and declare them extern in interrupt.c. This eliminates the need
for ia64_add_sapic(), which is called from sapic.c.
While here, reformat ia64_enable() in interrupt.c to improve
indentation and add a sysctl (machdep.apic) to dump the I/O APIC
entries currently programmed into all I/O APICs. The latter can
help analyze interrupt problems.
Note that the sysctl is not intended as a userland (software)
interface. It may be changed in the future to include counters
so that vmstat -i can make use of it. It may also be removed...
copies of the reload. Note that we use the precomputed itm_reload value
so that we can avoid a division in the kernel. The ia64 cpu does not
have integer divide, so this would have been done by a floating point
operation.
CLOCK_VECTOR and define it as 254, not 255. Vector 255 is already
in use as the AP wakeup vector on the HP rx2600.
This needs to be made more dynamic. The likelyhood of vector 254
being in use is pretty small, but we already have code to assign
vectors to IPIs (see sal.c) and it's preobably better to have a
centralized "vector manager" that hands out vectors based on
some imput (like priority).
called. Otherwise (depending on a non-deterministic sort), the timecounter
code can be initialized before the clock rate has been set (on ia64) and it
assumes hz = 100, rather than the real value of 1024. I'm not sure how much
gets upset by this.
Glanced at by: phk
because we have 2 stacks per thread: the regular downward
memory stack and the irregular upward register stack. This
implementation lets both stacks grow toward each other. An
alternative scheme is to have them grow away from each other.
The alternate scheme has the advantage that both stack grow
toward guard pages. Since libc_r is virtually dead and we
really want the *context stuff for thread switching, we don't
try to be perfect, just functional.
handleclock itself is trivial.
While here, replace (itc_frequency+hz/2)/hz with itm_reload for
consistency. There's now a single place where we determine the
ITM reload value.
header with M_MOVE_PKTHDR one should not reference the packet header in the
original packet; in this case the code was assuming that m_adj would alter
m_pkthdr.len which stopped happening because M_MOVE_PKTHDR removes the
M_PKTHDR bit from m_flags
Submitted by: Bill Fenner <fenner@research.att.com>
instead of unwinding the call stack. This makes them usable to switch
stacks, e.g. for libc_r.
Do not save the frame pointer in setjmp() and _setjmp(), it is not needed
any more.
Rename _longjmp() to ___longjmp(), with a weak alias to _longjmp(), like
the other architectures did.
interrupt block). We use the previously hardcoded address as a
default only, but will otherwise use whatever ACPI tells us.
The address can be found in the MADT table header or in the
LAPIC override table entry.
space most of the time, but handles machines with lots of I/O
(S)APICs. We cannot make this more dynamic without breaking the
interface with vmstat. Hence, we need to fix the interface first.
name of unused entries from "intr XXX" to "#XXX". This makes it
easier to debug interrupt problems, because vmstat can be hacked
more easily to dump all interrupt entries that are in use and not
those that have had interrupts.
devices aren't necessarily mapped within 4GB. I/O port addresses
are offsets into the memory mapped I/O port space, which is not
larger than 16MB. No need to convert those to 64 bit types.
Previously all filesystems which relied on specfs to do devices
would have private overrides for vop_std*, so the vop_no* overrides
here had no effect. I overlooked the transitive nature of the vop
vectors when I removed the vop_std* in those filesystems.
Removing the override here restores device node locking to it's
previous modus operandi.
Spotted by: bde
then call do_setopt_accept_filter(so, NULL) which will free the filter
instead of duplicating the code in do_setopt_accept_filter().
Pointed out by: Hiten Pandya <hiten@angelica.unixdaemons.com>