frame buffers and memory mapped UARTs.
1. Delay calling cninit() until after pmap_bootstrap(). This makes
sure we have PMAP initialized enough to add translations. Keep
kdb_init() after cninit() so that we have console when we need
to break into the debugger on boot.
2. Unfortunately, the ATPIC code had be moved as well so as to
avoid a spurious trap #30. The reason for which is not known
at this time.
3. In pmap_mapdev_attr(), when we need to map a device prior to the
VM system being initialized, use virtual_avail as the KVA to map
the device at. In particular, avoid using the direct map on amd64
because we can't demote by virtue of not being able to allocate
yet. Keep track of the translation.
Re-use the translation after the VM has been initialized to not
waste KVA and to satisfy the assumption in uart(4) that the handle
returned for the low-level console is the same as later returned
when the device is probed and attached.
4. In pmap_unmapdev() remove the mapping from the table when called
pre-init. Otherwise keep the mapping. During bus probe and attach
device resources are mapped and unmapped multiple times, which
would have us destroy the mapping used by the low-level console.
5. In pmap_init(), set pmap_initialized to signal that we're not
pre-init anymore. On amd64, bring the direct map in sync with the
translations created at that time.
6. Implement bus_space_map() and bus_space_unmap() for real: when
the tag corresponds to memory space, call the corresponding
pmap_mapdev() and pmap_unmapdev() functions to construct and
actual handle.
7. In efifb.c and vt_vga.c, remove the crutches and hacks and simply
call pmap_mapdev_attr() or bus_space_map() as desired.
Notes:
1. uart(4) already used bus_space_map() during low-level console
setup but since serial ports have traditionally been I/O port
based, the lack of a proper implementation for said function
was not a problem. It has always supported memory mapped UARTs
for low-level consoles by setting hw.uart.console accordingly.
2. The use of the direct map on amd64 without setting caching
attributes has been a bigger problem than previously thought.
This change has the fortunate (and unexpected) side-effect of
fixing various EFI frame buffer problems (though not all).
PR: 191564, 194952
Special thanks to:
1. XipLink, Inc -- generously donated an Intel Bay Trail E3800
based eval board (ADLE3800PC).
2. The FreeBSD Foundation, in particular emaste@ -- for UEFI
support in general and testing.
3. Everyone who tested the proposed for PR 191564.
4. jhb@ and kib@ for being a soundboard and applying a clue bat
if so needed.
data is synchronized by store/load to the variable. The
lapic_write_icr() function ensures that store buffers are flushed
before IPI command is issued.
Discussed with: bde
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
the SMP structures, synchronized with the load by release store in
release_aps().
The change is formal, x86 strong memory model implicitely provided
the guarantees.
Discussed with: bde
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
initial thread stack is not adjusted by the tunable, the stack is
allocated too early to get access to the kernel environment. See
TD0_KSTACK_PAGES for the thread0 stack sizing on i386.
The tunable was tested on x86 only. From the visual inspection, it
seems that it might work on arm and powerpc. The arm
USPACE_SVC_STACK_TOP and powerpc USPACE macros seems to be already
incorrect for the threads with non-default kstack size. I only
changed the macros to use variable instead of constant, since I cannot
test.
On arm64, mips and sparc64, some static data structures are sized by
KSTACK_PAGES, so the tunable is disabled.
Sponsored by: The FreeBSD Foundation
MFC after: 2 week
use vtophys() directly instead of vtomach() and retire the no-longer-used
headers <machine/xenfunc.h> and <machine/xenvar.h>.
Reported by: bde (stale bits in <machine/xenfunc.h>)
Reviewed by: royger (earlier version)
Differential Revision: https://reviews.freebsd.org/D3266
vm_offset_t pmap_quick_enter_page(vm_page_t m)
void pmap_quick_remove_page(vm_offset_t kva)
These will create and destroy a temporary, CPU-local KVA mapping of a specified page.
Guarantees:
--Will not sleep and will not fail.
--Safe to call under a non-sleepable lock or from an ithread
Restrictions:
--Not guaranteed to be safe to call from an interrupt filter or under a spin mutex on all platforms
--Current implementation does not guarantee more than one page of mapping space across all platforms. MI code should not make nested calls to pmap_quick_enter_page.
