It's redundant at the moment since it can be obtained from the trapframe
on the architectures where DTrace is supported, but this won't be the case
with ARM.
Summary:
Revert the initial FBT-with-KDB changes for trap_subr*.S, and instead use the
db_trap filter function to handle dtrace trap filtering. With this, the MMU is
enabled by the support code, simplifying the codepath altogether.
Test Plan: Tested on my G4 PowerBook
Reviewers: #powerpc, nwhitehorn
Reviewed By: nwhitehorn
Differential Revision: https://reviews.freebsd.org/D1207
MFC after: 3 weeks
calling mmap on /dev/mem and add a handler for the possible userland
machine checks that may result. Remove some pointless and wrong copy/paste
that has been in here for a decade as well.
This results in a /dev/mem with identical semantics to the x86 version.
MFC after: 1 week
the upstream implementation and helps ensure that a trap induced by tracing
fbt::trap:entry is handled without recursively generating another trap.
This makes it possible to run most (but not all) of the DTrace tests under
common/safety/ without triggering a kernel panic.
Submitted by: Anton Rang <anton.rang@isilon.com> (original version)
Phabric: D95
option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
allows FPU emulation on AIM as well as providing support for the mfpvr
and lwsync instructions from userland on e500 cores. lwsync, in particular,
is required for many C++ programs to work correctly.
MFC after: 1 week
corresponding x86 trap type. Userland DTrace probes are currently handled
by the other fasttrap hooks (dtrace_pid_probe_ptr and
dtrace_return_probe_ptr).
Discussed with: rpaulo
much of which is not necessary for PowerPC.
The FBT module can likely be factored into 3 separate files: common,
intel, and powerpc, rather than duplicating most of the code between
the x86 and PowerPC flavors.
All DTrace modules for PowerPC will be MFC'd together once Fasttrap is
completed.
There is one known issue: Some probes will display an error message along the
lines of: "Invalid address (0)"
I tested this with both a simple dtrace probe and dtruss on a few different
binaries on 32-bit. I only compiled 64-bit, did not run it, but I don't expect
problems without the modules loaded. Volunteers are welcome.
MFC after: 1 month
possible, and double faults within an SLB trap handler are not. The result
is that it possible to take an SLB fault at any time, on any address, for
any reason, at any point in the kernel.
This lets us do two important things. First, it removes the (soft) 16 GB RAM
ceiling on PPC64 as well as any architectural limitations on KVA space.
Second, it lets the kernel tolerate poorly designed hypervisors that
have a tendency to fail to restore the SLB properly after a hypervisor
context switch.
MFC after: 6 weeks
instead of a PCPU field for curthread. This averts a race on SMP systems
with a high interrupt rate where the thread looking up the value of
curthread could be preempted and migrated between obtaining the PCPU
pointer and reading the value of pc_curthread, resulting in curthread being
observed to be the current thread on the thread's original CPU. This played
merry havoc with the system, in particular with mutexes. Many thanks to
jhb for helping me work this one out.
Note that Book-E is in principle susceptible to the same problem, but has
not been modified yet due to lack of Book-E hardware.
MFC after: 2 weeks
only, and should be protected with an ifdef, and the no-execute bit in
32-bit set_user_sr() should be set before the comparison, not after, or
it will never match.
set_user_sr() itself caches the user segment VSID, there is no need for
cpu_switch() to do it again. This change also unifies the 32 and 64-bit
code paths for kernel faults on user pages and remaps the user SLB slot
on 64-bit systems when taking a syscall to avoid some unnecessary segment
exception traps.
concurrency bug. Since all SLB/SR entries were invalidated during an
exception, a decrementer exception could cause the user segment to be
invalidated during a copyin()/copyout() without a thread switch that
would cause it to be restored from the PCB, potentially causing the
operation to continue on invalid memory. This is now handled by explicit
restoration of segment 12 from the PCB on 32-bit systems and a check in
the Data Segment Exception handler on 64-bit.
While here, cause copyin()/copyout() to check whether the requested
user segment is already installed, saving some pipeline flushes, and
fix the synchronization primitives around the mtsr and slbmte
instructions to prevent accessing stale segments.
