CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
configurations for various architectures in FreeBSD 10.x. This allows
basic Capsicum functionality to be used in the default FreeBSD
configuration on non-embedded architectures; process descriptors are not
yet enabled by default.
MFC after: 3 months
Sponsored by: Google, Inc
At the moment grab and ungrab methods of all console drivers are no-ops.
Current intended meaning of the calls is that the kernel takes control of
console input. In the future the semantics may be extended to mean that
the calling thread takes full ownership of the console (e.g. console
output from other threads could be suspended).
Inspired by: bde
MFC after: 2 months
all the architectures.
The option allows to mount non-MPSAFE filesystem. Without it, the
kernel will refuse to mount a non-MPSAFE filesytem.
This patch is part of the effort of killing non-MPSAFE filesystems
from the tree.
No MFC is expected for this patch.
Tested by: gianni
Reviewed by: kib
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
thing when changing the debugging options as part of head becoming a new
stable branch. It may also help people who for one reason or another want
to run head but don't want it slowed down by the debugging support.
Reviewed by: kib
implement a deprecated FPU control interface in addition to the
standard one. To make this clearer, further deprecate ieeefp.h
by not declaring the function prototypes except on architectures
that implement them already.
Currently i386 and amd64 implement the ieeefp.h interface for
compatibility, and for fp[gs]etprec(), which doesn't exist on
most other hardware. Powerpc, sparc64, and ia64 partially implement
it and probably shouldn't, and other architectures don't implement it
at all.
As part of the 8.0-RELEASE cycle this was done in stable/8 (r199112)
but was left alone in head so people could work on fixing an issue that
caused boot failure on some motherboards. Apparently nobody has worked
on it and we are getting reports of boot failure with the 9.0 test builds.
So this time I'll comment out the driver in head (still hoping someone
will work on it) and MFC to stable/9.
Submitted by: Alberto Villa <avilla at FreeBSD dot org>
protected the dirty mask updates. The dirty mask updates are handled
by atomics after the r225840.
Submitted by: alc
Tested by: flo (sparc64)
MFC after: 2 weeks
patch modifies makesyscalls.sh to prefix all of the non-compatibility
calls (e.g. not linux_, freebsd32_) with sys_ and updates the kernel
entry points and all places in the code that use them. It also
fixes an additional name space collision between the kernel function
psignal and the libc function of the same name by renaming the kernel
psignal kern_psignal(). By introducing this change now we will ease future
MFCs that change syscalls.
Reviewed by: rwatson
Approved by: re (bz)
flags field. Updates to the atomic flags are performed using the atomic
ops on the containing word, do not require any vm lock to be held, and
are non-blocking. The vm_page_aflag_set(9) and vm_page_aflag_clear(9)
functions are provided to modify afalgs.
Document the changes to flags field to only require the page lock.
Introduce vm_page_reference(9) function to provide a stable KPI and
KBI for filesystems like tmpfs and zfs which need to mark a page as
referenced.
Reviewed by: alc, attilio
Tested by: marius, flo (sparc64); andreast (powerpc, powerpc64)
Approved by: re (bz)
to VPO_UNMANAGED (and also making the flag protected by the vm object
lock, instead of vm page queue lock).
- Mark the fake pages with both PG_FICTITIOUS (as it is now) and
VPO_UNMANAGED. As a consequence, pmap code now can use use just
VPO_UNMANAGED to decide whether the page is unmanaged.
Reviewed by: alc
Tested by: pho (x86, previous version), marius (sparc64),
marcel (arm, ia64, powerpc), ray (mips)
Sponsored by: The FreeBSD Foundation
Approved by: re (bz)
problem to solve is that we don't have a fixed mapping from kernel
text to physical address so that libkvm can bootstrap itself. We
solve this by passing the physical address of the bootinfo structure
to the consumer as the entry point of the core file. This way,
libkvm can extract the PBVM page table information and locate the
kernel in the core file.
We also need to dump memory chunks of type loader data, because
those hold the kernel and the PBVM page table (among other things).
Approved by: re (blanket)
catch and debug issues like the one fixed in the previous commit:
Replace all return statements with goto statements so that we end
up at a single place with a value for the physical address.
Print a message for all unknown KVA addresses.