--MI code should not perform locking while holding onto a mapping created by pmap_quick_enter_page
The idea is to use this in busdma, for bounce buffer copies as well as virtually-indexed cache maintenance on mips and arm.
NOTE: the non-i386, non-amd64 implementations of these functions still need review and testing.
Reviewed by: kib
Approved by: kib (mentor)
Differential Revision: http://reviews.freebsd.org/D3013
reported, on APs. We already did this on BSP.
Otherwise, the userspace software which depends on the features
reported by the high CPUID levels is misbehaving. In particular, AVX
detection is non-functional, depending on which CPU thread happens to
execute when doing CPUID. Another victim is the libthr signal
handlers interposer, which needs to save full FPU extended state.
Reported and tested by: Andre Meiser <ortadur@web.de>
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Certain system calls have quirks applied to make them work as if called
on an older version of FreeBSD. As CloudABI executables don't have the
FreeBSD OS release number in the ELF header, this value is set to zero,
making the system calls fall back to typically historic, non-standard
behaviour.
Reviewed by: kib
ordering semantic of x86 CPUs makes only the compiler barrier
neccessary to give the acquire behaviour.
Existing implementation ensured sequentially consistent semantic for
load_acq, making much stronger guarantee than required by standard's
definition of the load acquire. Consumers which depend on the barrier
are believed to be identified and already fixed to use proper
operations.
Noted by: alc (long time ago)
Reviewed by: alc, bde
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
- Fix segment registers to only display the low 16 bits.
- Remove unused handlers and entries for the debug registers.
- Display xcr0 (if valid) in 'show sysregs'.
- Add '0x' prefix to MSR values to match other values in 'show sysregs'.
- MFamd64: Display various MSRs in 'show sysregs'.
- Add a 'show dbregs' to display the value of debug registers.
- Dynamically size the column width for register values to properly
align columns on 64-bit platforms.
- Display %gs for i386 in 'show registers'.
Differential Revision: https://reviews.freebsd.org/D2784
Reviewed by: kib, markj
MFC after: 2 weeks
The i386 and amd64 DDB stack unwinders contain code to detect and handle
the case where the first frame is not completely set up or torn down. This
code was accidentally unused however, since db_backtrace() was never called
with a non-NULL trap frame. This change fixes that.
Also remove get_rsp() from the amd64 code. It appears to have come from
i386, which needs to take into account whether the exception triggered a
CPL switch, since SS:ESP is only pushed onto the stack if so. On amd64,
SS:RSP is pushed regardless, so get_rsp() was doing the wrong thing for
kernel-mode exceptions. As a result, we can also remove custom print
functions for these registers.
Reviewed by: jhb
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D2881
If we can't find a symbol corresponding to the faulting instruction, assume
that the previously-executed function is a call and attempt to find the
calling function using the return address on the stack. Otherwise we end
up associating the last stack frame with the current call, which is
incorrect and causes the unwinder to skip printing of the calling function,
resulting in a confusing backtrace.
Reviewed by: jhb
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D2859
The amd64 port copied some code from i386 to fetch function arguments and
display them in backtraces. However, it was commented out and can't easily
be implemented since the function arguments are passed in
registers rather than on the stack in amd64. Remove it in preparation for
some bug fixes in this area.
Reviewed by: jhb
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D2857
Summary:
Remove the stub system call that was put in place during the system call
import and replace it by a target-dependent version stored in sys/amd64.
Initialize the thread in a way similar to cpu_set_upcall_kse(). We
provide the entry point with two arguments: the thread ID and the
argument pointer.
Test Plan:
Thread creation still seems to work, both for FreeBSD and CloudABI
binaries.
Reviewers: dchagin, mjg, kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3110
Just like FreeBSD+Capsicum, CloudABI uses process descriptors. Return
the file descriptor number to the parent process.
To the child process we both return a special value for the file
descriptor number (CLOUDABI_PROCESS_CHILD). We also return the thread ID
of the new thread in the copied process, so the threading library can
reinitialize itself.
Obtained from: https://github.com/NuxiNL/freebsd
in lockstat.ko. This means that lockstat probes now have typed arguments and
will utilize SDT probe hot-patching support when it arrives.
