi/scsi_all.h:
- Added defines for all missing ATA Pass-Through commands values.
- Added scsi_ata_pass_16 method.
- Fixed a comment typo while I'm here
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 2 weeks
The vnode-backed md(4) has to map the unmapped bio because VOP_READ()
and VOP_WRITE() interfaces do not allow to pass unmapped requests to
the filesystem. Vnode-backed md(4) uses pbufs instead of relying on
the bio_transient_map, to avoid usual md deadlock.
Sponsored by: The FreeBSD Foundation
Tested by: pho, scottl
Make umass return an error code if SCSI sense retrieval request
has failed. Make sure scsi_error_action honors SF_NO_RETRY and
SF_NO_RECOVERY in all cases, even if it cannot parse sense bytes.
Reviewed by: hselasky (umass), scottl (cam)
reporting. It includes:
- removing of error messages controlled by bootverbose, replacing them
with more universal and informative debugging on CAM_DEBUG_INFO level,
that is now built into the kernel by default;
- more close following to the arguments submitted by caller, such as
SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which
errors are usual/expected at this point and which are really informative;
- adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller
specify how much assistance it needs at this point; previously consumers
controlled that by not calling cam_periph_error() at all, but that made
behavior inconsistent and debugging complicated;
- tuning debug messages and taken actions order to make debugging output
more readable and cause-effect relationships visible;
- making camperiphdone() (common device recovery completion handler) to
also use cam_periph_error() in most cases, instead of own dumb code;
- removing manual sense fetching code from cam_periph_error(); I was told
by number of people that it is SIM obligation to fetch sense data, so this
code is useless and only significantly complicates recovery logic;
- making ada, da and pass driver to use cam_periph_error() with new limited
recovery options to handle error recovery and debugging in common way;
as one of results, CAM_REQUEUE_REQ and other retrying statuses are now
working fine with pass driver, that caused many problems before.
- reverting r186891 by raj@ to avoid burning few seconds in tight DELAY()
loops on device probe, while device simply loads media; I think that problem
may already be fixed in other way, and even if it is not, solution must be
different.
Sponsored by: iXsystems, Inc.
MFC after: 2 weeks
- Add low-level support for SATA Enclosure Management Bridge (SEMB)
devices -- SATA equivalents of the SCSI SES/SAF-TE devices.
- Add some utility functions for SCSI SAF-TE devices access.
Sponsored by: iXsystems, Inc.
data changes.
cam_ccb.h: Add a new advanced information type, CDAI_TYPE_RCAPLONG,
for long read capacity data.
cam_xpt_internal.h:
Add a read capacity data pointer and length to struct cam_ed.
cam_xpt.c: Free the read capacity buffer when a device goes away.
While we're here, make sure we don't leak memory for other
malloced fields in struct cam_ed.
scsi_all.c: Update the scsi_read_capacity_16() to take a uint8_t * and
a length instead of just a pointer to the parameter data
structure. This will hopefully make this function somewhat
immune to future changes in the parameter data.
scsi_all.h: Add some extra bit definitions to struct
scsi_read_capacity_data_long, and bump up the structure
size to the full size specified by SBC-3.
Change the prototype for scsi_read_capacity_16().
scsi_da.c: Register changes in read capacity data with the transport
layer. This allows the transport layer to send out an
async notification to interested parties. Update the
dasetgeom() API.
Use scsi_extract_sense_len() instead of
scsi_extract_sense().
scsi_xpt.c: Add support for the new CDAI_TYPE_RCAPLONG advanced
information type.
Make sure we set the physpath pointer to NULL after freeing
it. This allows blindly freeing it in the struct cam_ed
destructor.
sys/param.h: Bump __FreeBSD_version from 1000005 to 1000006 to make it
easier for third party drivers to determine that the read
capacity data async notification is available.
camcontrol.c,
mptutil/mpt_cam.c:
Update these for the new scsi_read_capacity_16() argument
structure.
Sponsored by: Spectra Logic
Depending on device capabilities use different methods to implement it.