Approved by: re (blanket)
From now on, default values for FreeBSD will be 64 maxiumum supported
CPUs on amd64 and ia64 and 128 for XLP. All the other architectures
seem already capped appropriately (with the exception of sparc64 which
needs further support on jalapeno flavour).
Bump __FreeBSD_version in order to reflect KBI/KPI brekage introduced
during the infrastructure cleanup for supporting MAXCPU > 32. This
covers cpumask_t retiral too.
The switch is considered completed at the present time, so for whatever
bug you may experience that is reconducible to that area, please report
immediately.
Requested by: marcel, jchandra
Tested by: pluknet, sbruno
Approved by: re (kib)
This patch is going to help in cases like mips flavours where you
want a more granular support on MAXCPU.
No MFC is previewed for this patch.
Tested by: pluknet
Approved by: re (kib)
sintrcnt/sintrnames which are symbols containing the size of the 2
tables.
- For amd64/i386 remove the storage of intr* stuff from assembly files.
This area can be widely improved by applying the same to other
architectures and likely finding an unified approach among them and
move the whole code to be MI. More work in this area is expected to
happen fairly soon.
No MFC is previewed for this patch.
Tested by: pluknet
Reviewed by: jhb
Approved by: re (kib)
addresses (i.e. uncacheable). ACPI in particular uses pmap_mapdev()
rather excessively (number of calls) just to get a valid KVA. To
that end, have pmap_mapdev():
1. cache the last result so that we don't waste time for multiple
consecutive invocations with the same PA/SZ.
2. find the memory descriptor that covers the PA and return NULL
if none was found or when the PA is for a common DRAM address.
3. Use either a region 6 or region 7 KVA, in accordance with the
memory attribute.
potentially trigger multiple pending interrupts for level-sensitive
interrupts. However, the event timer interrupt does need EOI before
being handled to avoid missing clock events.
These conflicting requirements are handled by having the XIV handler
inform the dispatch code whether or not it send EOI to the CPU. If not,
the dispatch code will do it. This allows handlers to send EOI before
doing potentially long-running activities, while still have a sensible
default behaviour.
o efi_md_find() - returns the md that covers the given address
o efi_md_last() - returns the last md in the list
o efi_md_prev() - returns the md that preceeds the given md.
distinguish between UC and WB memory so that we can map the page to
either a region 6 address (for UC) or a region 7 address (for WB).
This change is only now possible, because previously we would map
regions 6 and 7 with 256MB translations and on top of that had the
kernel mapped in region 7 using a wired translation. The introduction
of the PBVM moved the kernel into its own region and freed up region
7 and allowed us to revert to standard page-sized translations.
This commit inroduces pmap_page_to_va() that respects the attribute.
addressing while reading or writing the trap frame. It's not
possible to guarantee that the one translation cache entry that
we depend on is not going to get purged by the CPU. We already
know that global shootdowns (ptc.g and/or ptc.ga) can (and will)
cause multiple TC entries to get purged and we initialize tried
to handle that by serializing kernel entry with these operations.
However, we need to serialize kernel exit as well.
But even if we can serialize, it appears that CPU threads within
a core can affect each other's TC entries beyond the global
shootdown. This would mean serializing any and all translatation
cache updates with the threads in a core with the kernel entry
and exit of any thread in that core. This is just too painful
and complicated.
Since we already properly coded for the 2 nested faults that we
can get, all we need to do is use those to obtain the physical
address of the trap frame, switch to physical mode and in that
way eliminate any further faults. The trap frame is already
aligned to 1KB boundaries to make sure we don't cross the page
boundary, this is safe to do.
We still need to serialize ptc.g or ptc.ga across CPUs because
the platform can only have 1 such operation outstanding at the
same time. We can now use a regular (spin) lock for this.
Also, it has been observed that we can get a nested TLB faults
for region 7 virtual addresses. This was unexpected. For now,
we enhance the nested TLB fault handler to deal with those as
well, but it needs to be understood.
option to vm_object_page_remove() asserts that the specified range of pages
is not mapped, or more precisely that none of these pages have any managed
mappings. Thus, vm_object_page_remove() need not call pmap_remove_all() on
the pages.
