toggle the P_SUGID bit explicitly, rather than relying on it being
set implicitly by other protection and credential logic. This feature
is introduced to support inter-process authorization regression testing
by simplifying userland credential management allowing the easy
isolation and reproduction of authorization events with specific
security contexts. This feature is enabled only by "options REGRESSION"
and is not intended to be used by applications. While the feature is
not known to introduce security vulnerabilities, it does allow
processes to enter previously inaccessible parts of the credential
state machine, and is therefore disabled by default. It may not
constitute a risk, and therefore in the future pending further analysis
(and appropriate need) may become a published interface.
Obtained from: TrustedBSD Project
interfaces and functionality intended for use during correctness and
regression testing. Features enabled by "options REGRESSION" may
in and of themselves introduce security or correctness problems if
used improperly, and so are not intended for use in production
systems, only in testing environments.
Obtained from: TrustedBSD Project
This test utility attempts to evaluate the current kernel policy
for authorization inter-process activities, currently ptrace(),
kill(, SIGHUP), getpriority(), and setpriority(). The utility creates
pairs of processes, initializes their credential sets to useful
cases, and reports on whether the results are in keeping with hard-coded
safety expectations.
o Currently, this utility relies on the availability of __setugid(),
an uncomitted system call used for managing the P_SUGID bit. Due to
continuing discussion of optional regression testing kernel components
("options REGRESSION") I'll hold off on committing that until the
discussion has reached its natural termination.
o A number of additional testing factors should be taken into account
in the testing, including tests for different classes of signals,
interactions with process session characteristics, I/O signalling,
broadcast activities such as broadcast signalling, mass priority
setting, and to take into group-related aspects of credentials.
Additional operations should also be taken into account, such as ktrace,
debugging attach using procfs, and so on.
o This testing suite is intended to prevent the introduction of bugs
in the upcoming sets of authorization changes associated with the
introduction of process capabilities and mandatory access control.
Obtained from: TrustedBSD Project
enable easy access to the hash chain stats. The raw prefixed versions
dump an integer array to userland with the chain lengths. This cheats
and calls it an array of 'struct int' rather than 'int' or sysctl -a
faithfully dumps out the 128K array on an average machine. The non-raw
versions return 4 integers: count, number of chains used, maximum chain
length, and percentage utilization (fixed point, multiplied by 100).
The raw forms are more useful for analyzing the hash distribution, while
the other form can be read easily by humans and stats loggers.
o Mention that the current environment is part of the -s calculation.
o Add a BUGS section that warns against executing a program that increases
the size of the argument list or the size of the environment.
I have wondered for a while what the difference is between
get a big list | xargs sudo command
which fails and
get a big list | sudo xargs command
which succeeds. The answer is that in the first case, sudo expands
the environment and pushes the amount of data passed into execve over
the E2BIG threshold.
API for IPI's that isn't tied to the Intel APIC. MD code can still use
the apic_ipi() function or dink with the apic directly if needed to send
MD IPI's.
number of issues:
- Fix background mounts; these were broken in revision 1.40.
- Don't give up before trying all addresses returned by getaddrinfo().
- Use protocol-independent routines where possible.
- Improve error reporting for RPC errors.
- In non-background mode, give up after trying all protocols once.
- Use daemon(3) instead of rolling our own version.
- Never go ahead with the mount() syscall until we have received
a reply from the remote nfsd; this is especially important with
non-interruptible mounts, as otherwise a mistyped command might
require a reboot to correct.
Reviewed by: alfred, Martin Blapp <mb@imp.ch>
because:
- it used a better namespace (smp_ipi_* rather than *_ipi),
- it used better constant names for the IPI's (IPI_* rather than
X*_OFFSET), and
- this API also somewhat exists for both alpha and ia64 already.
codecs. Also, add some additional code to check for future cards without
this feature - attempting to initialise them as AC97 cards will hang the
machine.
PR: 26427
Reviewed by: cg
His description of the problem and solution follow. My own tests show
speedups on typical filesystem intensive workloads of 5% to 12% which
is very impressive considering the small amount of code change involved.
------
One day I noticed that some file operations run much faster on
small file systems then on big ones. I've looked at the ffs
algorithms, thought about them, and redesigned the dirpref algorithm.
First I want to describe the results of my tests. These results are old
and I have improved the algorithm after these tests were done. Nevertheless
they show how big the perfomance speedup may be. I have done two file/directory
intensive tests on a two OpenBSD systems with old and new dirpref algorithm.
The first test is "tar -xzf ports.tar.gz", the second is "rm -rf ports".
The ports.tar.gz file is the ports collection from the OpenBSD 2.8 release.