Currently used method can be read/set via kern.cam.da.X.delete_method
sysctls. Possible values are:
NONE - no provisioning support reported by the device;
DISABLE - provisioning support was disabled because of errors;
ZERO - use WRITE SAME (10) command to write zeroes;
WS10 - use WRITE SAME (10) command with UNMAP bit set;
WS16 - use WRITE SAME (16) command with UNMAP bit set;
UNMAP - use UNMAP command (equivalent of the ATA DSM TRIM command).
The last two methods (UNMAP and WS16) are defined by SBC specification and
the UNMAP method is the most advanced one. The rest of methods I've found
supported in Linux, and as soon as they were trivial to implement, then
why not? Hope they will be useful in some cases.
Unluckily I have no devices properly reporting parameters of the logical
block provisioning support via respective VPD pages (0xB0 and 0xB2). So
all info I have/use now is the flag telling whether logical block
provisioning is supported or not. As result, specific methods chosen now
by trying different ones in order (UNMAP, WS16, DISABLE) and checking
completion status to fallback if needed. I don't expect problems from this,
as if something go wrong, it should just disable itself. It may disable
even too aggressively if only some command parameter misfit.
Unlike Linux, which executes each delete with separate request, I've
implemented here the same request aggregation as implemented in ada driver.
Tests on SSDs I have show much better results doing it this way: above
8GB/s of the linear delete on Intel SATA SSD on LSI SAS HBA (mps).
Reviewed by: silence on scsi@
MFC after: 2 month
Sponsored by: iXsystems, Inc.
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
CAM.
Desriptor sense is a new sense data format that originated in SPC-3. Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.
This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.
This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.
camcontrol.c: Change uses of scsi_extract_sense() to use
scsi_extract_sense_len().
Use scsi_get_sks() instead of accessing sense key specific
data directly.
scsi_modes: Update the control mode page to the latest version (SPC-4).
scsi_cmds.c,
scsi_target.c: Change references to struct scsi_sense_data to struct
scsi_sense_data_fixed. This should be changed to allow the
user to specify fixed or descriptor sense, and then use
scsi_set_sense_data() to build the sense data.
ps3cdrom.c: Use scsi_set_sense_data() instead of setting sense data
manually.
cam_periph.c: Use scsi_extract_sense_len() instead of using
scsi_extract_sense() or accessing sense data directly.
cam_ccb.h: Bump the CAM_VERSION from 0x15 to 0x16. The change of
struct scsi_sense_data from 32 to 252 bytes changes the
size of struct ccb_scsiio, but not the size of union ccb.
So the version must be bumped to prevent structure
mis-matches.
scsi_all.h: Lots of updated SCSI sense data and other structures.
Add function prototypes for the new sense data functions.
Take out the inline implementation of scsi_extract_sense().
It is now too large to put in a header file.
Add macros to calculate whether fields are present and
filled in fixed and descriptor sense data
scsi_all.c: In scsi_op_desc(), allow the user to pass in NULL inquiry
data, and we'll assume a direct access device in that case.
Changed the SCSI RESERVED sense key name and description
to COMPLETED, as it is now defined in the spec.
Change the error recovery action for a number of read errors
to prevent lots of retries when the drive has said that the
block isn't accessible. This speeds up reconstruction of
the block by any RAID software running on top of the drive
(e.g. ZFS).
In scsi_sense_desc(), allow for invalid sense key numbers.
This allows calling this routine without checking the input
values first.
Change scsi_error_action() to use scsi_extract_sense_len(),
and handle things when invalid asc/ascq values are
encountered.
Add a new routine, scsi_desc_iterate(), that will call the
supplied function for every descriptor in descriptor format
sense data.
Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
which build descriptor and fixed format sense data. They
currently default to fixed format sense data.
Add a number of scsi_get_*() functions, which get different
types of sense data fields from either fixed or descriptor
format sense data, if the data is present.
Add a number of scsi_*_sbuf() functions, which print
formatted versions of various sense data fields. These
functions work for either fixed or descriptor sense.
Add a number of scsi_sense_*_sbuf() functions, which have a
standard calling interface and print the indicated field.
These functions take descriptors only.