Reviewed by: gnn
Differential Revision: https://reviews.freebsd.org/D2993
belongs to the kernel stack address range for the thread. Right now,
code checks that new frame is not farther then KSTACK_PAGES pages from
the current frame, which allows the address to point past the top of
the stack.
Reviewed by: andrew, emaste, markj
Differential revision: https://reviews.freebsd.org/D3108
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Summary:
For CloudABI we need to put two things on the stack of new processes:
the argument data (a binary blob; not strings) and a startup data
structure. The startup data structure contains interesting things such
as a pointer to the ELF program header, the thread ID of the initial
thread, a stack smashing protection canary, and a pointer to the
argument data.
Fetching system call arguments and setting the return value is similar
to FreeBSD. The only differences are that system call 0 does not exist
and that we call into cloudabi_convert_errno() to convert the error
code. We also need this function in a couple of other places, so we'd
better reuse it here.
Reviewers: dchagin, kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3098
provide a semantic defined by the C11 fences with corresponding
memory_order.
atomic_thread_fence_acq() gives r | r, w, where r and w are read and
write accesses, and | denotes the fence itself.
atomic_thread_fence_rel() is r, w | w.
atomic_thread_fence_acq_rel() is the combination of the acquire and
release in single operation. Note that reads after the acq+rel fence
could be made visible before writes preceeding the fence.
atomic_thread_fence_seq_cst() orders all accesses before/after the
fence, and the fence itself is globally ordered against other
sequentially consistent atomic operations.
Reviewed by: alc
Discussed with: bde
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
Some external tools just do a 'ls /dev/vmm' to figure out the bhyve virtual
machines on the host. These tools break if the devmem device nodes also
appear in /dev/vmm.
Requested by: grehan
macros on amd64 and i386. Move the definition to machine/param.h.
kgdb defines INKERNEL() too, the conflict is resolved by renaming kgdb
version to PINKERNEL().
On i386, correct the lowest kernel address. After the shared page was
introduced, USRSTACK no longer points to the last user address + 1 [*]
Submitted by: Oliver Pinter [*]
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
process beyond the end of the process address space. Such setting is
not dangerous to the kernel integrity, but it causes confusing
application misbehaviour.
Sponsored by: The FreeBSD Foundation
MFC after: 12 days
obtain the thread %fs and %gs bases. Add x86 PT_SETFSBASE and
PT_SETGSBASE requests to set the bases from debuggers. The set
requests, similarly to the sysarch({I386,AMD64}_SET_FSBASE),
override the corresponding segment registers.
The main purpose of the operations is to retrieve and modify the tcb
address for debuggee.
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
atomic_load_acq(9), on it source, for x86.
Right now, atomic_load_acq() on x86 is sequentially consistent with
other atomics, code ensures this by doing store/load barrier by
performing locked nop on the source. Provide separate primitive
__storeload_barrier(), which is implemented as the locked nop done on
a cpu-private variable, and put __storeload_barrier() before load, to
keep seq_cst semantic but avoid introducing false dependency on the
no-modification of the source for its later use.
Note that seq_cst property of x86 atomic_load_acq() is not documented
and not carried by atomics implementations on other architectures,
although some kernel code relies on the behaviour. This commit does
not intend to change this.