This change not only saves time by eliminating pointless calls to
pmap_remove_all(), but it also eliminates an inconsistency in the use of
pmap_remove_all() versus related functions, like pmap_remove_write(). It
eliminates harmless but pointless calls to pmap_remove_all() that were being
performed on PG_UNMANAGED pages.
Update all of the existing assertions on pmap_remove_all() to reflect this
change.
Reviewed by: kib
a magnitude smaller than itc_freq. A minimum period of 10*hz is
sufficient precision. As a side-effect, the number of clocks per
second, when the machine is idle, dropped by more than 50%.
Be anal and define the maximum period to be at least 4G seconds.
With a 64-bit counter and an ITC frequency that's expected to be
always less than 4Ghz, it takes longer than that to wrap around.
o Setting td_intr_frame to the XIVs trap frame because it's referenced
by the ET event handler.
o Signal EOI to the CPU before calling the registered XIV handlers.
This prevents lost ITC interrupts, which cause starvation in one-shot
mode.
o Adding support for IPI_HARDCLOCK with corresponding per-CPU counters.
o Have the APs call cpu_initclocks() so as to limited the scattering of
clock related initialization. cpu_initclocks() calls the <self>_bsp()
or <self>_ap() version accordingly.
o Uncomment the ET clock handling in cpu_idle().
o Update the DDB 'show pcpu' output for the new MD fields.
o Entirely rewritten ia64_ih_clock(). Note that we don't create as many
clock XIVs as we have CPUs, as is done on PowerPC. It doesn't scale.
We can only have 240 XIVs and we can have more CPUs than that. There's
a single intrcnt index for the cumulative clock ticks and we keep per
CPU counts in the PCPU stats structure.
o Register the ITC by hooking SI_SUB_CONFIGURE (2nd order).
Open issues:
o Clock interrupts can still be lost. Some tweaking is still necessary.
Thanks to: mav@ for his support, feedback and explanations.
ET stats while committing:
eris% sysctl machdep.cpu | grep nclks
machdep.cpu.0.nclks: 24007
machdep.cpu.1.nclks: 22895
machdep.cpu.2.nclks: 13523
machdep.cpu.3.nclks: 9342
machdep.cpu.4.nclks: 9103
machdep.cpu.5.nclks: 9298
machdep.cpu.6.nclks: 10039
machdep.cpu.7.nclks: 9479
eris% vmstat -i | grep clock
clock 108599 50
switch the region registers. pmap_switch() returns the pmap for
which the region register are currently programmed, which needs
to be re-programmed on the CPU the ougoing thread gets switched
in. This change does not noticibly change anything or fix known
bugs, but does give me a warm fuzzy feeling by being more
correct.
stream of the local processor. Also explicitly invalidate
the ALAT. This is done on the other CPUs in the coherence
domain by virtue of the ptc.ga instruction, but does not
apply to the local CPU.
o cpu_idle_hook is expected to be called with interrupts
disabled and re-enables interrupts on return.
o sync with x86: don't idle when the CPU has runnable tasks
o have callers of ia64_call_pal_static() disable interrupts
and re-enable interrupts.
o add, but compile-out, support for idle mode. This will be
enabled at some later time, after proper testing.
be brought up in the order they are enumerated in the device tree (in
particular, that thread 0 on each core be brought up first). The SLIST
through which we loop to start the CPUs has all of its entries added with
SLIST_INSERT_HEAD(), which means it is in reverse order of enumeration
and so AP startup would always fail in such situations (causing a machine
check or RTAS failure). Fix this by changing the SLIST into an STAILQ,
and inserting new CPUs at the end.
Reviewed by: jhb
the register stack. While the ordering doesn't matter, it creates an
invariant not previously there: the memory stack pointer will always be
larger than the register stack pointer. With this invariant in place,
it's easier to add instrumentation code that detects a stack overflow
because in such a scenario the memory stack pointer and register stack
pointers have crossed each other.
Aside: basic kernel operation needs about half the stack size (~16K)
at most. We have plenty of head room on the kernel stack...
o Clobber the register that holds the restart token immediately after
crossing the restart point. This prevents false positives (i.e. a
nested exception that we don't know can happen and that is being
treated as one we know by virtue of a lingering restart token).
o Now that the bootstrap kernel stack is free, switch onto it and call
trap() for nested traps that we don't know about. In trap we panic()
so that we can analyze the condition.
architectures (i386, for example) the virtual memory space may be
constrained enough that 2MB is a large chunk. Use 64K for arches
other than amd64 and ia64, with special handling for sparc64 due to
differing hardware.
Also commit the comment changes to kmem_init_zero_region() that I
missed due to not saving the file. (Darn the unfamiliar development
environment).
Arch maintainers, please feel free to adjust ZERO_REGION_SIZE as you
see fit.
Requested by: alc
MFC after: 1 week
MFC with: r221853
versions instead. They were never needed as bus_generic_intr() and
bus_teardown_intr() had been changed to pass the original child device up
in 42734, but the ISA bus was not converted to new-bus until 45720.
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
of the 61 bits available within the region for virtual addressing. Since
there's no good way for us to map out the gap in the virtual address space,
limit KVA to the architectural minimum implemented address bits. This still
gives us 1 petabyte of KVA, so no worries.
use the PBVM. This eliminates the implied hardcoding of the
physical address at which the kernel needs to be loaded. Using the
PBVM makes it possible to load the kernel irrespective of the
physical memory organization and allows us to replicate kernel text
on NUMA machines.
While here, reduce the direct-mapped page size to the kernel's
page size so that we can support memory attributes better.
constraints on the rman and reject attempts to manage a region that is out
of range.
- Fix various places that set rm_end incorrectly (to ~0 or ~0u instead of
~0ul).
- To preserve existing behavior, change rman_init() to set rm_start and
rm_end to allow managing the full range (0 to ~0ul) if they are not set by
the caller when rman_init() is called.
disk dumping.
With the option SW_WATCHDOG on, these operations are doomed to let
watchdog fire, fi they take too long.
I implemented the stubs this way because I really want wdog_kern_*
KPI to not be dependant by SW_WATCHDOG being on (and really, the option
only enables watchdog activation in hardclock) and also avoid to
call them when not necessary (avoiding not-volountary watchdog
activations).
Sponsored by: Sandvine Incorporated
Discussed with: emaste, des
MFC after: 2 weeks
NFS client (which I guess is no longer experimental). The fstype "newnfs"
is now "nfs" and the regular/old NFS client is now fstype "oldnfs".
Although mounts via fstype "nfs" will usually work without userland
changes, an updated mount_nfs(8) binary is needed for kernels built with
"options NFSCL" but not "options NFSCLIENT". Updated mount_nfs(8) and
mount(8) binaries are needed to do mounts for fstype "oldnfs".
The GENERIC kernel configs have been changed to use options
NFSCL and NFSD (the new client and server) instead of NFSCLIENT and NFSSERVER.
For kernels being used on diskless NFS root systems, "options NFSCL"
must be in the kernel config.
Discussed on freebsd-fs@.
stack. It means that all legacy ATA drivers are disabled and replaced by
respective CAM drivers. If you are using ATA device names in /etc/fstab or
other places, make sure to update them respectively (adX -> adaY,
acdX -> cdY, afdX -> daY, astX -> saY, where 'Y's are the sequential
numbers for each type in order of detection, unless configured otherwise
with tunables, see cam(4)).
ataraid(4) functionality is now supported by the RAID GEOM class.
To use it you can load geom_raid kernel module and use graid(8) tool
for management. Instead of /dev/arX device names, use /dev/raid/rX.
boundaries. For good measure, align all other objects to cache
lines boundaries.
Use the new arch_loadseg I/F to keep track of kernel text and
data so that we can wire as much of it as is possible. It is
the responsibility of the kernel to link critical (read IVT
related) code and data at the front of the respective segment
so that it's covered by TRs before the kernel has a chance to
add more translations.
Use a better way of determining whether we're loading a legacy
kernel or not. We can't check for the presence of the PBVM page
table, because we may have unloaded that kernel and loaded an
older (legacy) kernel after that. Simply use the latest load
address for it.
In particular:
- implement compat shims for old stat(2) variants and ogetdirentries(2);
- implement delivery of signals with ancient stack frame layout and
corresponding sigreturn(2);
- implement old getpagesize(2);
- provide a user-mode trampoline and LDT call gate for lcall $7,$0;
- port a.out image activator and connect it to the build as a module
on amd64.
The changes are hidden under COMPAT_43.