Add scsi_sense_desc_sbuf(), which will print a formatted
version of the given sense descriptor.
Pull out a majority of the scsi_sense_sbuf() function and
put it into scsi_sense_only_sbuf(). This allows callers
that don't use struct ccb_scsiio to easily utilize the
printing routines. Revamp that function to handle
descriptor sense and use the new sense fetching and
printing routines.
Move scsi_extract_sense() into scsi_all.c, and implement it
in terms of the new function, scsi_extract_sense_len().
The _len() version takes a length (which should be the
sense length - residual) and can indicate which fields are
present and valid in the sense data.
Add a couple of new scsi_get_*() routines to get the sense
key, asc, and ascq only.
mly.c: Rename struct scsi_sense_data to struct
scsi_sense_data_fixed.
sbp_targ.c: Use the new sense fetching routines to get sense data
instead of accessing it directly.
sbp.c: Change the firewire/SCSI sense data transformation code to
use struct scsi_sense_data_fixed instead of struct
scsi_sense_data. This should be changed later to use
scsi_set_sense_data().
ciss.c: Calculate the sense residual properly. Use
scsi_get_sense_key() to fetch the sense key.
mps_sas.c,
mpt_cam.c: Set the sense residual properly.
iir.c: Use scsi_set_sense_data() instead of building sense data by
hand.
iscsi_subr.c: Use scsi_extract_sense_len() instead of grabbing sense data
directly.
umass.c: Use scsi_set_sense_data() to build sense data.
Grab the sense key using scsi_get_sense_key().
Calculate the sense residual properly.
isp_freebsd.h: Use scsi_get_*() routines to grab asc, ascq, and sense key
values.
Calculate and set the sense residual.
MFC after: 3 days
Sponsored by: Spectra Logic Corporation
other device attributes stored in the CAM Existing Device Table (EDT).
This includes some infrastructure requried by the enclosure services
driver to export physical path information.
Make the CAM device advanced info interface accept store requests.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
- Replace scsi_get_sas_addr() with a scsi_get_devid() which takes
a callback that decides whether to accept a particular descriptor.
Provide callbacks for NAA IEEE Registered addresses and for SAS
addresses, replacing the old function. This is needed because
the old function doesn't work for an enclosure address for a SAS
device, which is not flagged as a SAS address, but is NAA IEEE
Registered. It may be worthwhile merging this interface with the
devid match interface.
- Add a few more defines for some device ID fields.
sbin/camcontrol/camcontrol.c:
- Update for the CCB_DEV_ADVINFO interface change.
cam/cam_xpt_internal.h:
- Add the new fields for the physical path string to the CAM EDT.
cam/cam_ccb.h:
- Rename CCB_GDEV_ADVINFO to simply CCB_DEV_ADVINFO, and the ccb
structure to ccb_dev_advinfo.
- Add a flag that changes this CCB's action to store, rather than
the default, retrieve.
- Add a new buffer type, CDAI_TYPE_PHYS_PATH, for the new CAM EDT
physpath field.
- Remove the never-implemented transport & proto flags.
cam/cam_xpt.c:
cam/cam_xpt.h:
- Add xpt_getattr(), which provides a wrapper for fetching a device's
attribute using the GEOM strings as key. This method currently
supports "GEOM::ident" and "GEOM::physpath".
Submitted by: will
Reviewed by : gibbs
Extend the XPT_DEV_MATCH api to allow a device search by device ID.
As far as the API is concerned, device ID is a binary blob to be
interpreted by the transport layer. The SCSI implementation assumes
it is an array of VPD device ID descriptors.
sys/cam/cam_ccb.h:
Create a new structure, device_id_match_pattern, and
update the XPT_DEV_MATCH datastructures and flags so
that this pattern type can be used.
sys/cam/cam_xpt.c:
- A single pattern matching on both inquiry data and device
ID is invalid. Report any violators.
- Pass device ID match requests through to the new routine
scsi_devid_match(). The direct call of a SCSI routine is
a layering violation, but no worse than the one a few
lines up that checks inquiry data. Defer cleaning this
up until our future, larger, rototilling of CAM.
