by other bits of code, split struct timecounter into two.
struct timecounter contains just the bits which pertains to the hardware
counter and the reading of it.
struct timehands (as in "the hands on a clock") contains all the ugly bit
fidling stuff. Statically compile ten timehands.
This commit is the functional part. A later cosmetic patch will rename
various variables and fieldnames.
timeout loop.
Limit the rate at which we wind the timecounters to approx 1000 Hz.
This limits the precision of the get{bin,nano,micro}[up]time(9)
functions to roughly a millisecond.
timecounter will be used starting at the next second, which is
good enough for sysctl purposes. If better adjustment is needed
the NTP PLL should be used.
Apply the change as a continuous slew rather than as a series of
discrete steps and make it possible to adjust arbitraryly huge
amounts of time in either direction.
In practice this is done by hooking into the same once-per-second
loop as the NTP PLL and setting a suitable frequency offset deducting
the amount slewed from the remainder. If the remaining delta is
larger than 1 second we slew at 5000PPM (5msec/sec), for a delta
less than a second we slew at 500PPM (500usec/sec) and for the last
one second period we will slew at whatever rate (less than 500PPM)
it takes to eliminate the delta entirely.
The old implementation stepped the clock a number of microseconds
every HZ to acheive the same effect, using the same rates of change.
Eliminate the global variables tickadj, tickdelta and timedelta and
their various use and initializations.
This removes the most significant obstacle to running timecounter and
NTP housekeeping from a timeout rather than hardclock.
our feet when we look inside timecounter structures.
Make the "sync_other" code more robust by never overwriting the
tc_next field.
Add counters for the bin[up]time functions.
Call tc_windup() in tc_init() and switch_timecounter() to make sure
we all the fields set right.
The binary format "bintime" is a 32.64 format, it will go to 64.64
when time_t does.
The bintime format is available to consumers of time in the kernel,
and is preferable where timeintervals needs to be accumulated.
This change simplifies much of the magic math inside the timecounters
and improves the frequency and time precision by a couple of bits.
I have not been able to measure a performance difference which was not
a tiny fraction of the standard deviation on the measurements.
HZ=BIGNUM will strain the assumptions behind timecounters to the
point where they break.
This may or may not help people seeing microuptime() backwards messages.
Make the global timecounter variable volatile, it makes no difference in
the code GCC generates, but it makes represents the intent correctly.
Thanks to: jdp
MFC after: 2 weeks
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
Make the public interface more systematically named.
Remove the alternate method, it doesn't do any good, only ruins performance.
Add counters to profile the usage of the 8 access functions.
Apply the beer-ware to my code.
The weird +/- counts are caused by two repocopies behind the scenes:
kern/kern_clock.c -> kern/kern_tc.c
sys/time.h -> sys/timetc.h
(thanks peter!)
and extend. The new function containing the code is named schedclock()
as in NetBSD, but it has slightly different semantics (it already handles
incrementation of p->p_cpticks, and it should handle any calling frequency).
Agreed with in principle by: dufault
NOTE: This will break building ntpd until ntpd has been upgraded to also
support draft 05. People that want to build ntpd in the meantime can
get patches from me.
used for timecounting. The possible values are the names of the
physically present harware timecounters ("i8254" and "TSC" on i386's).
Fixed some nearby bitrot in comments in <sys/time.h>.
Reviewed by: phk
This code is backwards compatible with the older "microkernel" PLL, but
allows ntpd v4 to use nanosecond resolution. Many other improvements.
PPS_SYNC and hardpps() are NOT supported yet.
is the preparation step for moving pmap storage out of vmspace proper.
Reviewed by: Alan Cox <alc@cs.rice.edu>
Matthew Dillion <dillon@apollo.backplane.com>
can set if your hw/sw produces the "calcru negative..." message.
Setting the alternate method (sysctl -w kern.timecounter.method=1)
makes the the get{nano|micro}*() functions call the real thing at
resulting in a measurable but minor overhead.
I decided to NOT have the "calcru" change the method automatically
because you should be aware of this problem if you have it.
The problems currently seen, related to usleep and a few other corners
are fixed for both methods.
out interrupts for too long. If you still see the "calcru: negative
time..." message you can increase NTIMECOUNTER (see LINT).
Sideeffect is that a timecounter is required to not wrap around in
less than (1 + delta) seconds instead of the (1/hz + delta) required
until now.
