that actually need it. This makes it easier for a platform porter to
find the files that may need tweaking to support whatever MD specific
partitioning is needed. It also helps to prevent that the libdisk API
gets exposed and/or used where it's not needed.
written by Stuart Walsh and Duncan Barclay (with some kibbitzing by
me). I'm checking it in on Stuart's behalf.
The BCM4401 is built into several x86 laptop and desktop systems. For the
moment, I have only enabled it in the x86 kernel config because although
it's a PCI device, I haven't heard of any standalone NICs that use it. If
somebody knows of one, we can easily add it to the other arches.
This driver uses register/structure data gleaned from the Linux
driver released by Broadcom, but does not contain any of the code
from the Linux driver itself. It uses busdma.
rl(4) driver and put it in a new re(4) driver. The re(4) driver shares
the if_rlreg.h file with rl(4) but is a separate module. (Ultimately
I may change this. For now, it's convenient.)
rl(4) has been modified so that it will never attach to an 8139C+
chip, leaving it to re(4) instead. Only re(4) has the PCI IDs to
match the 8169/8169S/8110S gigE chips. if_re.c contains the same
basic code that was originally bolted onto if_rl.c, with the
following updates:
- Added support for jumbo frames. Currently, there seems to be
a limit of approximately 6200 bytes for jumbo frames on transmit.
(This was determined via experimentation.) The 8169S/8110S chips
apparently are limited to 7.5K frames on transmit. This may require
some more work, though the framework to handle jumbo frames on RX
is in place: the re_rxeof() routine will gather up frames than span
multiple 2K clusters into a single mbuf list.
- Fixed bug in re_txeof(): if we reap some of the TX buffers,
but there are still some pending, re-arm the timer before exiting
re_txeof() so that another timeout interrupt will be generated, just
in case re_start() doesn't do it for us.
- Handle the 'link state changed' interrupt
- Fix a detach bug. If re(4) is loaded as a module, and you do
tcpdump -i re0, then you do 'kldunload if_re,' the system will
panic after a few seconds. This happens because ether_ifdetach()
ends up calling the BPF detach code, which notices the interface
is in promiscuous mode and tries to switch promisc mode off while
detaching the BPF listner. This ultimately results in a call
to re_ioctl() (due to SIOCSIFFLAGS), which in turn calls re_init()
to handle the IFF_PROMISC flag change. Unfortunately, calling re_init()
here turns the chip back on and restarts the 1-second timeout loop
that drives re_tick(). By the time the timeout fires, if_re.ko
has been unloaded, which results in a call to invalid code and
blows up the system.
To fix this, I cleared the IFF_UP flag before calling ether_ifdetach(),
which stops the ioctl routine from trying to reset the chip.
- Modified comments in re_rxeof() relating to the difference in
RX descriptor status bit layout between the 8139C+ and the gigE
chips. The layout is different because the frame length field
was expanded from 12 bits to 13, and they got rid of one of the
status bits to make room.
- Add diagnostic code (re_diag()) to test for the case where a user
has installed a broken 32-bit 8169 PCI NIC in a 64-bit slot. Some
NICs have the REQ64# and ACK64# lines connected even though the
board is 32-bit only (in this case, they should be pulled high).
This fools the chip into doing 64-bit DMA transfers even though
there is no 64-bit data path. To detect this, re_diag() puts the
chip into digital loopback mode and sets the receiver to promiscuous
mode, then initiates a single 64-byte packet transmission. The
frame is echoed back to the host, and if the frame contents are
intact, we know DMA is working correctly, otherwise we complain
loudly on the console and abort the device attach. (At the moment,
I don't know of any way to work around the problem other than
physically modifying the board, so until/unless I can think of a
software workaround, this will have do to.)
- Created re(4) man page
- Modified rlphy.c to allow re(4) to attach as well as rl(4).
Note that this code works for the sample 8169/Marvell 88E1000 NIC
that I have, but probably won't work for the 8169S/8110S chips.
RealTek has sent me some sample NICs, but they haven't arrived yet.
I will probably need to add an rlgphy driver to handle the on-board
PHY in the 8169S/8110S (it needs special DSP initialization).
ethernet controller. The driver has been tested with the LinkSys
USB200M adapter. I know for a fact that there are other devices out
there with this chip but don't have all the USB vendor/device IDs.
Note: I'm not sure if this will force the driver to end up in the
install kernel image or not. Special magic needs to be done to exclude
it to keep the boot floppies from bloating again, someone please
advise.
With this change there's no a priori difference between EFI and
FAT partitions. With this change and the corresponding change to
libdisk, we can create EFI partitions, just like regular FAT
partitions.
from CD-ROM in 4-stable. Note that in 5-current, we use devfs so this
change (hopefully) shouldn't change anything.