It contains 6596 directories and 13868 files. The test systems are:
1. Celeron-450, 128Mb, two IDE drives, the system at wd0, file system for
test is at wd1. Size of test file system is 8 Gb, number of cg=991,
size of cg is 8m, block size = 8k, fragment size = 1k OpenBSD-current
from Dec 2000 with BUFCACHEPERCENT=35
2. PIII-600, 128Mb, two IBM DTLA-307045 IDE drives at i815e, the system
at wd0, file system for test is at wd1. Size of test file system is 40 Gb,
number of cg=5324, size of cg is 8m, block size = 8k, fragment size = 1k
OpenBSD-current from Dec 2000 with BUFCACHEPERCENT=50
You can get more info about the test systems and methods at:
http://www.ptci.ru/gluk/dirpref/old/dirpref.html
Test Results
tar -xzf ports.tar.gz rm -rf ports
mode old dirpref new dirpref speedup old dirprefnew dirpref speedup
First system
normal 667 472 1.41 477 331 1.44
async 285 144 1.98 130 14 9.29
sync 768 616 1.25 477 334 1.43
softdep 413 252 1.64 241 38 6.34
Second system
normal 329 81 4.06 263.5 93.5 2.81
async 302 25.7 11.75 112 2.26 49.56
sync 281 57.0 4.93 263 90.5 2.9
softdep 341 40.6 8.4 284 4.76 59.66
"old dirpref" and "new dirpref" columns give a test time in seconds.
speedup - speed increasement in times, ie. old dirpref / new dirpref.
------
Algorithm description
The old dirpref algorithm is described in comments:
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
A new directory is allocated in a different cylinder groups than its
parent directory resulting in a directory tree that is spreaded across
all the cylinder groups. This spreading out results in a non-optimal
access to the directories and files. When we have a small filesystem
it is not a problem but when the filesystem is big then perfomance
degradation becomes very apparent.
What I mean by a big file system ?
1. A big filesystem is a filesystem which occupy 20-30 or more percent
of total drive space, i.e. first and last cylinder are physically
located relatively far from each other.
2. It has a relatively large number of cylinder groups, for example
more cylinder groups than 50% of the buffers in the buffer cache.
The first results in long access times, while the second results in
many buffers being used by metadata operations. Such operations use
cylinder group blocks and on-disk inode blocks. The cylinder group
block (fs->fs_cblkno) contains struct cg, inode and block bit maps.
It is 2k in size for the default filesystem parameters. If new and
parent directories are located in different cylinder groups then the
system performs more input/output operations and uses more buffers.
On filesystems with many cylinder groups, lots of cache buffers are
used for metadata operations.
My solution for this problem is very simple. I allocate many directories
in one cylinder group. I also do some things, so that the new allocation
method does not cause excessive fragmentation and all directory inodes
will not be located at a location far from its file's inodes and data.
The algorithm is:
/*
* Find a cylinder group to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
My early versions of dirpref give me a good results for a wide range of
file operations and different filesystem capacities except one case:
those applications that create their entire directory structure first
and only later fill this structure with files.
My solution for such and similar cases is to limit a number of
directories which may be created one after another in the same cylinder
group without intervening file creations. For this purpose, I allocate
an array of counters at mount time. This array is linked to the superblock
fs->fs_contigdirs[cg]. Each time a directory is created the counter
increases and each time a file is created the counter decreases. A 60Gb
filesystem with 8mb/cg requires 10kb of memory for the counters array.
The maxcontigdirs is a maximum number of directories which may be created
without an intervening file creation. I found in my tests that the best
performance occurs when I restrict the number of directories in one cylinder
group such that all its files may be located in the same cylinder group.
There may be some deterioration in performance if all the file inodes
are in the same cylinder group as its containing directory, but their
data partially resides in a different cylinder group. The maxcontigdirs
value is calculated to try to prevent this condition. Since there is
no way to know how many files and directories will be allocated later
I added two optimization parameters in superblock/tunefs. They are:
int32_t fs_avgfilesize; /* expected average file size */
int32_t fs_avgfpdir; /* expected # of files per directory */
These parameters have reasonable defaults but may be tweeked for special
uses of a filesystem. They are only necessary in rare cases like better
tuning a filesystem being used to store a squid cache.
I have been using this algorithm for about 3 months. I have done
a lot of testing on filesystems with different capacities, average
filesize, average number of files per directory, and so on. I think
this algorithm has no negative impact on filesystem perfomance. It
works better than the default one in all cases. The new dirpref
will greatly improve untarring/removing/coping of big directories,
decrease load on cvs servers and much more. The new dirpref doesn't
speedup a compilation process, but also doesn't slow it down.
Obtained from: Grigoriy Orlov <gluk@ptci.ru>
s/1518/ETHER_MAX_LEN
Some style changes, add some braces, mostly residual from having
a lot of debug hooks added while working on this driver.
Bring in a plethora of changes from NetBSD:
revision 1.58
date: 2001/03/08 11:07:08; author: ichiro; state: Exp; lines: +17 -1
it wait until busy flag disappears.
it was able to prevent some cards with late initializing faling in wi_reset().
revision 1.41
date: 2000/10/13 19:15:08; author: jonathan; state: Exp; lines: +4 -2
Fix wi_intr() to avoid touching card registers during insert/remove events,
when sharing an interrupt with other devices:
check sc->sc_enabled, and drop the interrupt if its' off.
revision 1.30
date: 2000/08/18 04:11:48; author: jhawk; state: Exp; lines: +4 -4
Copy wi_{dst,src}_addr from struct wi_frame into faked-up ether_header
instead of addr1 and addr2. THis means that tcpdump -e will show the
correct MAC address for communications with access points instead of showing
the BSSID.
In the future there should be 802.11 support for bpf/libpcap/tcpdump,
but that is aways down the road.