Reviewed by: alc
Discussed with: bde
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
The current linker script generates program headers with VMA == LMA:
Entry point 0xffffffff802e7000
There are 6 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0xffffffff80200040 0xffffffff80200040
0x0000000000000150 0x0000000000000150 R E 8
INTERP 0x0000000000000190 0xffffffff80200190 0xffffffff80200190
0x000000000000000d 0x000000000000000d R 1
[Requesting program interpreter: /red/herring]
LOAD 0x0000000000000000 0xffffffff80200000 0xffffffff80200000
0x00000000010559b0 0x00000000010559b0 R E 200000
LOAD 0x0000000001056000 0xffffffff81456000 0xffffffff81456000
0x0000000000132638 0x000000000052ecf8 RW 200000
DYNAMIC 0x0000000001056000 0xffffffff81456000 0xffffffff81456000
0x00000000000000d0 0x00000000000000d0 RW 8
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RWE 8
This is fine for the FreeBSD loader, because it completely ignores p_paddr
and instead uses p_vaddr with a hardcoded offset. Other loaders however
acknowledge p_paddr (like the Xen ELF loader), in which case they will try
to load the kernel at the wrong place. Fix this by adding an AT keyword to
the first section specifying the physical address, other sections will
follow suit, so it ends up looking like:
Entry point 0xffffffff802e7000
There are 6 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0xffffffff80200040 0x0000000000200040
0x0000000000000150 0x0000000000000150 R E 8
INTERP 0x0000000000000190 0xffffffff80200190 0x0000000000200190
0x000000000000000d 0x000000000000000d R 1
[Requesting program interpreter: /red/herring]
LOAD 0x0000000000000000 0xffffffff80200000 0x0000000000200000
0x00000000010559b0 0x00000000010559b0 R E 200000
LOAD 0x0000000001056000 0xffffffff81456000 0x0000000001456000
0x0000000000132638 0x000000000052ecf8 RW 200000
DYNAMIC 0x0000000001056000 0xffffffff81456000 0x0000000001456000
0x00000000000000d0 0x00000000000000d0 RW 8
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RWE 8
Tested on bare metal using the native FreeBSD loader and grub2 from TRUEOS.
Sponsored by: Citrix Systems R&D
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D2783
Previously this was done by the caller of 'svm_launch()' after it returned.
This works fine as long as no code is executed in the interim that depends
on pcpu data.
The dtrace probe 'fbt:vmm:svm_launch:return' broke this assumption because
it calls 'dtrace_probe()' which in turn relies on pcpu data.
Reported by: avg
MFC after: 1 week
devmem is used to represent MMIO devices like the boot ROM or a VESA framebuffer
where doing a trap-and-emulate for every access is impractical. devmem is a
hybrid of system memory (sysmem) and emulated device models.
devmem is mapped in the guest address space via nested page tables similar
to sysmem. However the address range where devmem is mapped may be changed
by the guest at runtime (e.g. by reprogramming a PCI BAR). Also devmem is
usually mapped RO or RW as compared to RWX mappings for sysmem.
Each devmem segment is named (e.g. "bootrom") and this name is used to
create a device node for the devmem segment (e.g. /dev/vmm/testvm.bootrom).
The device node supports mmap(2) and this decouples the host mapping of
devmem from its mapping in the guest address space (which can change).
Reviewed by: tychon
Discussed with: grehan
Differential Revision: https://reviews.freebsd.org/D2762
MFC after: 4 weeks
While here, also report %eflags from the i386 trapframe.
Differential Revision: https://reviews.freebsd.org/D2743
Reviewed by: kib
Obtained from: 1 month
This will require for AArch64 as we dont have modules yet.
Sponsored by: HEIF5
Sponsored by: ARM Ltd.
Differential Revision: https://reviews.freebsd.org/D1997
Use the same scheme implemented to manage credentials.
Code needing to look at process's credentials (as opposed to thred's) is
provided with *_proc variants of relevant functions.
Places which possibly had to take the proc lock anyway still use the proc
pointer to access limits.
Thread credentials are maintained as follows: each thread has a pointer to
creds and a reference on them. The pointer is compared with proc's creds on
userspace<->kernel boundary and updated if needed.
This patch introduces a counter which can be compared instead, so that more
structures can use this scheme without adding more comparisons on the boundary.
execution control and writing the difference between the host TSC and
the guest TSC into the TSC offset in the VMCS upon encountering a
write.
Reviewed by: neel
rev. 55. The modern CPUs cache and TLB descriptions looked quite
questionable without the update, e.g. Haswell i7 4770S reported:
Data TLB: 4 KB pages, 4-way set associative, 64 entries
L2 cache: 256 kbytes, 8-way associative, 64 bytes/line
After the update, the report is:
Data TLB: 1 GByte pages, 4-way set associative, 4 entries
Data TLB: 4 KB pages, 4-way set associative, 64 entries
Instruction TLB: 2M/4M pages, fully associative, 8 entries
Instruction TLB: 4KByte pages, 8-way set associative, 64 entries
64-Byte prefetching
Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
L2 cache: 256 kbytes, 8-way associative, 64 bytes/line
Some tags were apparently removed from the table 3-21, Vol. 2A. Keep
them around, but add a comment stating the removal.
