through the FreeBSD ABI. IPC_INFO, SHM_INFO, SHM_STAT were added
specifically for Linux binary support. They are not documented
as being a part of the FreeBSD ABI, also, the structures necessary
for them have been hidden away from the users for a long time.
Also, the Linux ABI layer uses it's own structures to populate the
responses back to the user to ensure that the ABI is consistent.
I think there is a bit more separation work that needs to happen.
Reviewed by: jhb
Discussed with: jhb
Discussed on: freebsd-arch@ (very briefly)
MFC after: 1 month
the PIC also informs the platform at which IRQ level it can start
assigning IPIs, since this can depend on the number of IRQs
supported for external interrupts.
when the result is +-0. IEEE754 requires (in all rounding modes) that
if the result is +-0 then its sign is the same as that of the first
arg, but in round-towards-minus-infinity mode an uncorrected implementation
detail always reversed the sign. (The detail is that x-x with x's
sign positive gives -0 in this mode only, but the algorithm assumed
that x-x always has positive sign for such x.)
remquo() and remquof() seem to need the same fix, but I cannot test them
yet.
Use long doubles when mixing NaN args. This trick improves consistency
of results on at least amd64, so that more serious problems like the
above aren't hidden in simple regression tests by noise for the NaNs.
On amd64, hardware remainder should be used since it is about 10 times
faster than software remainder and is already used for remquo(), but
it involves using the i387 even for floats and doubles, and the i387
does NaN mixing which is better than but inconsistent with SSE NaN mixing.
Software remainder() would probably have been inconsistent with
software remainderl() for the same reason if the latter existed.
Signaling NaNs cause further inconsistencies on at least ia64 and i386.
Use __FBSDID().
PAGE_SIZE or less, the bounce page counting logic was flawed and wouldn't
reserve any pages. Adjust to be correct. Review of other architectures is
forthcoming.
Submitted by: Joseph Golio
With write-allocate cache we get into the following scenario:
1. data has been updated in the memory by the USB HC, but
2. D-cache holds an un-flushed value of it
3. when affected cache line is being replaced, the old (un-flushed) value is
flushed and overwrites the newly arrived
This is possible due to how write-allocate works with virtual caches (ARM for
example).
In case of USB transfers it leads to fatal tags discrepancies in umass(4)
operation, which look like the following:
umass0: Invalid CSW: tag 1 should be 2
(probe0:umass-sim0:0:0:0): Request completed with CAM_REQ_CMP_ERR
(probe0:umass-sim0:0:0:0): Retrying Command
umass0: Invalid CSW: tag 1 should be 3
(probe0:umass-sim0:0:0:0): Request completed with CAM_REQ_CMP_ERR
(probe0:umass-sim0:0:0:0): Retrying Command
umass0: Invalid CSW: tag 1 should be 4
(probe0:umass-sim0:0:0:0): Request completed with CAM_REQ_CMP_ERR
(probe0:umass-sim0:0:0:0): Retrying Command
umass0: Invalid CSW: tag 1 should be 5
(probe0:umass-sim0:0:0:0): Request completed with CAM_REQ_CMP_ERR
(probe0:umass-sim0:0:0:0): Retrying Command
umass0: Invalid CSW: tag 1 should be 6
(probe0:umass-sim0:0:0:0): Request completed with CAM_REQ_CMP_ERR
(probe0:umass-sim0:0:0:0): error 5
(probe0:umass-sim0:0:0:0): Retries Exausted
To eliminate this, a BUS_DMASYNC_PREREAD sync operation is required in
usbd_start_transfer().
Credits for nailing this down go to Grzegorz Bernacki gjb AT semihalf DOT com.
Reviewed by: imp
Approved by: cognet (mentor)
historical relic, and are no longer appropriate for either LAN or WAN
mounting. At modern (gigabit and 10 gigabit) LAN speeds packet loss
from socket buffer fill events is common, and sequence numbers wrap
quickly enough that data corruption is possible. TCP solves both of
these problems without imposing significant overhead.
MFC after: 1 month
sectors so the geometry of large IDE disks has to be adjusted. This
corresponds to what the OpenSolaris dad(7D) driver does except that
the latter only tweaks sectors and effectively limits the mediasize
to 128GB so the cylinders and heads fields won't ever overflow. Not
limiting the mediasize is a compromise between allowing to use Sun
disk label as far as possible and being able to use the entire disk
with another disk label.
This allows to use the full capacity of large IDE disks if they were
not labeled under (Open)Solaris (in both ways of the meaning).
MFC after: 2 weeks
Turn off TFTP support by default: when both TFTP and NFS are enabled in the
loader, strange interactions occur in the pure netbooting scenario (i.e.
loader is TFTP-ed, kernel+world mounted over NFS), leading to very slow access
to the NFS-exported files.