- Zero out cam_ed and cam_et nodes on allocation. Prior to
this change, device_id_len and device_id were not inialized,
preventing proper detection of the presence of this
information.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add the scsi_match_devid() routine.
Add a helper function for extracting peripherial driver names
sys/cam/cam_periph.c:
sys/cam/cam_periph.h:
Add the cam_periph_list() method which fills an sbuf
with a comma delimited list of the peripheral instances
associated with a given CAM path.
Add a helper functions for SCSI commands used by the SES driver.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add structure definitions and csio filling functions for
the receive diagnostic results and send diagnostic commands.
Misc CAM XPT cleanups.
sys/cam/cam_xpt.c:
Broadcast AC_FOUND_DEVICE and AC_PATH_REGISTERED
events at the time async event handlers are attached
even when registering just for events on a partitular
SIM. Previously, you had to register for these
events on all SIMs in the system in order to get
the initial broadcast even though subsequent device
and path arrivals would be delivered.
sys/cam/cam_xpt.c:
Remove SIM mutex held asserts from path accessors.
CAM paths are reference counted and it is this
reference count, not the sim mutex, that garantees
they are stable.
Sponsored by: Spectra Logic Corporation
This includes support in the kernel, camcontrol(8), libcam and the mps(4)
driver for SMP passthrough.
The CAM SCSI probe code has been modified to fetch Inquiry VPD page 0x00
to determine supported pages, and will now fetch page 0x83 in addition to
page 0x80 if supported.
Add two new CAM CCBs, XPT_SMP_IO, and XPT_GDEV_ADVINFO. The SMP CCB is
intended for SMP requests and responses. The ADVINFO is currently used to
fetch cached VPD page 0x83 data from the transport layer, but is intended
to be extensible to fetch other types of device-specific data.
SMP-only devices are not currently represented in the CAM topology, and so
the current semantics are that the SIM will route SMP CCBs to either the
addressed device, if it contains an SMP target, or its parent, if it
contains an SMP target. (This is noted in cam_ccb.h, since it will change
later once we have the ability to have SMP-only devices in CAM's topology.)
smp_all.c,
smp_all.h: New helper routines for SMP. This includes
SMP request building routines, response parsing
routines, error decoding routines, and structure
definitions for a number of SMP commands.
libcam/Makefile: Add smp_all.c to libcam, so that SMP functionality
is available to userland applications.
camcontrol.8,
camcontrol.c: Add smp passthrough support to camcontrol. Several
new subcommands are now available:
'smpcmd' functions much like 'cmd', except that it
allows the user to send generic SMP commands.
'smprg' sends the SMP report general command, and
displays the decoded output. It will automatically
fetch extended output if it is available.
'smppc' sends the SMP phy control command, with any
number of potential options. Among other things,
this allows the user to reset a phy on a SAS
expander, or disable a phy on an expander.
'smpmaninfo' sends the SMP report manufacturer
information and displays the decoded output.
'smpphylist' displays a list of phys on an
expander, and the CAM devices attached to those
phys, if any.
cam.h,
cam.c: Add a status value for SMP errors
(CAM_SMP_STATUS_ERROR).
Add a missing description for CAM_SCSI_IT_NEXUS_LOST.
Add support for SMP commands to cam_error_string().
cam_ccb.h: Rename the CAM_DIR_RESV flag to CAM_DIR_BOTH. SMP
commands are by nature bi-directional, and we may
need to support bi-directional SCSI commands later.
Add the XPT_SMP_IO CCB. Since SMP commands are
bi-directional, there are pointers for both the
request and response.
Add a fill routine for SMP CCBs.