Update the format line for cpu_stdext_feature according to the bits
from the SDM rev.55. It appears that Haswells do not store %cs and
%ds values in the FPU save area.
Store content of the %ecx register from the CPUID leaf 0x7
subleaf 0 as cpu_stdext_feature2 and print defined bits from it,
again acording to SDM rev. 55.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
after decoding the instruction matches the one provided by hardware.
Prior to r283293 'vie->num_valid' used to contain the actual length of
the instruction whereas now it contains the maximum instruction length
possible. This introduced a bug when calculating a RIP-relative base address.
Fix this by using 'vie->num_processed' rather than 'vie->num_valid' as the
length of the emulated instruction.
Reported and tested by: tychon
MFC after: 1 week
Since td_name is an array member of struct thread, it can never be NULL,
so the check can be removed. In addition, curproc can never be NULL,
so remove the if statement, and splice the two printfs() together.
While here, remove the u_long cast, and use the correct printf format
specifier curproc->p_pid.
Reviewed by: kib
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D2695
buildkernel run.
Some of them were write-only under some kernel options, e.g. variables
keeping values only used by CTR() macros. It costs nothing to the
code readability and correctness to eliminate the warnings in those
cases too by removing the local cached values used only for
single-access.
Review: https://reviews.freebsd.org/D2665
Reviewed by: rodrigc
Looked at by: bjk
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
"sleeping" state. This is done by forcing the vcpu to transition to "idle"
by returning to userspace with an exit code of VM_EXITCODE_REQIDLE.
MFC after: 2 weeks
Native ABI do not need signal conversion, only emulators may want this. Usually
emulators implements its own sv_sendsig method. For now only ibcs2 emulator does
not have own sv_sendsig implementation and depends on native sendsig() method.
So, remove any extra attempts to convert signal numbers from native sendsig()
methods except from i386 where ibsc2 is living.
1. Linux sigset always 64 bit on all platforms. In order to move Linux
sigset code to the linux_common module define it as 64 bit int. Move
Linux sigset manipulation routines to the MI path.
2. Move Linux signal number definitions to the MI path. In general, they
are the same on all platforms except for a few signals.
3. Map Linux RT signals to the FreeBSD RT signals and hide signal conversion
tables to avoid conversion errors.
4. Emulate Linux SIGPWR signal via FreeBSD SIGRTMIN signal which is outside
of allowed on Linux signal numbers.
PR: 197216
argument is not a null pointer, and the ss_flags member pointed to by ss
contains flags other than SS_DISABLE. However, in fact, Linux also
allows SS_ONSTACK flag which is simply ignored.
For buggy apps (at least mono) ignore other than SS_DISABLE
flags as a Linux do.
While here move MI part of sigaltstack code to the appropriate place.
Reported by: abi at abinet dot ru
around kqueue() to implement epoll subset of functionality.
The kqueue user data are 32bit on i386 which is not enough for
epoll user data, so we keep user data in the proc emuldata.
Initial patch developed by rdivacky@ in 2007, then extended
by Yuri Victorovich @ r255672 and finished by me
in collaboration with mjg@ and jillies@.
Differential Revision: https://reviews.freebsd.org/D1092
to determine the kernel version (this saves one uname call).
Temporarily disable the export of a note.Linux section until I figured
out how to change the kernel version in the note.Linux on the fly.
Differential Revision: https://reviews.freebsd.org/D1081
Reviewed by: trasz
The AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are actually implemented
within the glibc wrapper function for faccessat(). If either of these
flags are specified, then the wrapper function employs fstatat() to
determine access permissions.
Differential Revision: https://reviews.freebsd.org/D1078
Reviewed by: trasz
thread emuldata to proc emuldata as it was originally intended.
As we can have both 64 & 32 bit Linuxulator running any eventhandler
can be called twice for us. To prevent this move eventhandlers code
from linux_emul.c to the linux_common.ko module.
Differential Revision: https://reviews.freebsd.org/D1073
following primary purposes:
1. Remove the dependency of linsysfs and linprocfs modules from linux.ko,
which will be architecture specific on amd64.
