IFF_DRV_RUNNING, as well as the move from ifnet.if_flags to
ifnet.if_drv_flags. Device drivers are now responsible for
synchronizing access to these flags, as they are in if_drv_flags. This
helps prevent races between the network stack and device driver in
maintaining the interface flags field.
Many __FreeBSD__ and __FreeBSD_version checks maintained and continued;
some less so.
Reviewed by: pjd, bz
MFC after: 7 days
ifp->if_resolvemulti(), do so with M_NOWAIT rather than M_WAITOK, so
that a mutex can be held over the call. In the FDDI code, add a
missing M_ZERO. Consumers are already aware that if_resolvemulti()
can fail.
MFC after: 1 week
struct ifnet or the layer 2 common structure it was embedded in have
been replaced with a struct ifnet pointer to be filled by a call to the
new function, if_alloc(). The layer 2 common structure is also allocated
via if_alloc() based on the interface type. It is hung off the new
struct ifnet member, if_l2com.
This change removes the size of these structures from the kernel ABI and
will allow us to better manage them as interfaces come and go.
Other changes of note:
- Struct arpcom is no longer referenced in normal interface code.
Instead the Ethernet address is accessed via the IFP2ENADDR() macro.
To enforce this ac_enaddr has been renamed to _ac_enaddr.
- The second argument to ether_ifattach is now always the mac address
from driver private storage rather than sometimes being ac_enaddr.
Reviewed by: sobomax, sam
hosts to share an IP address, providing high availability and load
balancing.
Original work on CARP done by Michael Shalayeff, with many
additions by Marco Pfatschbacher and Ryan McBride.
FreeBSD port done solely by Max Laier.
Patch by: mlaier
Obtained from: OpenBSD (mickey, mcbride)
a packet has VLAN mbuf tag attached. This is faster to check than
m_tag_locate(), and allows us to use the tags in non-vlan(4) VLAN
producers.
The first argument to VLAN_OUTPUT_TAG() is now unused but retained
for backward compatibility.
While here, embellish a fix in rev. 1.174 of if_ethersubr.c -- it
now checks for packets with VLAN (mbuf) tags, and it should now
be possible to bridge(4) on vlan(4)'s whose parent interfaces
support VLAN decapsulation in hardware.
Reviewed by: sam
driver did VLAN decapsulation in hardware, we were passing a frame
as if it came for the parent (non-VLAN) interface. Stop this from
happening.
Reminded by: glebius
Security: This could pose a security risk in some setups
- ip_fw_chk() returns action as function return value. Field retval is
removed from args structure. Action is not flag any more. It is one
of integer constants.
- Any action-specific cookies are returned either in new "cookie" field
in args structure (dummynet, future netgraph glue), or in mbuf tag
attached to packet (divert, tee, some future action).
o Convert parsing of return value from ip_fw_chk() in ipfw_check_{in,out}()
to a switch structure, so that the functions are more readable, and a future
actions can be added with less modifications.
Approved by: andre
MFC after: 2 months
- push all bridge logic from if_ethersubr.c into bridge.c
make bridge_in() return mbuf pointer (or NULL).
- call only bridge_in() from ether_input(), after ng_ether_input()
was optinally called.
- call bridge_in() from ng_ether_rcv_upper().
Long description: http://lists.freebsd.org/mailman/htdig/freebsd-net/2004-May/003881.html
Reported by: Jian-Wei Wang <jwwang at FreeBSD.csie.NCTU.edu.tw>
Tested by: myself, Sergey Lyubka
Reviewed by: sam
Approved by: julian (mentor)
MFC after: 2 months
device drivers to declare that the ifp->if_start() method implemented
by the driver requires Giant in order to operate correctly.
Add a 'struct task' to 'struct ifnet' that can be used to execute a
deferred ifp->if_start() in the event that if_start needs to be called
in a Giant-free environment. To do this, introduce if_start(), a
wrapper function for ifp->if_start(). If the interface can run MPSAFE,
it directly dispatches into the interface start routine. If it can't
run MPSAFE, we're running with debug.mpsafenet != 0, and Giant isn't
currently held, the task is queued to execute in a swi holding Giant
via if_start_deferred().
Modify if_handoff() to use if_start() instead of direct dispatch.
Modify 802.11 to use if_start() instead of direct dispatch.
This is intended to provide increased compatibility for non-MPSAFE
network device drivers in the presence of Giant-free operation via
asynchronous dispatch. However, this commit does not mark any network
interfaces as IFF_NEEDSGIANT.
only allow this to be further processed when bridging is active on
that interface, but also if the current packet has a VLAN tag and
VLANs are active on our interface. This gives the VLAN layers a
chance to also consider the packet (and perhaps drop it instead of the
main dispatcher).
This fixes a situation where bridging was only active on VLAN
interfaces but ether_demux() called on behalf of the main interface
had already thrown the packet away.
MFC after: 4 weeks
little/big endian fashion, so that network drivers can just reference
the standard implementation and don't have to bring their own.
As discussed on arch@.
