the linux module, since it is not cross-platform
- move linprocfs from "files" and "options" to architecture specific files,
since it only makes sense to build this for those architectures, where we
also have a linuxolator
- disable the build of the linuxolator on our tier-2 architecture "Alpha":
* we don't have a linux_base port which supports Alpha and at the
same time is not outdated/obsoleted upstream/in a good condition/
currently working
* the upcomming new default linux base port is based upon Fedora
Core 3 (security support via http://www.fedoralegacy.org), which
isn't available for Alpha (like the current default linux base
port which is based upon Red Hat 8)
* nobody answered my request for testing it ~1 month ago on
current@ and alpha@ (it doesn't surprises me, see above)
* a SoC student wouldn't have to waste time on something which
nobody is willing to test
This does not remove the alpha specific MD files of the linuxolator yet.
Discussed on: arch (mostly silence)
Spiritual support by: scottl
end for isa(4).
o Add a seperate bus frontend for acpi(4) and allow ISA DMA for
it when ISA is configured in the kernel. This allows acpi(4)
attachments in non-ISA configurations, as is possible for ia64.
o Add a seperate bus frontend for pci(4) and detect known single
port parallel cards.
o Merge PC98 specific changes under pc98/cbus into the MI driver.
The changes are minor enough for conditional compilation and
in this form invites better abstraction.
o Have ppc(4) usabled on all platforms, now that ISA specifics
are untangled enough.
Use the following kernel configuration option to enable:
options BPF_JITTER
If you want to use bpf_filter() instead (e. g., debugging), do:
sysctl net.bpf.jitter.enable=0
to turn it off.
Currently BIOCSETWF and bpf_mtap2() are unsupported, and bpf_mtap() is
partially supported because 1) no need, 2) avoid expensive m_copydata(9).
Obtained from: WinPcap 3.1 (for i386)
nearly identical to wintel/ia32, with a couple of tweaks. Since it is
so similar to ia32, it is optionally added to a i386 kernel. This
port is preliminary, but seems to work well. Further improvements
will improve the interaction with syscons(4), port Linux nforce driver
and future versions of the xbox.
This supports the 64MB and 128MB boxes. You'll need the most recent
CVS version of Cromwell (the Linux BIOS for the XBOX) to boot.
Rink will be maintaining this port, and is interested in feedback.
He's setup a website http://xbox-bsd.nl to report the latest
developments.
Any silly mistakes are my fault.
Submitted by: Rink P.W. Springer rink at stack dot nl and
Ed Schouten ed at fxq dot nl
IPI_STOP IPIs.
- Change the i386 and amd64 MD IPI code to send an NMI if STOP_NMI is
enabled if an attempt is made to send an IPI_STOP IPI. If the kernel
option is enabled, there is also a sysctl to change the behavior at
runtime (debug.stop_cpus_with_nmi which defaults to enabled). This
includes removing stop_cpus_nmi() and making ipi_nmi_selected() a
private function for i386 and amd64.
- Fix ipi_all(), ipi_all_but_self(), and ipi_self() on i386 and amd64 to
properly handle bitmapped IPIs as well as IPI_STOP IPIs when STOP_NMI is
enabled.
- Fix ipi_nmi_handler() to execute the restart function on the first CPU
that is restarted making use of atomic_readandclear() rather than
assuming that the BSP is always included in the set of restarted CPUs.
Also, the NMI handler didn't clear the function pointer meaning that
subsequent stop and restarts could execute the function again.
- Define a new macro HAVE_STOPPEDPCBS on i386 and amd64 to control the use
of stoppedpcbs[] and always enable it for i386 and amd64 instead of
being dependent on KDB_STOP_NMI. It works fine in both the NMI and
non-NMI cases.
as they are already default for I686_CPU for almost 3 years, and
CPU_DISABLE_SSE always disables it. On the other hand, CPU_ENABLE_SSE
does not work for I486_CPU and I586_CPU.
This commit has:
- Removed the option from conf/options.*
- Removed the option and comments from MD NOTES files
- Simplified the CPU_ENABLE_SSE ifdef's so they don't
deal with CPU_ENABLE_SSE from kernel configuration. (*)
For most users, this commit should be largely no-op. If you used to
place CPU_ENABLE_SSE into your kernel configuration for some reason,
it is time to remove it.
(*) The ifdef's of CPU_ENABLE_SSE are not removed at this point, since
we need to change it to !defined(CPU_DISABLE_SSE) && defined(I686_CPU),
not just !defined(CPU_DISABLE_SSE), if we really want to do so.
Discussed on: -arch
Approved by: re (scottl)
a regular IPI vector, but this vector is blocked when interrupts are disabled.
With "options KDB_STOP_NMI" and debug.kdb.stop_cpus_with_nmi set, KDB will
send an NMI to each CPU instead. The code also has a context-stuffing
feature which helps ddb extract the state of processes running on the
stopped CPUs.