2. Incorporate into linux_common.ko general code for platforms on which
we'll support two Linuxulator modules (for both instruction set - 32 & 64 bit).
3. Move malloc(9) declaration to linux_common.ko, to enable getting memory
usage statistics properly.
Currently linux_common.ko incorporates a code from linux_mib.c and linux_util.c
and linprocfs, linsysfs and linux kernel modules depend on linux_common.ko.
Temporarily remove dtrace garbage from linux_mib.c and linux_util.c
Differential Revision: https://reviews.freebsd.org/D1072
In collaboration with: Vassilis Laganakos.
Reviewed by: trasz
Move struct ipc_perm definition to the MD path as it differs for 64 and
32 bit platform.
Differential Revision: https://reviews.freebsd.org/D1068
Reviewed by: trasz
exposes functions from kernel with proper DWARF CFI information so that
it becomes easier to unwind through them.
Using vdso is a mandatory for a thread cancelation && cleanup
on a modern glibc.
Differential Revision: https://reviews.freebsd.org/D1060
Use it in linux_wait4() system call and move linux_wait4() to the MI path.
While here add a prototype for the static bsd_to_linux_rusage().
Differential Revision: https://reviews.freebsd.org/D2138
Reviewed by: trasz
The reasons:
1. Get rid of the stubs/quirks with process dethreading,
process reparent when the process group leader exits and close
to this problems on wait(), waitpid(), etc.
2. Reuse our kernel code instead of writing excessive thread
managment routines in Linuxulator.
Implementation details:
1. The thread is created via kern_thr_new() in the clone() call with
the CLONE_THREAD parameter. Thus, everything else is a process.
2. The test that the process has a threads is done via P_HADTHREADS
bit p_flag of struct proc.
3. Per thread emulator state data structure is now located in the
struct thread and freed in the thread_dtor() hook.
Mandatory holdig of the p_mtx required when referencing emuldata
from the other threads.
4. PID mangling has changed. Now Linux pid is the native tid
and Linux tgid is the native pid, with the exception of the first
thread in the process where tid and pid are one and the same.
Ugliness:
In case when the Linux thread is the initial thread in the thread
group thread id is equal to the process id. Glibc depends on this
magic (assert in pthread_getattr_np.c). So for system calls that
take thread id as a parameter we should use the special method
to reference struct thread.
Differential Revision: https://reviews.freebsd.org/D1039
threads refactor kern_sched_rr_get_interval() and sys_sched_rr_get_interval().
Add a kern_sched_rr_get_interval() counterpart which takes a targettd
parameter to allow specify target thread directly by callee (new Linuxulator).
Linuxulator temporarily uses first thread in proc.
Move linux_sched_rr_get_interval() to the MI part.
Differential Revision: https://reviews.freebsd.org/D1032
Reviewed by: trasz
threads introduce linux_exit() stub instead of sys_exit() call
(which terminates process).
In the new linuxulator exit() system call terminates the calling
thread (not a whole process).
Differential Revision: https://reviews.freebsd.org/D1027
Reviewed by: trasz
have an accurate length on an EPT violation. This is not needed by the
instruction decoding code because it also has to work with AMD/SVM that
does not provide a valid instruction length on a Nested Page Fault.
In collaboration with: Leon Dang (ldang@nahannisys.com)
Discussed with: grehan
MFC after: 1 week
years for head. However, it is continuously misused as the mpsafe argument
for callout_init(9). Deprecate the flag and clean up callout_init() calls
to make them more consistent.
Differential Revision: https://reviews.freebsd.org/D2613
Reviewed by: jhb
MFC after: 2 weeks
The replacement started at r283088 was necessarily incomplete without
replacing boolean_t with bool. This also involved cleaning some type
mismatches and ansifying old C function declarations.
Pointed out by: bde
Discussed with: bde, ian, jhb
particular, switch to the proc0 pmap to have expected %cr3 and PCID
for the thread0 during initialization, and the up to date pm_active
mask.
pmap_pinit0() should be done after proc0->p_vmspace is assigned so
that the amd64 pmap_activate() find the correct curproc pmap.
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
needs to be enabled by adding "kern.racct.enable=1" to /boot/loader.conf.