MFC after: 2 weeks
values to zero. A correct solution would involve emulating vector
operations on denormalized values, but this has little effect on accuracy
and is much less complicated for now.
MFC after: 2 weeks
which are similar to the previous ones, and one for user maps, which
are arrays of pointers into the SLB tree. This changes makes user SLB
updates atomic, closing a window for memory corruption. While here,
rearrange the allocation functions to make context switches faster.
hardware with a lockless sparse tree design. This marginally improves
the performance of PMAP and allows copyin()/copyout() to run without
acquiring locks when used on wired mappings.
Submitted by: mdf
Kernel sources for 64-bit PowerPC, along with build-system changes to keep
32-bit kernels compiling (build system changes for 64-bit kernels are
coming later). Existing 32-bit PowerPC kernel configurations must be
updated after this change to specify their architecture.
Extend struct sysvec with three new elements:
sv_fetch_syscall_args - the method to fetch syscall arguments from
usermode into struct syscall_args. The structure is machine-depended
(this might be reconsidered after all architectures are converted).
sv_set_syscall_retval - the method to set a return value for usermode
from the syscall. It is a generalization of
cpu_set_syscall_retval(9) to allow ABIs to override the way to set a
return value.
sv_syscallnames - the table of syscall names.
Use sv_set_syscall_retval in kern_sigsuspend() instead of hardcoding
the call to cpu_set_syscall_retval().
The new functions syscallenter(9) and syscallret(9) are provided that
use sv_*syscall* pointers and contain the common repeated code from
the syscall() implementations for the architecture-specific syscall
trap handlers.
Syscallenter() fetches arguments, calls syscall implementation from
ABI sysent table, and set up return frame. The end of syscall
bookkeeping is done by syscallret().
Take advantage of single place for MI syscall handling code and
implement ptrace_lwpinfo pl_flags PL_FLAG_SCE, PL_FLAG_SCX and
PL_FLAG_EXEC. The SCE and SCX flags notify the debugger that the
thread is stopped at syscall entry or return point respectively. The
EXEC flag augments SCX and notifies debugger that the process address
space was changed by one of exec(2)-family syscalls.
The i386, amd64, sparc64, sun4v, powerpc and ia64 syscall()s are
changed to use syscallenter()/syscallret(). MIPS and arm are not
converted and use the mostly unchanged syscall() implementation.
Reviewed by: jhb, marcel, marius, nwhitehorn, stas
Tested by: marcel (ia64), marius (sparc64), nwhitehorn (powerpc),
stas (mips)
MFC after: 1 month
replace magic numbers with constants to keep this from happening again.
Without this fix, some programs would occasionally get SIGTRAP instead
of SIGILL on an illegal instruction. This affected Altivec detection
in pixman, and possibly other software.
Reported by: Andreas Tobler
MFC after: 1 week
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
Rework of this area is a pre-requirement for importing e500 support (and
other PowerPC core variations in the future). Mainly the following
headers are refactored so that we can cover for low-level differences between
various machines within PowerPC architecture:
<machine/pcpu.h>
<machine/pcb.h>
<machine/kdb.h>
<machine/hid.h>
<machine/frame.h>
Areas which use the above are adjusted and cleaned up.
Credits for this rework go to marcel@
Approved by: cognet (mentor)
MFp4: e500
opposed to what process. Since threads by default have teh name of the
process unless over-written with more useful information, just print the
thread name instead.
syscall. It was broken when a new lseek syscall was introduced.
The problem is that we need to swap the 32-bit td_retval values
for the __syscall indirect syscall when the actual syscall has
a 32-bit return value. Hence, we need to exclude lseek(2). And
this means the "old" lseek(2) as well -- which we didn't.
Based on a patch from: grehan@
Approved by: re (rwatson)
- Rename PCPU_LAZY_INC into PCPU_INC
- Add the PCPU_ADD interface which just does an add on the pcpu member
given a specific value.
Note that for most architectures PCPU_INC and PCPU_ADD are not safe.
This is a point that needs some discussions/work in the next days.
Reviewed by: alc, bde
Approved by: jeff (mentor)