KDB_STOP_NMI is only useful with SMP and complains if SMP is not defined.
This feature only applies to i386 and amd64 at the moment, but could be
used on other architectures with the appropriate MD bits.
Submitted by: ups
when using an APIC. This simplifies the APIC code somewhat and also allows
us to be pedantically more compliant with ACPI which mandates no use of
mixed mode.
logical CPUs on a system to be used as a dedicated watchdog to cause a
drop to the debugger and/or generate an NMI to the boot processor if
the kernel ceases to respond. A sysctl enables the watchdog running
out of the processor's idle thread; a callout is launched to reset a
timer in the watchdog. If the callout fails to reset the timer for ten
seconds, the watchdog will fire. The sysctl allows you to select which
CPU will run the watchdog.
A sample "debug.leak_schedlock" is included, which causes a sysctl to
spin holding sched_lock in order to trigger the watchdog. On my Xeons,
the watchdog is able to detect this failure mode and break into the
debugger, which cannot otherwise be done without an NMI button.
This option does not currently work with sched_ule due to ule's push
notion of scheduling, similar to machdep.hlt_logical_cpus failing to
work with that scheduler.
On face value, this might seem somewhat inefficient, but there are a
lot of dual-processor Xeons with HTT around, so using one as a watchdog
for testing is not as inefficient as one might fear.
Only cy, bs and wd in the tree still use it. I have a replacement for
cy that I need to test on ISA and PCI cards. bs and wd are pc98 only
drivers that appear to no longer be necessary. I'll be removing them
when I hear back from the pc98 people.
own file and make it opt-in, not mandatory, depending on CPU_ENABLE_LONGRUN
config(8) option.
PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
Discussed with: nate
MFC after: 2 weeks
CPU_ENABLE_TCC enables Thermal Control Circuitry (TCC) found in some
Pentium(tm) 4 and (possibly) later CPUs. When enabled and detected,
TCC allows to restrict power consumption by using machdep.cpuperf*
sysctls. This operates independently of SpeedStep and is useful on
systems where other mechanisms such as apm(4) or acpi(4) don't work.
Given the fact that many, even modern, notebooks don't work properly
with Intel ACPI, this is indeed very useful option for notebook owners.
Obtained from: OpenBSD
MFC after: 2 weeks
Update notes to reflect that cx is no longer a counted device
Update options for new cx option
# commented out ELAN_PPS and ELAN_XTAL since they produced errors
Submitted by: rik@cronyx.ru
Approved by: re@ <scottl>
should only be used if they are enabled in the BIOS. Now that we support
enumerating CPUs using the ACPI MADT, any HTT machine using ACPI should
respect the BIOS setting. For HTT machines with ACPI disabled in the
kernel, the MPTABLE_FORCE_HTT kernel option can be used to try to probe HTT
CPUs like have done in the past for the MP Table case. This option should
only be enabled if HTT is enabled in the BIOS.
Removed banal comments about ELAN*. Complain about ELAN* being misnamed
instead (so that these options are not obviously related to a CPU and
don't sort with CPU_ELAN).
Complain about CPU_DISABLE_CMPXCHG being in the wrong namespace.
as it could be and can do with some more cleanup. Currently its under
options LAZY_SWITCH. What this does is avoid %cr3 reloads for short
context switches that do not involve another user process. ie: we can
take an interrupt, switch to a kthread and return to the user without
explicitly flushing the tlb. However, this isn't as exciting as it could
be, the interrupt overhead is still high and too much blocks on Giant
still. There are some debug sysctls, for stats and for an on/off switch.
The main problem with doing this has been "what if the process that you're
running on exits while we're borrowing its address space?" - in this case
we use an IPI to give it a kick when we're about to reclaim the pmap.
Its not compiled in unless you add the LAZY_SWITCH option. I want to fix a
few more things and get some more feedback before turning it on by default.
This is NOT a replacement for Bosko's lazy interrupt stuff. This was more
meant for the kthread case, while his was for interrupts. Mine helps a
little for interrupts, but his helps a lot more.
The stats are enabled with options SWTCH_OPTIM_STATS - this has been a
pseudo-option for years, I just added a bunch of stuff to it.
One non-trivial change was to select a new thread before calling
cpu_switch() in the first place. This allows us to catch the silly
case of doing a cpu_switch() to the current process. This happens
uncomfortably often. This simplifies a bit of the asm code in cpu_switch
(no longer have to call choosethread() in the middle). This has been
implemented on i386 and (thanks to jake) sparc64. The others will come
soon. This is actually seperate to the lazy switch stuff.
Glanced at by: jake, jhb
kernel opition 'options PAE'. This will only work with device drivers which
either use busdma, or are able to handle 64 bit physical addresses.
Thanks to Lanny Baron from FreeBSD Systems for the loan of a test machine
with 6 gigs of ram.
Sponsored by: DARPA, Network Associates Laboratories, FreeBSD Systems