Differential Revision: https://reviews.freebsd.org/D2407
Reviewed by: emaste@, wblock@
MFC after: 1 month
Relnotes: yes
Sponsored by: The FreeBSD Foundation
allocated from exec_map. If many threads try to perform execve(2) in
parallel, the exec map is exhausted and some threads sleep
uninterruptible waiting for the map space. Then, the thread which won
the race for the space allocation, cannot single-thread the process,
causing deadlock.
Reported and tested by: pho (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
the Vahalia' "Unix Internals" section 15.12 "Other TLB Consistency
Algorithms". The same algorithm is already utilized by the MIPS pmap
to handle ASIDs.
The PCID for the address space is now allocated per-cpu during context
switch to the thread using pmap, when no PCID on the cpu was ever
allocated, or the current PCID is invalidated. If the PCID is reused,
bit 63 of %cr3 can be set to avoid TLB flush.
Each cpu has PCID' algorithm generation count, which is saved in the
pmap pcpu block when pcpu PCID is allocated. On invalidation, the
pmap generation count is zeroed, which signals the context switch code
that already allocated PCID is no longer valid. The implication is
the TLB shootdown for the given cpu/address space, due to the
allocation of new PCID.
The pm_save mask is no longer has to be tracked, which (significantly)
reduces the targets of the TLB shootdown IPIs. Previously, pm_save
was reset only on pmap_invalidate_all(), which made it accumulate the
cpuids of all processors on which the thread was scheduled between
full TLB shootdowns.
Besides reducing the amount of TLB shootdowns and removing atomics to
update pm_saves in the context switch code, the algorithm is much
simpler than the maintanence of pm_save and selection of the right
address space in the shootdown IPI handler.
Reviewed by: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
interacts with interrupts, query ACPI and use MWAIT for entrance into
Cx sleep states. Support C1 "I/O then halt" mode. See Intel'
document 302223-007 "Intelб╝ Processor Vendor-Specific ACPI Interface
Specification" for description.
Move the acpi_cpu_c1() function into x86/cpu_machdep.c and use
it instead of inlining "sti; hlt" sequence in several places.
In the acpi(4) man page, besides documenting the dev.cpu.N.cx_methods
sysctl, correct the names for dev.cpu.N.{cx_usage,cx_lowest,cx_supported}
sysctls.
Both jkim and avg have some other patches implementing the mwait
functionality; this work is unrelated. Linux does not rely on the
ACPI to provide correct tables describing Cx modes. Instead, the
driver has pre-defined knowledge of the CPU models, it was supplied by
Intel.
Tested by: pho (previous versions)
Sponsored by: The FreeBSD Foundation
This is done explicitly because a vcpu thread can be in a critical section
for the entire time slice alloted to it. This in turn can delay the handling
of the 'td_owepreempt'.
Reviewed by: jhb
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D2430
Prior to this change both functions returned 0 for success, -1 for failure
and +1 to indicate that an exception was injected into the guest.
The numerical value of ERESTART also happens to be -1 so when these functions
returned -1 it had to be translated to a positive errno value to prevent the
VM_RUN ioctl from being inadvertently restarted. This made it easy to introduce
bugs when writing emulation code.
Fix this by adding an 'int *guest_fault' parameter and setting it to '1' if
an exception was delivered to the guest. The return value is 0 or EFAULT so
no additional translation is needed.
Reviewed by: tychon
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D2428
- Must-Be-Zero bits cannot be set.
- EFER_LME and EFER_LMA should respect the long mode consistency checks.
- EFER_NXE, EFER_FFXSR, EFER_TCE can be set if allowed by CPUID capabilities.
- Flag an error if guest tries to set EFER_LMSLE since bhyve doesn't enforce
segment limits in 64-bit mode.
MFC after: 2 weeks
Do the same when transitioning a vector from the IRR to the ISR and also
when extinguishing it from the ISR in response to an EOI.
Reported by: Leon Dang (ldang@nahannisys.com)
MFC after: 2 weeks
remains. Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead. Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
components for PV kernels. These components are now standard as they
are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.
Differential Revision: https://reviews.freebsd.org/D2362
Reviewed by: royger
Tested by: royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes: yes