I'll MFC to 4-stable later.
Tested with: FreeBSD/i386, 4.5-STABLE-20020330-JPSNAP
ethernet controllers. This adds support for the 3Com 3c996-T, the
SysKonnect SK-9D21 and SK-9D41, and the built-in gigE NICs on
Dell PowerEdge 2550 servers. The latter configuration hauls ass:
preliminary measurements show TCP speeds of over 900Mbps using
only normal size frames.
TCP/IP checksum offload, jumbo frames and VLAN tag insertion/stripping
are supported, as well as interrupt moderation.
Still need to fix autonegotiation support for 1000baseSX NICs, but
beyond that, driver is pretty solid.
blown over by the Hurricane and had a house dropped on you by the Tornado.
Now it's time to have your parade rained on by... the Typhoon!
This commit adds driver support for 3Com 3cR990 10/100 ethernet
adapters based on the Typhoon I and Typhoon II chipsets. This is actually
a port of the OpenBSD driver with many hacks by me.
No Virginia, there isn't any support for the hardware crypto yet. However
there is support for TCP/IP checksum offload and VLANs.
Special thanks go to Jason Wright, Aaron Campbell and Theo de Raadt for
squeezing enough info out of 3Com to get this written, and for doing
most of the hard work.
Manual page is included. Compiled as a module and included in GENERIC.
names suggest, they perform methods on Device's. In addition, they
check that the pointer passed to them is valid; if it isn't, they
pretend that the action failed. This fixes some crashes due to NULL
dereferences (e.g., PR 26509).
Approved by: jkh (some time ago)
and DP83821 gigabit ethernet MAC chips and the NatSemi DP83861 10/100/1000
copper PHY. There are a whole bunch of very low cost cards available with
this chipset selling for $150USD or less. This includes the SMC9462TX,
D-Link DGE-500T, Asante GigaNIX 1000TA and 1000TPC, and a couple cards
from Addtron.
This chip supports TCP/IP checksum offload, VLAN tagging/insertion.
2048-bit multicast filter, jumbograms and has 8K TX and 32K RX FIFOs.
I have not done serious performance testing with this driver. I know
it works, and I want it under CVS control so I can keep tabs on it.
Note that there's no serious mutex stuff in here yet either: I need
to talk more with jhb to figure out the right way to do this. That
said, I don't think there will be any problems.
This driver should also work on the alpha. It's not turned on in
GENERIC.
support which use National Semiconductor DP8393X (SONIC) as ethernet
controller. Currently, this driver is used on only PC-98.
Submitted by: Motomichi Matsuzaki <mzaki@e-mail.ne.jp>
Obtained from: NetBSD/pc98
Previously, these cards were supported by the lnc driver (and they
still are, but the pcn driver will claim them first), which is fine
except the lnc driver runs them in 16-bit LANCE compatibility mode.
The pcn driver runs these chips in 32-bit mode and uses the RX alignment
feature to achieve zero-copy receive. (Which puts it in the same
class as the xl, fxp and tl chipsets.) This driver is also MI, so it
will work on the x86 and alpha platforms. (The lnc driver is still
needed to support non-PCI cards. At some point, I'll need to newbusify
it so that it too will me MI.)
The Am79c978 HomePNA adapter is also supported.
boot.flp and plain boot.flp.
- Clean up crunchgen related routine.
- Add PC-98 support.
TODO:
o Documentation
o Fix some messages for PC-98
o Decrease the size of fixit.flp to 1.2MB
o I18N (See: http://www.jp.FreeBSD.org/BootAsia/index.html)
No response from jkh
straight into debug mode if you boot -v. Also conditionalize some
annoying debugging output now that we have this ability.
Partially submitted by: msmith
Approved by: jkh [to make certain wise-acres happy ;)]
USB-EL1202A chipset. Between this and the other two drivers, we should
have support for pretty much every USB ethernet adapter on the market.
The only other USB chip that I know of is the SMC USB97C196, and right
now I don't know of any adapters that use it (including the ones made
by SMC :/ ).
Note that the CATC chip supports a nifty feature: read and write combining.
This allows multiple ethernet packets to be transfered in a single USB
bulk in/out transaction. However I'm again having trouble with large
bulk in transfers like I did with the ADMtek chip, which leads me to
believe that our USB stack needs some work before we can really make
use of this feature. When/if things improve, I intend to revisit the
aue and cue drivers. For now, I've lost enough sanity points.
Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
which it replaces. The new driver supports all of the chips supported
by the ones it replaces, as well as many DEC/Intel 21143 10/100 cards.
This also completes my quest to convert things to miibus and add
Alpha support.