Reviewed by: grehan
Approved by: cognet (mentor)
exp2(i/TBLSIZE) * p(z) instead of only for the final multiplication
and addition. This fixes the code to match the comment that the maximum
error is 0.5010 ulps (except on machines that evaluate float expressions
in extra precision, e.g., i386's, where the evaluation was already
in extra precision).
Fix and expand the comment about use of double precision.
The relative roundoff error from evaluating p(z) in non-extra precision
was about 16 times larger than in exp2() because the interval length
is 16 times smaller. Its maximum was at least P1 * (1.0 ulps) *
max(|z|) ~= log(2) * 1.0 * 1/32 ~= 0.0217 ulps (1.0 ulps from the
addition in (1 + P1*z) with a cancelation error when z ~= -1/32). The
actual final maximum was 0.5313 ulps, of which 0.0303 ulps must have
come from the additional roundoff error in p(z). I can't explain why
the additional roundoff error was almost 3/2 times larger than the rough
estimate.
The logical disks will appear as /dev/lvm/<vol group>-<logical vol>, for
instance /dev/lvm/vg0-home. GLVM currently supports linear stripes with
segments on multiple physical disks. The metadata is read only, logical
volumes can not be allocated or resized.
Reviewed by: Ivan Voras
- Include lock.h in lockmgr.h as nested header in order to safely use
LOCK_FILE and LOCK_LINE. As long as this code will be replaced soon
we can tollerate for a while this namespace pollution even if the real
fix would be to let lockmgr() depend by lock.h as a separate header.
tree, restyle everything but coda.h (which is more explicitly shared
across systems) into a closer approximation to style(9).
Remove a few more unused function prototypes.
Add or clarify some comments.
MFC after: 1 month
NOP-message polling in ciss_periodic().
Note that setting the tunable to non-zero can be workaround only for
`ADAPTER HEARTBEAT FAILED' problem, and may freeze the system w/o
the problem.
Reviewed by: scottl
Reported by: Attila Nagy
MFC after: 3 days
owned by a NULL owner. This will lead consequent VOP_ISLOCKED() present
into nfs_upgrade_vnlock() to panic as it only acquire curthread now.
Fix nfs_upgrade_vnlock() and nfs_downgrade_vnlock() in order to not use
more the struct thread pointer passed as argument (as it is really nomore
required there as vn_lock() and VOP_UNLOCK doesn't get the lock more).
Using curthread, in place, doesn't get ambiguity as LK_EXCLOTHER should
be handled as a "not locked" request by both functions.
Reported by: kris
Tested by: kris
Reviewed by: ups
precision. The new polynomial has degree 4 instead of 10, and a maximum
error of 2**-30.04 ulps instead of 2**-33.15. This doesn't affect the
final error significantly; the maximum error was and is about 0.5015
ulps on i386 -O1, and the number of cases with an error of > 0.5 ulps
is increased from 13851 to 14407.
Note that the error is only this close to 0.5 ulps due to excessive
extra precision caused by compiler bugs on i386. The extra precision
could be obtained intentionally, and is useful for keeping the error
of the hyperbolic float functions below 1 ulp, since these functions
are implemented using expm1f. My recent change for scaling by 2**k
had the unintentional side effect of retaining extra precision for
longer, so callers of expm1f see errors of more like 0.0015 ulps than
0.5015 ulps, and for the hyperbolic functions this reduces the maximum
error from nearly about 2 ulps to about 0.75 ulps.
This is about 10% faster on i386 (A64). expm1* is still very slow,
but now the float version is actually significantly faster. The
algorithm is very sophisticated but not very good except on machines
with fast division.
- Rename print_vattr to coda_print_vattr and make static, rename
print_cred to coda_print_cred.
- Remove unused coda_vop_nop.
- Add XXX comment because coda_readdir forwards to the cache vnode's
readdir rather than venus_readdir, and annotate venus_readdir as
unused.
- Rename vc_nb_* to vc_*.
- Use d_open_t, d_close_t, d_read_t, d_write_t, d_ioctl_t and d_poll_t
for prototyping vc_* as that is the intent, don't use our own
definitions.
- Rename coda_nb_statfs to coda_statfs, rename NB_SFS_SIZ to
CODA_SFS_SIZ.
- Replace one more OBE reference to NetBSD with a reference to FreeBSD.
- Tidy up a little vertical whitespace here and there.
- Annotate coda_nc_zapvnode as unused.
- Remove unused vcodattach.
- Annotate VM_INTR as unused.
- Annotate that coda_fhtovp is unused and doesn't match the FreeBSD
prototype, so isn't hooked up to vfs_fhtovp. If we want NFS export of
Coda to work someday, this needs to be fixed.
- Remove unused getNewVnode.
- Remove unused coda_vget, coda_init, coda_quotactl prototypes.
MFC after: 1 month