Obtained from: NetBSD
1. rt_check() cleanup:
rt_check() is only necessary for some address families to gain access
to the corresponding arp entry, so call it only in/near the *resolve()
routines where it is actually used -- at the moment this is
arpresolve(), nd6_storelladdr() (the call is embedded here),
and atmresolve() (the call is just before atmresolve to reduce
the number of changes).
This change will make it a lot easier to decouple the arp table
from the routing table.
There is an extra call to rt_check() in if_iso88025subr.c to
determine the routing info length. I have left it alone for
the time being.
The interface of arpresolve() and nd6_storelladdr() now changes slightly:
+ the 'rtentry' parameter (really a hint from the upper level layer)
is now passed unchanged from *_output(), so it becomes the route
to the final destination and not to the gateway.
+ the routines will return 0 if resolution is possible, non-zero
otherwise.
+ arpresolve() returns EWOULDBLOCK in case the mbuf is being held
waiting for an arp reply -- in this case the error code is masked
in the caller so the upper layer protocol will not see a failure.
2. arpcom untangling
Where possible, use 'struct ifnet' instead of 'struct arpcom' variables,
and use the IFP2AC macro to access arpcom fields.
This mostly affects the netatalk code.
=== Detailed changes: ===
net/if_arcsubr.c
rt_check() cleanup, remove a useless variable
net/if_atmsubr.c
rt_check() cleanup
net/if_ethersubr.c
rt_check() cleanup, arpcom untangling
net/if_fddisubr.c
rt_check() cleanup, arpcom untangling
net/if_iso88025subr.c
rt_check() cleanup
netatalk/aarp.c
arpcom untangling, remove a block of duplicated code
netatalk/at_extern.h
arpcom untangling
netinet/if_ether.c
rt_check() cleanup (change arpresolve)
netinet6/nd6.c
rt_check() cleanup (change nd6_storelladdr)
- use ifp instead if &ac->ac_if in a couple of nd6* calls;
this removes a useless dependency.
- use IFP2AC(ifp) instead of an extra variable to point to the struct arpcom;
this does not remove the nesting dependency between arpcom and ifnet but
makes it more evident.
there so there are no ABI changes);
+ replace 5 redefinitions of the IPF2AC macro with one in if_arp.h
Eventually (but before freezing the ABI) we need to get rid of
struct arpcom (initially with the help of some smart #defines
to avoid having to touch each and every driver, see below).
Apart from the struct ifnet, struct arpcom now only stores a copy
of the MAC address (ac_enaddr, but we already have another copy in
the struct ifnet -- if_addrhead), and a netgraph-specific field
which is _always_ accessed through the ifp, so it might well go
into the struct ifnet too (where, besides, there is already an entry
for AF_NETGRAPH data...)
Too bad ac_enaddr is widely referenced by all drivers. But
this can be fixed as follows:
#define ac_enaddr ac_if.the_original_ac_enaddr_in_struct_ifnet
(note that the right hand side would likely be a pointer rather than
the base address of an array.)
+ struct ifnet: remove unused fields, move ipv6-related field close
to each other, add a pointer to l3<->l2 translation tables (arp,nd6,
etc.) for future use.
+ struct route: remove an unused field, move close to each
other some fields that might likely go away in the future
ifp is now passed explicitly to ether_demux; no need to look it up again.
Make mtag a global var in ip_input.
Noticed by: rwatson
Approved by: bms(mentor)
them mostly with packet tags (one case is handled by using an mbuf flag
since the linkage between "caller" and "callee" is direct and there's no
need to incur the overhead of a packet tag).
This is (mostly) work from: sam
Silence from: -arch
Approved by: bms(mentor), sam, rwatson
Short description of ip_fastforward:
o adds full direct process-to-completion IPv4 forwarding code
o handles ip fragmentation incl. hw support (ip_flow did not)
o sends icmp needfrag to source if DF is set (ip_flow did not)
o supports ipfw and ipfilter (ip_flow did not)
o supports divert, ipfw fwd and ipfilter nat (ip_flow did not)
o returns anything it can't handle back to normal ip_input
Enable with sysctl -w net.inet.ip.fastforwarding=1
Reviewed by: sam (mentor)
if_xname, if_dname, and if_dunit. if_xname is the name of the interface
and if_dname/unit are the driver name and instance.
This change paves the way for interface renaming and enhanced pseudo
device creation and configuration symantics.
Approved By: re (in principle)
Reviewed By: njl, imp
Tested On: i386, amd64, sparc64
Obtained From: NetBSD (if_xname)
a minor conflict):
o Use ETHER_ADDR_LEN in preference to '6'.
o Remove two unnecessary (caddr_t) casts. One of them causes problems in
my tree where etherbroadcastaddr is const, and (caddr_t) casts the const
away.
from the network interface earlier in ether_input(). At some point
(no fingers pointed), things were restructured and the labeling operation
moved later. This wasn't a problem as BPF_MTAP() relies on the ifnet
label not the mbuf label, but there might have been other problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories