leave a port permanently disabled when a copper cable is unplugged and
then plugged right back in.
lacp_linkstate goes looking for the current ifmedia on a link state
change and it could get stale information from cxgbe(4) on a module
unplug followed by replug. The fix is to process module events before
link-state events within the driver, and to always rebuild the ifmedia
list on a module change event (instead of rebuilding it lazily).
Thanks to asomers@ for the problem report and detailed analysis to go
with it.
MFC after: 1 week
cannot be sent to the chip because a prerequisite L2 resolution
failed.
Submitted by: Hariprasad at chelsio dot com (original version)
MFC after: 2 weeks.
an mbuf's storage (internal or external).
Add a new M_SIZE() mbuf macro that returns the size of an mbuf's
storage (internal or external).
These contrast with m_data and m_len, which are with respect to data
in the buffer, rather than the buffer itself.
Rewrite M_LEADINGSPACE() and M_TRAILINGSPACE() in terms of M_START()
and M_SIZE().
This is done as we currently have many instances of using mbuf flags
to generate pointers or lengths for internal storage in header and
regular mbufs, as well as to external storage. Rather than replicate
this logic throughout the network stack, centralising the
implementation will make it easier for us to refine mbuf storage.
This should also help reduce bugs by limiting the amount of
mbuf-type-specific pointer arithmetic. Followup changes will
propagate use of the macros throughout the stack.
M_SIZE() conflicts with one macro in the Chelsio driver; rename that
macro in a slightly unsatisfying way to eliminate the collision.
MFC after: 3 days
Obtained from: jeff (with enhancements)
Sponsored by: EMC / Isilon Storage Division
Reviewed by: bz, glebius, np
Differential Revision: https://reviews.freebsd.org/D753
firmware allows up to 48B to be read this way but the driver limits
itself to 8B at a time to remain compatible with old cxgbetool
binaries.
MFC after: 1 week
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.
For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.
With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.
trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43🆎cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43🆎cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...
Relnotes: Yes
Sponsored by: Chelsio Communications.
- More flexible cluster size selection, including the ability to fall
back to a safe cluster size (PAGE_SIZE from zone_jumbop by default) in
case an allocation of a larger size fails.
- A single get_fl_payload() function that assembles the payload into an
mbuf chain for any kind of freelist. This replaces two variants: one
for freelists with buffer packing enabled and another for those without.
- Buffer packing with any sized cluster. It was limited to 4K clusters
only before this change.
- Enable buffer packing for TOE rx queues as well.
- Statistics and tunables to go with all these changes. The driver's
man page will be updated separately.
MFC after: 5 weeks
them up as part of firmware initialization (which the driver gets to do
only if it's the master driver).
Read the range of tids available for the ETHOFLD functionality if it's
enabled.
New is_ftid() and is_etid() functions to test whether a tid falls within
the range of filter tids or ETHOFLD tids respectively.
MFC after: 2 weeks
scheduling classes in the chip and to bind tx queue(s) to a scheduling
class respectively. These can be used for various kinds of tx traffic
throttling (to force selected tx queues to drain at a fixed Kbps rate,
or a % of the port's total bandwidth, or at a fixed pps rate, etc.).
Obtained from: Chelsio
all T4 and T5 based cards and is useful for analyzing TSO, LRO, TOE, and
for general purpose monitoring without tapping any cxgbe or cxl ifnet
directly.
Tracers on the T4/T5 chips provide access to Ethernet frames exactly as
they were received from or transmitted on the wire. On transmit, a
tracer will capture a frame after TSO segmentation, hw VLAN tag
insertion, hw L3 & L4 checksum insertion, etc. It will also capture
frames generated by the TCP offload engine (TOE traffic is normally
invisible to the kernel). On receive, a tracer will capture a frame
before hw VLAN extraction, runt filtering, other badness filtering,
before the steering/drop/L2-rewrite filters or the TOE have had a go at
it, and of course before sw LRO in the driver.
There are 4 tracers on a chip. A tracer can trace only in one direction
(tx or rx). For now cxgbetool will set up tracers to capture the first
128B of every transmitted or received frame on a given port. This is a
small subset of what the hardware can do. A pseudo ifnet with the same
name as the nexus driver (t4nex0 or t5nex0) will be created for tracing.
The data delivered to this ifnet is an additional copy made inside the
chip. Normal delivery to cxgbe<n> or cxl<n> will be made as usual.
/* watch cxl0, which is the first port hanging off t5nex0. */
# cxgbetool t5nex0 tracer 0 tx0 (watch what cxl0 is transmitting)
# cxgbetool t5nex0 tracer 1 rx0 (watch what cxl0 is receiving)
# cxgbetool t5nex0 tracer list
# tcpdump -i t5nex0 <== all that cxl0 sees and puts on the wire
If you were doing TSO, a tcpdump on cxl0 may have shown you ~64K
"frames" with no L3/L4 checksum but this will show you the frames that
were actually transmitted.
/* all done */
# cxgbetool t5nex0 tracer 0 disable
# cxgbetool t5nex0 tracer 1 disable
# cxgbetool t5nex0 tracer list
# ifconfig t5nex0 destroy
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.
The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.
Sponsored by: Chelsio
the firmware (instead of just the main firmware version) when evaluating
firmware compatibility. Document the new "hw.cxgbe.fw_install" knob
being introduced here.
This should fix kern/173584 too. Setting hw.cxgbe.fw_install=2 will
mostly do what was requested in the PR but it's a bit more intelligent
in that it won't reinstall the same firmware repeatedly if the knob is
left set.
PR: kern/173584
MFC after: 5 days
- Add full support for IPv6 addresses.
- Read the size of the L2 table during attach. Do not assume that PCIe
physical function 4 of the card has all of the table to itself.
- Use FNV instead of Jenkins to hash L3 addresses and drop the private
copy of jhash.h from the driver.
MFC after: 1 week
This lets userspace read arbitrary information from the SFP+ modules
etc. on this bus.
Reading multiple bytes in the same transaction isn't possible right now.
I'll update the driver once the chip's firmware supports this.
MFC after: 3 days
Basically, this is automatic rx zero copy when feasible. TCP payload is
DMA'd directly into the userspace buffer described by the uio submitted
in soreceive by an application.
- Works with sockets that are being handled by the TCP offload engine
of a T4 chip (you need t4_tom.ko module loaded after cxgbe, and an
"ifconfig +toe" on the cxgbe interface).
- Does not require any modification to the application.
- Not enabled by default. Use hw.t4nex.<X>.toe.ddp="1" to enable it.
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
These are available as t3_tom and t4_tom modules that augment cxgb(4)
and cxgbe(4) respectively. The cxgb/cxgbe drivers continue to work as
usual with or without these extra features.
- iWARP driver for Terminator 3 ASIC (kernel verbs). T4 iWARP in the
works and will follow soon.
Build-tested with make universe.
30s overview
============
What interfaces support TCP offload? Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE
Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe
Which connections are offloaded? Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe
Reviewed by: bz, gnn
Sponsored by: Chelsio communications.
MFC after: ~3 months (after 9.1, and after ensuring MFC is feasible)
- Device configuration via plain text config file. Also able to operate
when not attached to the chip as the master driver.
- Generic "work request" queue that serves as the base for both ctrl and
ofld tx queues.
- Generic interrupt handler routine that can process any event on any
kind of ingress queue (via a dispatch table).
- A couple of new driver ioctls. cxgbetool can now install a firmware
to the card ("loadfw" command) and can read the card's memory
("memdump" and "tcb" commands).
- Lots of assorted information within dev.t4nex.X.misc.* This is
primarily for debugging and won't show up in sysctl -a.
- Code to manage the L2 tables on the chip.
- Updates to cxgbe(4) man page to go with the tunables that have changed.
- Updates to the shared code in common/
- Updates to the driver-firmware interface (now at fw 1.4.16.0)
MFC after: 1 month
filters working. (All other filters - switch without L2 info rewrite,
steer, and drop - were already fully-functional).
Some contrived examples of "switch" filters with L2 rewriting:
# cxgbetool t4nex0 iport 0 dport 80 action switch vlan +9 eport 3
Intercept all packets received on physical port 0 with TCP port 80 as
destination, insert a vlan tag with VID 9, and send them out of port 3.
# cxgbetool t4nex0 sip 192.168.1.1/32 ivlan 5 action switch \
vlan =9 smac aa:bb:cc:dd:ee:ff eport 0
Intercept all packets (received on any port) with source IP address
192.168.1.1 and VLAN id 5, rewrite the VLAN id to 9, rewrite source mac
to aa:bb:cc:dd:ee:ff, and send it out of port 0.
MFC after: 1 week
down. The ingress queue lock was unused and has been removed as part of
these changes.
- An in-flight egress update from the SGE must be handled before the
queue that requested it is destroyed. Wait for the update to arrive.
- Interrupt handlers must stop processing rx events for a queue before
the queue is destroyed. Events that have not yet been processed
should be ignored once the queue disappears.
MFC after: 1 week