Many thanks to: msmith, wpaul, wosch & bde
If you have problems with the "calcru" messages and processes being
killed for excessive cpu time, try to increase the NTIMECOUNTER
#define and report your findings.
Clean up (or if antipodic: down) some of the msgbuf stuff.
Use an inline function rather than a macro for timecounter delta.
Maintain process "on-cpu" time as 64 bits of microseconds to avoid
needless second rollover overhead.
Avoid calling microuptime the second time in mi_switch() if we do
not pass through _idle in cpu_switch()
This should reduce our context-switch overhead a bit, in particular
on pre-P5 and SMP systems.
WARNING: Programs which muck about with struct proc in userland
will have to be fixed.
Reviewed, but found imperfect by: bde
* Figure out UTC relative to boottime. Four new functions provide
time relative to boottime.
* move "runtime" into struct proc. This helps fix the calcru()
problem in SMP.
* kill mono_time.
* add timespec{add|sub|cmp} macros to time.h. (XXX: These may change!)
* nanosleep, select & poll takes long sleeps one day at a time
Reviewed by: bde
Tested by: ache and others
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde
They are atomic, but return in essence what is in the "time" variable.
gettime() is now a macro front for getmicrotime().
Various patches to use the two new functions instead of the various
hacks used in their absence.
Some puntuation and grammer patches from Bruce.
A couple of XXX comments.
Highlights:
* Simple model for underlying hardware.
* Hardware basis for timekeeping can be changed on the fly.
* Only one hardware clock responsible for TOD keeping.
* Provides a real nanotime() function.
* Time granularity: .232E-18 seconds.
* Frequency granularity: .238E-12 s/s
* Frequency adjustment is continuous in time.
* Less overhead for frequency adjustment.
* Improves xntpd performance.
Reviewed by: bde, bde, bde
of time that the laptop was suspending. Thus, select() calls that might have
suspended rather than firing at 1hr + "time suspended" since the timer was
posted.
Adding:
options APM_FIXUP_CALLTODO
to the kernel config enables the patch.
[
This patch was slightly modified to use a consistant indent style and
I removed some unused local variables. After this has been tested a
few weeks we'll make the options the default, so for now I'm now
documenting it in LINT. Mike can later if he wants.
]
Reviewed by: Mike Smith <msmith@freebsd.org>
Submitted by: Ken Key <key@cs.utk.edu>
hash chain traversal isn't needed. This also allows untimeout to recompute
the hash to find the bucket that the entry to remove is stored in so
that each callout entry no longer needs to store that information.
Reviewed by: Nate Williams <nate@mt.sri.com>
Add support for "interrupt driven configuration hooks".
A component of the kernel can register a hook, most likely
during auto-configuration, and receive a callback once
interrupt services are available. This callback will occur before
the root and dump devices are configured, so the configuration
task can affect the selection of those two devices or complete
any tasks that need to be performed prior to launching init.
System boot is posponed so long as a hook is registered. The
hook owner is responsible for removing the hook once their task
is complete or the system boot can continue.
kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c:
Change the interface and implementation for the kernel callout
service. The new implemntaion is based on the work of
Adam M. Costello and George Varghese, published in a technical
report entitled "Redesigning the BSD Callout and Timer Facilities".
The interface used in FreeBSD is a little different than the one
outlined in the paper. The new function prototypes are:
struct callout_handle timeout(void (*func)(void *),
void *arg, int ticks);
void untimeout(void (*func)(void *), void *arg,
struct callout_handle handle);
If a client wishes to remove a timeout, it must store the
callout_handle returned by timeout and pass it to untimeout.
The new implementation gives 0(1) insert and removal of callouts
making this interface scale well even for applications that
keep 100s of callouts outstanding.
See the updated timeout.9 man page for more details.
There are various options documented in i386/conf/LINT, there is more to
come over the next few days.
The kernel should run pretty much "as before" without the options to
activate SMP mode.
There are a handful of known "loose ends" that need to be fixed, but
have been put off since the SMP kernel is in a moderately good condition
at the moment.
This commit is the result of the tinkering and testing over the last 14
months by many people. A special thanks to Steve Passe for implementing
the APIC code!
form `tv = time'. Use a new function gettime(). The current version
just forces atomicicity without fixing precision or efficiency bugs.
Simplified some related valid accesses by using the central function.