MFC after: 1 month
services or PAL procedures. The new implementation is based on
specific functions that are known to be called in certain scenarios
only. This in particular fixes the PAL call to obtain information
about translation registers. In general, the new implementation does
not bank on virtual addresses being direct-mapped and will work when
the kernel uses PBVM.
When new scenarios need to be supported, new functions are added if
the existing functions cannot be changed to handle the new scenario.
If a single generic implementation is possible, it will become clear
in due time.
While here, change bootinfo to a pointer type in anticipation of
future development.
1. The PBVM is in region 4, so if we want to make use of it, we
need region 4 freed up.
2. Region 4 and above cannot be represented by an off_t by virtue
of that type being signed. This is problematic for truss(1),
ktrace(1) and other such programs.
configurations and make it opt-in for those who want it. LINT will
still build it.
While it may be a perfect win in some scenarios, it still troubles users
(see PRs) in general cases. In addition we are still allocating resources
even if disabled by sysctl and still leak arp/nd6 entries in case of
interface destruction.
Discussed with: qingli (2010-11-24, just never executed)
Discussed with: juli (OCTEON1)
PR: kern/148018, kern/155604, kern/144917, kern/146792
MFC after: 2 weeks
segment so that it's always mapped by the loader.
o Change the alternate fault handlers to account for PBVM. Since
currently the region is handled by the VHPT, no alternate faults
will be generated for it.
Add support for Pre-Boot Virtual Memory (PBVM) to the loader.
PBVM allows us to link the kernel at a fixed virtual address without
having to make any assumptions about the physical memory layout. On
the SGI Altix 350 for example, there's no usuable physical memory
below 192GB. Also, the PBVM allows us to control better where we're
going to physically load the kernel and its modules so that we can
make sure we load the kernel in memory that's close to the BSP.
The PBVM is managed by a simple page table. The minimum size of the
page table is 4KB (EFI page size) and the maximum is currently set
to 1MB. A page in the PBVM is 64KB, as that's the maximum alignment
one can specify in a linker script. The bottom line is that PBVM is
between 64KB and 8GB in size.
The loader maps the PBVM page table at a fixed virtual address and
using a single translations. The PBVM itself is also mapped using a
single translation for a maximum of 32MB.
While here, increase the heap in the EFI loader from 512KB to 2MB
and set the stage for supporting relocatable modules.
The compiler seems to assume it's a 32-bit integral and rounding to the
page size using the standard expression (((u_long)(x) + mask) & ~mask),
results in a 32-bit value. Dropping the 'U' suffix is enough to have the
compiler treat the expression as a 64-bit integral.
handlers.
o Put the IVT in its own section and keep the supporting code close.
o Make sure the VHPT is sized so that it can be mapped using a single
translation.
o Map the PAL code and VHPT with a translation that has the right size.
Assume the platform has a PAL code size that can be mapped with a
single translations.
o Pass the pointer to the bootinfo structure as an argument to ia64_init().
o Get rid of LOG2_ID_PAGE_SIZE and IA64_ID_PAGE_SIZE. It was used to map
the regions 6 & 7 and was as large as possible. The problem is that we
can't support memory attributes easily if the granuratity is not a page.
We need to support memory attributes because the new USB stack violates
the BUS_DMA(9) interface.
o Update some comments...
NOTE: this is broken for SMP kernels, because the AP startup code hasn't
been updated yet.
o The bootinfo structure is now a virtual pointer.
o Replace VM_MAX_ADDRESS with VM_MAXUSER_ADDRESS and redefine
VM_MAX_ADDRESS as the maximum address possible (~0UL).
o Since we're not using direct-mapped translations, switching
to physical addressing is less trivial. Reserve the boot stack
for running in physical mode and special-case the EFI call,
as we're still on the boot stack.
o Region 4 belongs to the kernel now, not process space.
o Move the backing store in the top half of region 0 now that
region 4 is re-assigned to be part of the kernel.
o De-emphasize VM_MAX_ADDRESS. It's really not used anywhere and probably
means something different than the limit for process address space (we
have VM_MAXUSER_ADDRESS for that).
o Exclude the gateway page from VM_MAXUSER_ADDRESS (i.e. make it the same
as VM_MAX_ADDRESS).