Add the XPT_GDEV_ADVINFO CCB. This is currently
used to fetch cached page 0x83 data from the
transport later, but is extensible to fetch many
other types of data.
cam_periph.c: Add support in cam_periph_mapmem() for XPT_SMP_IO
and XPT_GDEV_ADVINFO CCBs.
cam_xpt.c: Add support for executing XPT_SMP_IO CCBs.
cam_xpt_internal.h: Add fields for VPD pages 0x00 and 0x83 in struct
cam_ed.
scsi_all.c: Add scsi_get_sas_addr(), a function that parses
VPD page 0x83 data and pulls out a SAS address.
scsi_all.h: Add VPD page 0x00 and 0x83 structures, and a
prototype for scsi_get_sas_addr().
scsi_pass.c: Add support for mapping buffers in XPT_SMP_IO and
XPT_GDEV_ADVINFO CCBs.
scsi_xpt.c: In the SCSI probe code, first ask the device for
VPD page 0x00. If any VPD pages are supported,
that page is required to be implemented. Based on
the response, we may probe for the serial number
(page 0x80) or device id (page 0x83).
Add support for the XPT_GDEV_ADVINFO CCB.
sys/conf/files: Add smp_all.c.
mps.c: Add support for passing in a uio in mps_map_command(),
so we can map a S/G list at once.
Add support for SMP passthrough commands in
mps_data_cb(). SMP is a special case, because the
first buffer in the S/G list is outbound and the
second buffer is inbound.
Add support for warning the user if the busdma code
comes back with more buffers than will work for the
command. This will, for example, help the user
determine why an SMP command failed if busdma comes
back with three buffers.
mps_pci.c: Add sys/uio.h.
mps_sas.c: Add the SAS address and the parent handle to the
list of fields we pull from device page 0 and cache
in struct mpssas_target. These are needed for SMP
passthrough.
Add support for the XPT_SMP_IO CCB. For now, this
CCB is routed to the addressed device if it supports
SMP, or to its parent if it does not and the parent
does. This is necessary because CAM does not
currently support SMP-only nodes in the topology.
Make SMP passthrough support conditional on
__FreeBSD_version >= 900026. This will make it
easier to MFC this change to the driver without
MFCing the CAM changes as well.
mps_user.c: Un-staticize mpi_init_sge() so we can use it for
the SMP passthrough code.
mpsvar.h: Add a uio and iovecs into struct mps_command for
SMP passthrough commands.
Add a cm_max_segs field to struct mps_command so
that we can warn the user if busdma comes back with
too many segments.
Clear the cm_reply when a command gets freed. If
it is not cleared, reply frames will eventually get
freed into the pool multiple times and corrupt the
pool. (This fix is from scottl.)
Add a prototype for mpi_init_sge().
sys/param.h: Bump __FreeBSD_version to 900026 for the for the
inclusion of the XPT_GDEV_ADVINFO and XPT_SMP_IO
CAM CCBs.
for REPORT and SET TARGET PORT GROUP commands (foundations for future work).
Regularize opcodes to be upper case hex.
Pick *one* of tab or space after #define (tab) and stick with that.
MFC after: 2 weeks
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re
http://www.t10.org/lists/1spc-lst.htm
Note opcodes for scanner and communication devices are taken from the previous
revision because they are not listed in the files any more.
Also, note newly added ASCs are all marked with 'XXX TBD' and take SS_RDEF action
for now. Some ASCs need SS_TUR for error recovery or SS_FATAL to prevent further
retrials. We should deal with them later.
Reviewed by: scottl, ken
sysctl_handle_int is not sizeof the int type you want to export.
The type must always be an int or an unsigned int.
Remove the instances where a sizeof(variable) is passed to stop
people accidently cut and pasting these examples.
In a few places this was sysctl_handle_int was being used on 64 bit
types, which would truncate the value to be exported. In these
cases use sysctl_handle_quad to export them and change the format
to Q so that sysctl(1) can still print them.
REPORT LUNS command to a device.
camcontrol.[c8]: Implement reportluns. This tries to print the LUNs
out in a reasonable format. Only the periph
addressing method has been tested, since very little
hardware that I know of supports the other methods.
scsi_all.[ch]: Revamp the report luns CDB structure and helper
functions. This constitutes a little bit of an API
change, but since the old CDB length was 10 bytes,
and the REPORT LUNS CDB length is actually 12 bytes,
it's clear that no one was using this API in the
first place.
MFC After: 1 week
period value. I suppose the BT adapter driver should be
fixed, but more importantly we should protect against
dividing by zero.
PR: kern/75603
MFC after: 1 week